TGN-PNM: A Near-Memory Architecture for Temporal GNN
Inference on 3D-Stacked Memory

Alif Ahmed
alifahmed@virginia.edu
University of Virginia
USA

Jundong Li
jleqk@virginia.edu
University of Virginia
USA

Abstract

This paper introduces TGN-PNM, a Processing-in-Memory (PIM)-
based accelerator designed specifically for Temporal Graph Neural
Networks (TGNNs). TGNNs are gaining increasing attention due to
their ability to capture complex relationships and temporal dynam-
ics in various domains. However, designing accelerators for TGNN
workloads poses several challenges, including the lack of a standard
model architecture, the absence of distinct execution phases, and
the difficulty in maintaining workload balance in evolving graphs.
Existing accelerators for static GNNs are not easily extendable to
TGNN:S. In this work, we propose TGN-PNM, which leverages the
concept of vault-level parallelism by placing a Vault Processing Unit
(VPU) at each vault in a 3D-stacked memory. The VPU consists of
a SIMD unit for memory-intensive operations and a systolic array
for compute-intensive operations. By placing compute units at the
logic layer, our design achieves near-linear performance improve-
ment with increasing memory stacks and exposes higher internal
memory bandwidth. We address the challenges of TGNN workloads
by introducing a feature-dimension partitioning scheme that mini-
mizes inter-vault communication and improves workload balance.
Our architecture allows compute units in all vaults to work in lock-
step, resulting in efficient execution. We evaluate TGN-PNM using
various TGNN models, batch sizes, and datasets, demonstrating its
effectiveness in handling both memory-bound and compute-bound
kernels. Our proposed accelerator offers significant performance
improvements over existing approaches and provides flexibility to
accommodate future TGNN model variations.

CCS Concepts

« Hardware — Emerging architectures; - Computer systems
organization — Systolic arrays; Neural networks; Data flow
architectures; Heterogeneous (hybrid) systems; Special pur-
pose systems.

Keywords

graph neural network, temporal graph neural network, processing-
in-memory, systolic array

1 Introduction

Graph Neural Networks (GNNs) have gained significant attention
in various domains, including social network analysis [1], biology
[2-4], and recommendation systems [5, 6], due to their remarkable

Felix Lin
felixlin@virginia.edu
University of Virginia

USA

Kevin Skadron
skadron@virginia.edu
University of Virginia

USA

ability to capture complex relationships and interactions among en-
tities. GNNs typically learns the graph representation via a message-
passing mechanism that aggregates the neighborhood information
into low-dimensional node embeddings. Afterwards, these embed-
dings are used to perform various downstream inference tasks on
the graph, such as node classification [7, 8], link prediction [9-11],
and graph clustering [12].

In user facing production environments, these inference tasks
on GNNs are often subjected to stringent latency/throughput con-
straints. Subsequently, researchers have proposed a plethora of
accelerator architectures, focusing primarily on the inference tasks
on static GNNs [6, 13-18]. These accelerators leverage the obser-
vation that inference tasks on prevailing static GNN models (e.g.,
GCN) are primarily composed of two distinct execution phases:
aggregation and combination [13]. The aggregation phase uses the
graph structure and neighbor interactions to recursively update
the feature vectors of the nodes. In contrast, the combination phase
transforms the aggregated features of each node through neural
network layers to compute the node embeddings. Among these two
phases, the aggregation phase shows the typical pitfalls of graph
processing behavior; this phase is data-intensive with highly irreg-
ular access patterns, and low compute intensity. On the other hand,
the combination phase shows a regular access pattern with a high
compute density. Accordingly, existing static GNN accelerators aim
to optimize one or both of these phases.

However, many of the real-life applications are dynamic in na-
ture, where the graph topology is no longer static, as the nodes and
edges can evolve rapidly over time. For example, on social networks,
users are forming new connections, deleting old ones, and groups
are constantly evolving. These additions/deletions of connections
or changes in user interests can significantly alter the social graph
structure over short periods. In telecommunications, the network
of calls and messages between users is constantly changing. New
subscribers are added, some subscribers might leave, and communi-
cation patterns shift frequently, necessitating dynamic graph mod-
els to predict the network trajectory. In transportation networks,
optimal routes undergo dynamic changes due to traffic conditions,
road closures, new road developments, and varying transportation
demands. The topology of such graphs changes as traffic lights,
signs, and usage alter in real-time. In recommendation systems,
as users interact with new items, the underlying graph structure

used to model these interactions changes continuously. By incorpo-
rating the timing and sequence of interactions or changes within
the graph, temporal GNNs (TGNN) can more accurately predict
future states of the graphs compared to static GNNs [19-21]. This
temporal context helps the model understand not just the structure
of the graph but also how that structure evolves, which is essential
for accurate predictions in dynamic/evolving graphs. For example,
authors in [19] compared the accuracy of temporal GNN approach
with several state-of-the-art static GNN approaches on datasets
from Wikipedia, Reddit, and Twitter. On edge prediction tasks, tem-
poral GNN improved the accuracy by 7.2% on Wikipedia, 1.3% on
Reddit, and 46.6% on Twitter, over the best static GNN method.
These results highlight the importance of considering temporal
contexts.

Despite the importance of TGNN:S, it is extremely challenging to
design an accelerator targeting TGNN than static GNN, for several
reasons: 1) The lack of standard model architecture. Unlike GCN,
which is the prevailing model for static GNNS, there is no general
consensus about which temporal GNN model is the best, and this
often boils down to accuracy-complexity tradeoff. Therefore, it is
desirable that the proposed accelerator is flexible to accommodate
design choices that might arise in the future. 2) Unlike static GNN’s
aggregation/combination phases, models for TGNNs often cannot
be decomposed into distinct phases of rigid execution patterns. For
example, aggregation phase itself may require neural network lay-
ers, such as in temporal graph attention [22]. Furthermore, based
on the TGNN model architecture, batch size, and dataset, the oper-
ational intensity of the execution phases can vary widely and can
contain both memory-bound and compute-bound kernels (more
discussion on this topic on Section 2.1). The proposed accelerator
must handle both types of kernels efficiently to be able to extract
maximum performance. 3) Due to the evolving nature of the graph,
it is difficult to maintain proper workload balance. This issue is
less prominent in static graphs, where pre-processing steps can
by applied on the graph to reorganize vertices to ensure balance
and ensure maximum locality [23-25]. This pre-processing cost is
a one time cost for static graphs and gets amortized over time, but
becomes prohibitively expensive on dynamic graphs. Researchers
have proposed node migration techniques that can partially solve
the workload imbalance on dynamic graphs [26, 27]. These ap-
proaches are applicable in distributed memory systems with non-
uniform memory access latency, where the nodes migrate towards
their neighbors over time to reduce the memory access latency
and/or network hops. Unfortunately, migration-based methods in-
troduce additional data movement. This data movement overhead
is significant for GNN workloads, as each node is usually associated
with a large number of features. Furthermore, as the nodes are
constantly moving to minimize latency/hops, migration-based tech-
niques also require additional dictionary lookups to determine the
node’s current address. Node addresses can be cached to facilitate
faster lookup, but in that case maintaining coherence becomes an
issue. Because of these aforementioned challenges, we are aware
of only one prior accelerator that targets TGNN workloads [28],
mapping the TGN framework [19] on an FPGA (referred as tFPGA).
However, we observed that this approach can only support a small
numbers of compute units due to FPGA resource limitations, and we

Alif Ahmed, Felix Lin, Jundong Li, and Kevin Skadron

show this is vastly outperformed by in-/near-memory-processing-
based approaches.

In this paper, we propose TGN-PNM, which is a near-memory
architecture for accelerating TGNN workloads. TGN-PNM exploits
vault-level parallelism by placing one Vault Processing Unit (VPU)
at every vault in the logic-layer of a 3D-stacked memory. Each
VPU contains a SIMD unit for common memory-intensive opera-
tions (e.g., BLAS level 1 and 2 kernels, time encoding, and other
elementwise operations) and a systolic array for compute-intensive
operations (e.g., BLAS level 3 kernels). Placing the compute units
at the logic layer enables obtaining performance that is memory-
capacity-proportional (i.e., linear performance improvement can be
obtained by increasing the number of memory stacks). Addition-
ally, it also exposes some of the internal memory bandwidth to the
processing units, which can be an order of magnitude higher than
the bandwidth seen by external I/O links [29]. While it is possible
to obtain a finer-grained parallelism by placing the compute units
at the banks or subarrays, as proposed by a few prior generic accel-
erator architectures [30-36], it comes with several pitfalls: i) Any
extra logic in the compute units gets multiplied by the number of
banks/subarrays. Therefore, these compute unit can only support
bare-minimum functionality and cannot accommodate complex
logic, such as transcendental time encoding functions needed for
TGNN kernels. These functions needs to be handled separately, for
example, by the host or by placing compute cores in the logic layer,
thereby introducing a lot of data-movement overhead. ii) Placing
compute units at the bank-/subarray-level also imposes a stricter
requirement on the data layout and moving the intermediate results
to conform to this data-layout requirement often times becomes a
bottleneck. iii) Finally, gates in the DRAM dies are usually larger
and slower than their counterparts in the logic die. These reasons
motivate us to place the compute units at the logic layer, rather
than in the banks or subarrays.

Data placement is a key factor in the efficiency of a near-data
processing solution. In our approach, if we partition the graph tra-
ditionally, where each vault holds a subset of nodes, the primary
bottleneck arises from significant inter-vault communication dur-
ing neighbor aggregation. To overcome this limitation and improve
workload balance, we introduce a feature-dimension partitioning
scheme. The key idea is to allocate each vault with a subset of the
features of all nodes. This approach takes advantage of the fact that
nodes in GNNs typically possess numerous features (ranging from
hundreds to thousands). With this partitioning scheme, all element-
wise operations, including operand fetch for neighbor aggregation,
become localized within each VPU. Consequently, inter-vault com-
munication is only required for dot-product reduction operations
during matrix-vector and matrix-matrix multiplications, as each
vault produces a portion of the output vector or matrix. This re-
duction has a regular pattern and can be handled efficiently with a
global pipelined tree-adder. Additionally, each vault only needs to
contain a subset of the weights and does not need to duplicate the
weights across all the vaults. Another advantage of our proposed
architecture is that the compute units within all vaults can work
in lockstep, leveraging a single instruction queue and a unified
fetch/decode unit. We extended our approach with a broadcasting
mechanism and hybrid partitioning scheme, both of which helps
towards efficiently handling small feature vectors.

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

We evaluated the performance of the proposed TGN-PNM ar-
chitecture in terms of throughput (edges/sec) and latency (us) for
two TGNN models: TGN-attn and TGN-sum, across three datasets:
Wikipedia, Reddit, and GDELT. The performance of TGN-PNM is
compared against five other platforms: a high-end CPU; an NVIDIA
A100 GPU; a subarray-level general purpose PIM architecture, Gear-
box [33]; a bank-level Al accelerator, Newton [30]; and the FPGA-
based TGNN accelerator tFPGA [28]. By combining vault-level
parallelism, hybrid partitioning, and efficient compute units, TGN-
PNM demonstrates average throughput gains of 26.8x over CPU,
16.7x over GPU, 5.2x over Gearbox, 4.4x over Newton, and 10.4x
over tFPGA. In terms of latency, TGN-PNM provides an average
improvement of 26.8x over CPU, 17.2x over GPU, 5.4x over Gearbox,
2.9x over Newton, and 3.8x over tFPGA. Despite having similar pro-
cessing unit counts, TGN-PNM outperforms the other two general
purpose PIM architectures (Gearbox and Newton) due to efficient
handling of time encoding and elementwise operations and better
data reuse.

2 Background and Motivation
2.1 Temporal Graph Neural Network (TGNN)

Evolving graphs can be expressed in two manners: Discrete-time
dynamic graphs (DTDG) and continuous-time dynamic graphs
(CTDG). In DTDG, the dynamic graph is represented as a sequence
of static graph snapshots. However, DTDG is a coarse-grained
representation, where the exact event timestamps between subse-
quent snapshots are lost. This loss of temporal information can
lead to comparatively lower accuracy during inference [20]. On
the other hand, CTDG are more fine grained and can represent
the dynamic graph as an ordered sequence of timestamped events,
G(t) = {1, 02, ..., O }, where each event §; denotes addition/dele-
tion of a node or an edge. Typically, CTDG is a multigraph, which
means that there can be more than one edge between a pair of
nodes, pertaining to multiple interaction events between the nodes
at different times. In this paper, we focus on the continuous time
representation of the temporal graph.

There are a few prior works that proposed neural network mod-
els for learning representations over CTDG [19-21, 38-41]. Among
these approaches, TGN [19] proposes a generic message-passing-
based modular framework that can be tuned to mimic many of
these other approaches. Therefore, we use TGN as the software
framework for our accelerator. In TGN, each node is composed of
raw node features v; that denote the static properties of the node,
node memory or state s;(t) that captures the history of temporal
interactions, and dynamic node embeddings z;(¢) that combine the
node memory with the spatial information (e.g., graph topology).
Whenever an interaction event occurs between nodes v; and v},
a message function produces two messages that are sent to the
mailbox of the corresponding nodes:

m;(t) = {s;(t7)||s; (t)I|D(At;)||es;} (1)

m;j(t) = {s;j(t7)|lsi(t7)[|®(At})]le;;} (2)

Here, || denotes the concatenation operation, s(t~) denotes the
node state just before the event, ®(At) is the vector encoding of
elapsed time since the last state update of that particular node,

2] DRAM layer

- ! -

Figure 1: Organization of a Hybrid Memory Cube [44, 45].

Il Logic layer W Tsv Banks

and e;; is the edge embedding of that interaction. The time en-
coding function is usually implemented as ®(At) = cos(Atw + b),
following prior works such as Time2Vec [42] and TGAT [20]. In
batch processing, one node can receive multiple messages within
a batch, which is aggregated into a single message per node by
a message aggregator function. The message aggregator function
can be implemented in various ways. The common implementation
simply keeps the most recent message as the aggregated message
[19, 28, 41]. The aggregated message is then used to update the
node states as follows:

si(t) = mem(im;(t),s;(t”)) (3)

sj(t) = mem(m;(t),sj(t")) (4)
Here, m(t) is the aggregated message and mem() is a learnable
function for updating the memory, e.g., a recurrent neural network
such as LSTM or GRU. Finally, the dynamic embedding is derived
by aggregating over the k-hop temporal neighborhood Nik:

zi(t) = emb(v;,0},5i(t), 85 (1), eij, A1) |Vj € NF (5)

Here, emb() is a learnable function and can be realized in several
ways. One is to simply use the node’s current state, z;(t) = s;(t).
However, this approach can lead to memory staleness issue if the
node’s state has not updated in a while [19, 43]. JODIE [21] uses
a linear time projection of the node’s state to avoid this issue,
zi(t) = (1+Atw)os;(t). TGAT [20] and TGN [37] uses a multi-head
graph attention mechanism over the temporal neighborhood as the
embedding function. It is also viable to simply use the average of
neighbor states as the embedding while retaining relatively high
accuracy, as shown by TGN-sum [37].

Table 1 summarizes the arithmetic intensity of these functions
for different datasets, model-architectures, and batch sizes. Here,
the arithmetic complexity of the same kernels (e.g., embedding
function) can differ vastly among different models. Furthermore,
even within the same model and same function, arithmetic com-
plexity can change widely depending on the data reuse opportunity.
Therefore, a TGNN accelerator needs to be flexible to accommodate
these scenarios efficiently.

2.2 3D-Stacked Memory

In 3D-stacked memory, multiple DRAM dies (e.g., 4 or 8) are stacked
vertically and may contain an optional buffer or logic die. This
combination of a logic layer interfacing with the DRAM stack is
promising in terms of potential PIM architectures. Notably, two
distinct variations of 3D-stacked memory technology have emerged
[46, 47]: Hybrid Memory Cube (HMC) [44] and High Bandwidth
Memory (HBM) [48]. In HBM, the external IO interface of the mem-
ory stack is implemented through DDR physical channels. The
HBM memory stacks are typically tightly integrated with the host

Alif Ahmed, Felix Lin, Jundong Li, and Kevin Skadron

Table 1: Arithmetic intensity (flops/byte) of various TGNN models.

1/0 links to host or other cubes

Message aggregator function Memory updater function Embedding function
Batch size = 1 Batch size = 32 Batch size = 1 Batch size = 32 Batch size = 1 Batch size = 32
Type Wiki GDELT Wiki GDELT Type Wiki GDELT Wiki GDELT Type Wiki GDELT Wiki GDELT
TGN-attn [37] id 0.07 0.05 0.10 0.06 GRU 0.50 0.50 15.04 15.63 attn (1 layer) 3.11 2.62 83.03 69.68
TGN-sum [37] id 0.07 0.05 0.10 0.06 GRU 0.50 0.50 15.04 15.63 sum 0.71 0.48 0.77 0.49
TGAT [20] - - - - - - - - - - attn (2 layers) | 28.09 26.60 11697 15161
JODIE [21] id 0.07 0.05 0.10 0.06 RNN 0.05 0.05 13.47 14.82 time projection 0.50 0.50 0.97 0.97
tFPGA [28] id 0.07 0.05 0.10 0.06 GRU 0.50 0.50 15.04 15.56 simple attn 1.03 0.74 1.17 0.78
—Tsv [Veurl vautz Vaultn | Towmc 4
= Data bus f . ' { ' 1 !
' ! ' ! H ' 1 —
—- Data + Inst bus ; P : : | . [Weight
' Vo \ cee ! H o
; Lo : ' ' : -3 l —| buffer > NoC
H Lo H i : 3
Memory Layers : Do : ' : : g g | Load/Store |«—sf
1 : P : : ! 1 - Unit
Logic Layer ' {MC&PHY [i ||MC&PHY|: 1| MC & PHY | S g SIMD Unit
: | I P I I : ; : ' 58
: i J [i T . H i T : 1 '—» FP Mul FP Add
: b : : ; !
l : P oL i ! CORDIC
£ Pl veua fiod [veu2 | t|| veun i | partial ' VsPad |
E Scalar BCBUf - : - : ' . Sum : | Activation functions |
o~ core L I I oo 1 _____ i [N D) Acc.
=) ‘| 1
§ g (PSAU) I
== Pre- 1
'.g GSPad eidiar 4.‘ o " I : Systolic Array [
5 Global interconnect networ| . FIFO
! L)
' I
: vPU From/to PSAU ~&——————
1
1
1
1

(a) Microarchitecture Overview

(b) Vault Processing Unit (VPU)

Figure 2: TGN-PNM Architecture.

die using a silicon interposer, with the memory controllers resid-
ing on the host die. In contrast, the HMC specification places the
memory controllers within a logic die part of the HMC memory
stack. Figure 1 shows the organization of HMC. In HMC, mem-
ory layers are partitioned vertically to form mostly independent
vaults. Each memory layer in each vault contains multiple memory
banks. All banks within a vault are connected using through-silicon
vias (TSVs) that act as the shared bus to carry DRAM address and
command signals to these banks. Each vault also contains a mem-
ory controller in its logic layer. DRAM transistors in the memory
layers have traditionally been designed for low cost and leakage.
The logic die, on the other hand, uses high-performance transistors
[49]. HMC 2.1 specification supports up to 32 vaults. Four external
SerDes IO links are connected to these memory controllers using
a crossbar switch at the logic layer. Note that this crossbar switch
only connects the IO links to the vaults, but the vaults themselves
do not communicate directly (e.g., send memory access requests)
with each other. These IO links can be used to connect to the host
or can be used to connect to other HMC cubes to increase capacity.
Even though HMC is no longer under development, for our spe-
cific application, using an HMC organization offers two advantages
compared to HBM: i) Placing the VPUs in the logic layer of HMC
results in lower energy for data movement compared to placing
them on the host die, as the data do not have to travel through the
silicon interposer, and ii) HMC is optimized for random accesses
(by using short row buffers, closed page policy, consecutive address
to different banks), while HBM is optimized for sequential accesses

(wider row buffers, open page policy, consecutive address to the
same row). Consequently, HMC is better aligned with the irregular
access patterns of graph workloads. In this paper, we will mostly re-
fer to memory specifications and terminologies pertaining to HMC,
but the concept can be easily extended to HBM memory by placing
the VPUs after the memory controller on the host die, similar to
the approach proposed in [50].

3 TGN-PNM Microarchitecture

Figure 2(a) presents the overall architecture of our proposed ap-
proach. We primarily add three components in addition to the
interconnect network and the memory controllers that are already
present in the logic layer of an HMC-like memory!: i) Vault-level
Processing Units (VPUs) at the logic layer of every vault, ii) one
Global Control Unit (GLCU), and iii) one Partial-Sum Accumulation
Unit (PSAU). Next, we will describe the contents and connectivity
of each of these components.

3.1 Vault-level Processing Unit (VPU)

The VPUs are the primary compute units in our design. Figure
2(b) shows the microarchitecture of a VPU. Each VPU contains
an S, X Sy systolic array of fused-multiply-accumulators, an Sy,-
lane SIMD unit, a local scratchpad memory (VSPad), and a weight

'We used one of the IO links of the global interconnect network to connect to the
GLCU. The interconnect network and the memory controllers are not modified in any
other way. In other words, we do not need to design a custom interconnect or memory
controllers for our proposed architecture.

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

buffer. All operations within a VPU is performed in S,, granularity,
including access to the VSPad and all the buffers. Selecting S,
poses performance-area trade-off. In our implementation, we used
Su = 16, which is the maximum that we could synthesize without
going over the available die area (a more detailed area evaluation
is given in Section 5.6). For the systolic array, instead of using a
single S, X Sy, array, it is realized as a group of four arrays, each
with the dimension of S, X Sg, where S, = S, /4. These arrays can
be configured to work cooperatively or independently: as a single
Su X Sy array; two Sy, X 2S, arrays, or four S, X S, arrays. The
concept of such segmented systolic array is borrowed from the
work of Yan et al. [13] and is leveraged to efficiently support dense
matrix multiplication with small feature dimensions. More on this
topic and specific use cases are discussed in Section 4.1. The output
of the systolic array is sent to the PSAU for accumulation.

The SIMD unit contains S, numbers of pipelined multiplier and
adders, one 16-stage CORDIC functional unit for time encoding, and
one activation function unit. The activation functions are realized
using a lookup table. The CORDIC unit consumes S, operands at
a time, but process them sequentially (i.e., initiation interval of S,
cycles). As both the systolic array and the SIMD unit works on Sy,
data elements at a time, the access granularity to the VSPad is fixed
to size(elem) * Sy,. The operands for these units can come from the
VSPad, weight buffer, result bus, or the global broadcast buffer. All
the VPUs operate in a lockstep, controlled by the GLCU. VPUs have
very limited outside visibility - they can only load/store data from
their local vault (by using the address broadcasted by the GLCU)
and can send data out only to the PSAU for reduction. VPUs cannot
communicate directly with each other.

3.2 Global Control Unit (GLCU)

The primary objective of the GLCU is to drive the VPUs by broad-
casting instructions. It also contains a scalar core, a scratchpad mem-
ory (GSPad, local to the GLCU), a data broadcast buffer (BCBuf),
and a prefetcher. The scalar core can be used to do operations that
are not supported by the VPUs or for complex reductions (e.g.,
softmax in graph-attention). It has access to the full memory stack
(via the global interconnect network), the GSPad, and the BCBuf.
The function of the broadcast buffer BCBuf is to provide a common
operand to all the VPUs. In our mapping scheme (discussed in Sec-
tion 4.1), the BCBuf is used for time encoding and for handling low
dimension GEMM. The BCBuf width is S, elements. The GLCU also
contains a prefetcher, that can fill the GSPad or VSPad by fetching
anode’s associated data. Using the broadcast mechanism, we can is-
sue memory read/write requests to every vault in every clock cycle.
With this approach, we can easily saturate the memory controller
queue without resorting to maintaining multiple threads, as done
in a few prior PIM-approaches [31, 51].

3.3 Partial-Sum Accumulation Unit (PSAU)

As discussed before, partitioning across the feature dimension en-
tails that we only need inter-vault communication when performing
dot-product reductions during GEMV and GEMM operations. This
reduction is handled by the PSAU. It contains a pipelined parallel
adder tree to reduce the results from all the VPUs’ systolic array. A

i dst acc Partial sums from VPUs
addr reg
N
! ! ! !

=

L |
Pipeline registers

db S, x16-bit
1~ FPadders

L] Accumulatlon
addr registers

7
—

broadcast to VPUs v

Figure 3: Partial-sum accumulation unit (PSAU). Figure
drawn assuming a total of eight VPUs.

few entry? accumulation register stores the partial results. The final
output is broadcast to all the VPUs and is stored to either one of
the VSPads, or in the GSPad, depending on the destination address.
An alternative to running the vaults in lockstep and doing partial
sum across vaults is to make the VPUs completely independent.
However, it requires either having a copy the model parameters in
each vault, or high amount of inter-vault traffic.

To summarize, the VPUs can get their operands from: i) their
local scratchpad memory (VSPad), ii) their local DRAM stack (must
load to the VSPad first), or iii) the broadcast buffer (BCBuf). After
doing the intended computation, VPUs can send the result to the:
i) local scratchpad (VSPad) as the intermediate operands for later
stages, ii) local DRAM stack store, or iii) PSAU for reduction. The
result of the reduction of the PSAU can be sent back to one of
the VPU’s scratchpad, or to the GLCU’s scratchpad for additional
processing.

4 Mapping TGNN Frameworks on TGN-PNM

4.1 Mapping of common operations

4.1.1 Dense matrix multiplication. We always process dense matrix
multiplication using the systolic array. Figure 4 demonstrates our
mapping scheme. Depending on the current input location and
input’s feature dimension, we map the operation into one of the
three possible scenarios: i) In the first scenario, input is currently
stored in VSPad (i.e., using feature-based partitioning) and the
number of input-features within the vault is > S;,. In this scenario,
all lanes of the systolic array will be occupied without resorting
to any special strategy. We use input-stationary dataflow on the
systolic array for this case. If the input matrix is (m X n) and the
weight matrix is (nxk), then m is usually the batch size (or batch size
* the number of neighbors when performing neighbor aggregation)
or the partitioned output of an intermediate matrix. Dimension n is
partitioned across vaults, making the effective dimension per vault
n/(# of vaults). Therefore, these two dimensions are relatively
small when compared to k. In this case, using input-stationary
dataflow enables streaming the weights along k, thereby providing
higher reuse of the inputs. Furthermore, we use two sets of registers

2We used 4096 entry accumulation register in our experiments.

i V1 by V2 by
: by3|bs, bgs| by,
b To-Tb.lb : by3| by, | bsy bgs |bg, | by
1| Boa :
vl OO 02 03}k g by, by, | bgg bys|bs, |bgy | by
Vi v2 Dyo|b1s |1y [bas| | bgy|byy|byg by, |bs; |bg,
300 |01|302| 303|304 | 305 | 06 | 307 by0|b1 | by | bas| 201 bio E‘“ bso
! Poo 40
310|311|312| 313|314 | 335|316 317 X b3 |bs; | b3y | bay I::> Loyl [
20/321|22| 823324 | 325 | 326 | 327 ao| s Bag i | 300|301| 302|303 [304|305 | 306 | 307
830|331|332| 33| 34| 35| 336|337 Bso|bs1|bss | bss | ay|an|a|a— 2 a4|a55| 56|37
. b, |b : &
60| 961| P62| Pe3| 1
Input matrix V2 R (350|330 |33 o | | 326|325 | 26|32
Db | b7y |bss] L,
1 [%30]331|332| 353 334|335 | 336|337

Weight matrix

Systolic array Systolic array

(a) Scenario 1: Input stored in VSPad, with per-vault feature-dimension > S,

Tl

i vi V2
by by, by by,
i V2 : bos by, [bos big b3 |bs; by | bag
Vi i bgy|byy [bgg| by b,; | b3y | bag| bas
300|301 302|303 bog| bos | Doa | o3 [Poa | Bos | Bos| Bor| | Por|P1o|bos|bia b,y | b3 (bys|bsy
i b, b
310|311|312|313 X b1g| by 15| by3 |04 | bys by iy I:,l:> 00 o bz b
320|321(322|323 00| 01| 22| 23| baa| bas | bys| by : b by
! 00| 301|300| 301> 302|303 |02 | 303 >
930|331| 332|333 V2 03| b3y | bap| b33 |34 035 | bag| bsy ' - S
- - - EMENRENE ap,|a;s[a,[a
Input matrix Weight matrix 1 10/%11 _1_0 “45 1217131712 T3>
! |@20]321|320| 321 |+ ° 322|353[357| 323+
' [@30]331]330| 331> 837|333|337| 333 |—

Systolic array Systolic array

b) Scenario 2: Input stored in VSPad, with per-vault feature-dimension < S,

Vi |y V2 .. Ay

[

! - |922(313 N -l
: - 1821(312]303 - 18y 3 A3
BCBuf vi v2 N SICTIERS 320 311 3
300|301 [302 | 303 Boo|Do1 | Po2 | Bos | Poa | Dos | Pos | Poy 1 310|301 310 301
310|311 (315|313 X Dy |byy b1y |by3|byg)bss b6 byy I__‘i_‘> ai" Ll af° Ly
320|321 (352|353 D0|01 [b2z | ba3| a5 026 | bay i boo | Bos | b2 | Bos [+ | |0 bos | Pos| bor
330|331|33,| 33 b3 |03y | b3z |bas|bsa) s |36 | bsy byo | by | by | by _,é b—“b—lsb_isb—u
Input matrix Weight matrix byo [by [by [bas |y E b, [bas|bye|byy
i bso | b1 | bsy | bas s 2] | bay |35 b36| b3y

Systolic array Systolic array

(c) Scenario 3: Input stored in the broadcast buffer (BCBuf).

Figure 4: Mapping of dense matrix multiplication on TGN-
PNM.

to enable loading the next set of inputs and biases while processing
the current set. Outputs of the systolic arrays are sent to the PSAU
for reduction, after which the final result can be stored in the VSPad
or BCBuf, depending on the output dimension. ii) In the second
scenario, input is stored in the VSPad; however, the per-vault feature
dimension is smaller than S,,. In this case, using the former scheme
will leave some of the systolic array lanes unused. To avoid this,
we use a smaller segment of the systolic array®. To fully utilize the
available lanes, the inputs are duplicated P times, and the weight
matrix is also folded P times. This approach fully occupies all the
MAC units, maximizing the available compute bandwidth. The
maximum value of P is the number of segments. While increasing
the number of segments means that we can support narrower input

3The idea of a segmented systolic array is borrowed from [13], where a systolic module
is formed by combining several narrower arrays. Refer to Section 3.1) for more detail.

Alif Ahmed, Felix Lin, Jundong Li, and Kevin Skadron

W feat_locality_open M feat_para_open
W trad_locality_open M trad_para_open

feat_para_close
W trad_para_close

10

Total prefetch time (ms)

0.01
64 128 256 512 1024 2048 4096

Element size (bytes)

Figure 5: Total operand load time for the Wikipedia dataset
with different memory address mapping and page policy
configurations. Lower is better.

matrices efficiently, it also means that the output of the systolic
array produces a higher number of outputs per clock (i.e., P.Sy), and
the PSAU had to be widened accordingly. In our implementation, we
support four segments. Any higher value resulted in unacceptable
area overhead for PSAU*. iii) In this scenario, the input is stored
in the BCBuf and broadcast to all VPUs, where the corresponding
results are calculated and stored back on the same vault. As we are
broadcasting the inputs, we use weight stationary dataflow in this
scenario.

4.1.2 Timeencoding. As mentioned earlier in Section 2, time encod-
ing is usually implemented as ®(At) = cos(Atwg + bt). Depending
on the task, At denotes either the time elapsed since the last up-
date of a node or the incident time of an edge. w; and b; are the
learnable weights and biases. Each VPU contains a subset of these
weights and biases in its weight buffer. Timestamps are stored in
the memory in a traditional fashion (discussed in Section 4.2) and
fetched in the GSPad for processing. The scalar core computes the
At of a batch and then puts the results in the BCBuf. Then, the
At of S;, elements are broadcasted to the VPUs. The SIMD units
on the VPUs will multiply the broadcasted value with the stored
weights, add bias, and then send it to the CORDIC unit to calculate
the resultant time encoding.

Elementwise operations are performed using the SIMD unit. Note
that using the broadcasting mechanism for elementwise operations
is not efficient. This is because the same value gets broadcast to ev-
ery VPU, but we do not have any reuse opportunity in elementwise
operations. Therefore, we store both operands in the VSPad for ele-
mentwise operations. One potential shortcoming of our approach
is that, if the dimension of the operands is small, then the SIMD
lanes will be underutilized.

4.2 Graph Storage Format

Static GNN accelerators typically use compressed formats such
as CSR to improve locality characteristics. However, such formats
are unsuitable for dynamic graphs, as any change in the graph

“Eight or higher number of segments resulted the PSAU occupying more than 4mm?
of logic-die area when synthesized on a 14nm node.

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

topology (e.g., addition of nodes or edges) requires reconstructing
the whole graph from scratch [52]. To support this dynamic be-
havior efficiently, we store the graph in an adjacency list format
and limit the maximum number of neighbors a node can have’.
This constraint is fairly common in existing TGNN frameworks
and accelerators [19, 28]. To maintain a fixed number of neighbors,
the adjacency list of each node is realized using a circular queue.
More specifically, we stored the following metadata for each node:
{head, tail, ts, eidy, eidy, ..., eidk, etso, ets1, ..., etsi }. Here, head and
tail are used to determine the location for new edge insertion in
the circular queue. ts is the timestamp of the last update. eid; and
ets; are i-th edge’s neighbor node id and incident timestamp, re-
spectively. Note that partitioning along the feature dimension is
impossible for these graph metadata, as these are mostly scalar
values and are also shared by all the vaults. It is possible to parti-
tion these graph metadata along the node dimension so that each
vault contains all metadata associated with a subset of the nodes.
However, real-world graphs usually demonstrate power-law degree
distribution, indicating that some of the vaults will get a dispropor-
tionately high number of accesses if we partition along the node
dimension, causing severe load imbalance. Therefore, these meta-
data are stored in a traditional fashion (i.e., consecutive memory
address is mapped to either in the same DRAM row to maximize
row buffer locality or in different banks to maximize parallelism)
and fetched to the global scratchpad (GSPad) instead of the vault’s
local scratchpad (VSPad).

On the other hand, vector data, such as weights and the states
of nodes and edges, can be partitioned along their feature dimen-
sion so that each vault contains a subset of features for all nodes.
However, if the feature dimension is small, it may be beneficial
to use traditional memory address mapping for these vector data
as well. Figure 5 shows the operand prefetch time with different
partitioning and address mapping schemes. We used an 8 GB HMC
2.1 memory stack for this experiment with 32 vaults, 32B DRAM
column width, and 256 B wide row buffers. Here, the x-axis shows
the data size associated with each node. We tried three paging-
policy/address-mapping-scheme combinations: i) optimized for row
buffer locality, where consecutive addresses are mapped to the same
row (x_locality_open), ii) optimized for parallelism, where consec-
utive addresses are mapped to different banks, keeping the row
buffer open (x_para_open), and iii) optimized for parallelism with
closed-page policy (x_para_closed). Figure 5 suggests that tradi-
tional mapping performs best for per-node data size < 256B. For
larger data, the feature-based scheme feat_locality_open performs
best. One interesting observation is that feature-based partitioning
performs better in some cases, even when each vault’s portion of
the feature may not fully occupy a DRAM column width (i.e., for an
element size of 512B, translating to a per-vault element size of 16B).
One reason is that in the case of feature-based partitioning, the
memory requests in every vault are perfectly balanced. Another fac-
tor impacting the traditional scheme was the additional latency of
traversing the global interconnect. Therefore, we propose a hybrid
partitioning where the data is stored using a traditional scheme
if the associated data size < 256B (feature-dimension < 128 with

5One reason that limiting the number of neighbors does not hamper the model accuracy
by a large margin is that the impact of temporal interactions of the discarded neighbors
is already captured and summarized in the node’s memory.

FP16) and using a feature-based scheme otherwise. An additional
consideration is the intended operation on the data. If it is an ele-
mentwise operation, then using the traditional scheme is not viable
because broadcasting is not optimal for elementwise operations. In
this case, the data is stored using the feature-based scheme.

5 Evaluation

In this section, we compare the performance of our method against
five other architectures: (i) a high-end CPU server as the baseline, (ii)
NVIDIA A100 tensor core GPU, (iii) subarray-level general purpose
PIM architecture Gearbox [33], (iv) bank-level PIM-based machine
learning accelerator Newton [30], and (v) an FPGA-based TGNN
accelerator (we refer to this approach as tFPGA in our paper) [28].
A summary of the configuration of these platforms is provided in
Table 3. Due to the lack of TGNN specific accelerators except for
tFPGA, we choose to compare against semi-general purpose PIM
accelerators Gearbox and Newton. As one of these is subarray-level,
and the other one is bank-level, it highlights the trade-offs of the
proposed vault-level accelerator.

5.1 Methodology

We evaluated our approach by mapping two variants of the TGNN
model architecture proposed in [19]: TGN-attn and TGN-sum. Both
of these models use GRU as the memory updater function. TGN-
attn uses a single layer multi-head graph-attention mechanism for
neighbor aggregation, while TGN-sum uses simple average of the
neighbor states. As a result, TGN-attn has both memory intensive
(collecting neighbor state data) and compute intensive (creating key,
value, and query matrices for calculating self-attention weights)
stages. On the other hand, TGN-sum’s neighbor aggregation is
memory-bound (refer to Section 2.1 for more details). We set the
maximum number of neighbors to 10 and batch size to 200, fol-
lowing the original model implementation in [19]. However, as
discussed later in Section 5.3, Gearbox and Newton only supports
GEMV operation and performs GEMM by repeating GEMV on every
input columns. We set batch size to one on these two approaches
as they do not benefit from batching.

We implemented our approach on an HMC 2.1-like memory
stack with 32 vaults and 16 banks per vault. The TSV width is
64-bits, clocked at 2 GHz, attaining per-vault memory bandwidth
of 16 GB/s (total 512 GB/s for a single stack). The logic layer is
clocked at 1.2 GHz. S, is set to 16 (i.e., 16 X 16 systolic array and
16-lane SIMD units in each VPU). In our implementation, we use 16-
bit brain floating-point (BF16) format for all the operands. Integer
arithmetic is not supported. BF16 has the same dynamic range
as IEEE 754 32-bit FP numbers (both uses eight bits for storing
exponent), but the number of bits to store fraction is reduced from
23 to 7. Compared to IEEE 16-bit FP, BF16 format provides ~16%
better energy/op while consuming ~15% less area [31]. To further
reduce the area required by the FP units, we dropped the support for
denormalization. Also, overflow is rounded to positive infinity and
underflow is rounded to negative infinity. Furthermore, rounding
is done by truncation to avoid multiple normalization iterations.
The loss of precision caused by these changes are tolerable because
machine learning applications are usually not very sensitive to the
precision of floating point operations.

The performance measures are collected by building cycle-accurate
simulation models for the VPUs and the GLPU and then feeding the
resulting memory request trace to a modified version of DRAMSim3
[53]. Area of processing elements and control logic are derived by
synthesizing RTL models on SAED 14 nm node using Synopsys
Design Compiler. Area of the buffers and register files are modeled
using CACTI-3DD [54] on a 32 nm node and then scaled to 14 nm.
Memory controller and interconnects are modeled using McPAT
[55].

As the performance metrics, we measured batch processing la-
tency and throughput. Batch processing latency is defined as the
elapsed time between receiving a batch to process and writing back
the updated node embeddings to memory. For throughput measure-
ment, we use the number of processed events per unit time. The
objective is to maximize the throughput and minimize the latency
for TGNN inference task.

5.2 Datasets

We conduct the experiments on three real-world datasets: Wikipedia
[21, 56], Reddit [21, 56], and GDELT [38]. Details of these datasets
are given in Table 2. Wikipedia and Reddit are bipartite graphs
consisting of user edits on wikipedia pages and posts made by users
on subreddits. GDELT is a reduced version of a temporal knowledge
graph dataset introduced in [41]. Among these datasets, Wikipedia
and Reddit do not have any raw node features. The time encoding
and the nodes’ memory dimensions are configurable hyper parame-
ters. We used 100 as the time encoder dimension. On the Wikipedia
and Reddit datasets, we used 100 as the memory dimension follow-
ing the prior works [19-21]. On GDELT, the memory dimension is
set equal to the raw node feature dimension of 483.

Table 2: Characteristics of the used datasets. Time encoder
dimension is fixed to 100 for all datasets.

Max weight Total weight

Datwset (VI [El il leyl Isie)] g D)
Wikipedia 9K 157K - 100 100 516 x 944 5.95
Reddit 11K 672K - 100 100 516 x 944 5.95
GDELT 9K 1913K 413 186 413 1242 x 1680 194

Table 3: Configuration of the evaluated architectures.

Architecture Parameters

TGN-PNM 8GB HMC 2.1, 32 vaults, 256B row buffers, TSV BW 16GB/s, 16-lane bfloat16
SIMD and 16x16 systolic array per vault, 32KB VPU SPad, 1MB global SPad, logic

layer freq 1.2GHz.

CPU Server with two AMD EPYC 7742 64-core @ 2.25GHz (total 256 hardware threads),
1024GB DDR4, 8 memory channels, peak memory BW 409.6GB/s.

GPU NVIDIA A100 SXM, 80GB HBM2e, peak memory BW 2039GB/s, peak compute
rate for 16-bit FP is 624 TFLOPs. Host is the same as the baseline CPU server.

Gearbox 8GB HMC 2.1, 32 vaults, 256 subarrays per vault, 256B row buffers, 49ns row
activation time, 8192 subarray-level ALUs @ 164MHz, TSV BW 16GB/s per vault,
logic layer cores ARM Cortex-A35 @ 600MHz, 128KB scratchpad memory shared

by the cores.

Newton 8GB HBM2e-like, 16 pseudo channels, 16 banks per channel, 1024B row buffers,

49ns row activation time, 16 MAC units per bank.

tFPGA Xilinx U200 FPGA @ 250MHz, 77GB/s DDR4 memory, two CUs, four 8x8 systolic
arrays and one 16-lane multiply-add tree per CU.

Alif Ahmed, Felix Lin, Jundong Li, and Kevin Skadron

5.3 Mapping on evaluated architectures

As mentioned earlier, we evaluated our approach against five other
architectures. This section goes into the implementation details
and mapping schemes on these architectures.

5.3.1 CPU and GPU. For performance evaluation on the CPU and
GPU platforms, we profiled the open-source implementation of the
TGN model architecture [57], which is written using the PyTorch
Geometric library. However, on the GPU platform, we have used
FP16 instead of BF16 because the GRU cell of PyTorch does not
support BF16 on CUDA as of version 2.0.1. To provide a fair com-
parison, we have not included the host-GPU data transfer times in
the measurements. The reported results are an average of five runs.

5.3.2 Gearbox [33]. Gearbox places scalar processing units at the
subarray-level of a 3D-stacked memory. These processing units
support word-level arithmetic and logic operations, as well as con-
trol flow instructions. Three latched row buffers (called Walkers)
in each subarray acts as the source/destination registers. Gearbox
also contains an ARM core in each vault’s logic layer, primarily for
reduction operations. Although the processing units of Gearbox
can operate only on a single word per cycle, Gearbox can attain
high performance by leveraging massive subarray-level parallelism.

The Gearbox authors implemented GEMV by mapping each row
of the matrix to a subarray and then broadcasting the input vec-
tor elements one-by-one to all subarrays. The input vector itself
is stored in a shared buffer at the logic layer. The subarray-level
processing units (APLUs) perform the MAC operation. This ap-
proach does not require partial sum accumulation across subarrays.
However, given the large number of subarrays (8192 subarrays in
an 8GB HMC 2.1 stack), this approach only makes sense for very
large matrices. For example, the authors used a matrix of dimen-
sion 25600x19200 for evaluating performance. The matrix size is
often times much smaller in practical TGNN datasets (refer to Table
2) and causes extreme under-utilization of the processing units.
In our evaluation, we used an alternative scheme, wherea every
[subarrays_in_vault X elems_in_dram_row] slice of the matrix
will be mapped to a vault. A full matrix is thus potentially dis-
tributed across multiple vaults. This approach can process subset
of columns in parallel while maintaining DRAM row buffer locality.
Furthermore, all the vaults are cooperatively processing a single
event at a time, thus minimizing the processing latency of events.
Additionally, this scheme does not require duplication of matrices
and also maintains proper event ordering. One concern with this
approach is that it requires accumulating partial sums across vaults.
Our evaluation shows that the inter-vault partial sum accumulation
adds moderate overhead (25% - 37%). But even with this overhead,
the latency improvement over the original Gearbox implementation
is substantial.

As for mapping the rest of the operations, the GEMM kernel is im-
plemented by repeating GEMV for each column of the input matrix.
Although this approach appears inefficient as it does not utilize any
form of cache blocking to leverage the reuse opportunities, it will
not negatively impact the attainable throughput. This is because the
machine balance of Gearbox is extremely low (~0.03 flop/byte with
164MHz ALUs and 49ns row activation time). As a result, Gearbox
is fundamentally compute bound even for GEMV kernels, and by

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

extension on GEMM kernels. Tiling for increasing reuse will not
provide any improvement in throughput unless we increase the
number of processing units. Therefore, GEMM is implemented sim-
ply by repeating GEMV. As a side note, TGNN framework does not
require GEMM operations unless we are batching the queries. Since
GEMM in Gearbox does not provide any advantages over multiple
individual GEMV operations, query batching is in fact undesirable
as it increases the query latency without providing any throughput
benefit.

The time encoding and most of the activations used by LSTM/-
GRU and GAT requires calculating transcendental functions. As
Gearbox ALPU does not support these functions, these operations
are handled by the cores at the logic layer. ReLU activations are
mapped to ALPUs as they are simple comparisons. Elementwise op-
erations, such as Hadamard product, matrix-matrix/vector-vector
additions, are cooperatively handled by the cores in the logic layer
as well.

Performance of Gearbox is estimated by leveraging the simu-
lation framework of Pulley [58]. Here, we use analytical model
for regular operations (e.g., GEMV) and simulation otherwise (e.g.,
feature aggregation of neighbors). We assumed that all operands, ex-
cept for the weight matrices, are loaded into the shared scratchpad
memory before processing. We also assume that the update/predic-
tions events are stored in a queue in the shared scratchpad memory,
from where it gets scheduled in-order.

5.3.3 Newton [30]. Newton is a near memory accelerator proposed
by SK Hynix and primarily targets acceleration of the GEMV oper-
ations of machine learning workloads. Newton puts several MAC
units in a SIMD fashion (number of MAC units matched with DRAM
columns) in every bank of an HMB2E-like memory stack. The
weight matrix is stored in a chunk-interleaved manner, where the
first matrix row’s first chunk is followed by the second matrix row’s
first chunk, and so on. The input vector is stored in a global buffer
and is broadcast to the bank-level compute units a single chunk
at a time, where the result gets reduced by a parallel adder tree.
The width of the chunk is made the same as the DRAM row width
to take advantage of the spatial locality. The first chunk of all the
matrix rows are processed first, following by the second chunk
of all matrix rows, etc. This approach provides maximum reuse
of the input vectors. Similarly to Gearbox, GEMM operations are
performed with repeated GEMV. Elementwise operations, activa-
tions, and time encodings are performed by the host. Performance
estimation is derived using the performance model provided by the
authors in the original paper [30].

5.3.4 tFPGA [28]. This approach proposes a model-architecture
co-design for accelerating the TGN framework [37] on FPGA. The
design consists of multiple independent compute units. Each com-
pute units supports memory state update using GRU and embed-
ding using a simplified version of graph-attention mechanism. The
GRU is implemented using three 8 x 8 systolic arrays® for efficient
GEMM operations, corresponding to the update, reset, and memory
gates of GRU. For the embedding, unlike the multi-head attention
mechanism used by TGN that involves computing the key, value,

6 Authors have evaluated tFPGA on two FPGAs: Xilinx Alveo U200 and Xilinx ZCU104,
with different number of compute elements due to FPGA resource constraint. We use
the configuration of the more powerful Xilinx Alveo U200 for evaluation.

Throughput (kE/s)
1000

100
10
1

Wiki Reddit GDELT
Latency (us)
10000
1000
100
10
Wiki Reddit GDELT
acpPu oGPU O Gearbox ONewton
DtFPGA BTGN_PIM_feat BTGN_PIM_hybrid

Figure 6: Throughput and batch processing latency for TGN-
attn.

and query matrices, tFPGA uses a simplified approach that only
considers the temporal separation of the neighbors for calculating
the attention weights, thereby eliminating a major portion of the
computations. This embedding function is realized using a 16-lane
multiply-adder tree for feature aggregation and one 8 X 8 systolic
array for feature transformation. For neighbor sampling, tFPGA
samples a fixed number of most recent neighbors, similar to our
approach. Time encoding is realized by a coarse grained loop-up ta-
ble. Further optimizations are done by pipelining all the stages and
using a dedicated edge prefetcher. The HLS code of this approach
is open-sourced [59]. However, we faced compilation issues when
trying to generate the FPGA bitstream using the published code,
and therefore opted to use the performance model provided by the
authors in their paper.

5.4 Throughput and latency results

Figure 6 presents the throughput and latency results for the TGN-
attn model and Figure 7 presents the results for the TGN-sum
model. Here, TGN_PIM_feat uses only the feature-based parti-
tioning scheme, while TGN_PIM_hybrid uses the hybrid partition-
ing scheme. In both models, TGN_PIM_hybrid provides the best
throughput and latency across the benchmarks. Table 4 summarizes
the average throughput gain and latency reduction observed by the
TGN_PIM_hybrid across the datasets.

Our results show that CPU and GPU perform worst, both in
terms of latency and throughput. High latency in the case of GPU is
expected as GPU architecture is optimized primarily for throughput
and not latency. We attribute the low throughput of GPU for this
particular workload to the small batch size. Increasing the batch size

Throughput (KE/s)
1000

100

10

Wiki Reddit GDELT
Latency (us)

10000
1000
100
10
1

Wiki Reddit GDELT

ocpy oOGPU O Gearbox O Newton

DtFPGA BTGN_PIM_feat BTGN_PIM_hybrid

Figure 7: Throughput and batch processing latency for TGN-
sum.

Table 4: Average throughput gain and latency reduction of
TGN-PNM-hybrid approach across the datasets.

Avg. througput gain | Avg. latency reduction
TGN-attn TGN-sum | TGN-attn TGN-sum
CPU 26.8 42.1 27.6 38.2
GPU 16.7 34.8 17.2 31.6
Gearbox 5.2 2.4 5.4 2.2
Newton 4.4 2.2 2.9 1.3
tFPGA 10.3 31.1 3.8 10.1
TGN_PIM_feat 1.14 1.23 1.17 112

from 200 to 1000 increased the throughput of GPU by 3.7x on aver-
age while having a moderate impact on latency, which is increased
by 1.4x. However, increasing batch size to improve throughput
may not be feasible in practical scenarios, as user-facing interactive
applications tend to have strict latency constraints. Furthermore,
increasing the batch size also means that the graph state will update
less frequently, and therefore, embedding will be performed using
stale data and can negatively impact accuracy. Besides, the maxi-
mum batch size is limited by the capacity of the on-chip buffers for
tFPGA and our approach.

TGN_PNM_hybrid provides a substantial performance gain over
the subarray-level and bank-level PIM architectures. Note that all
these three PIM architectures have almost the same number of MAC
units: TGN-PNM has (16 * 16 + 16) = 32 = 8704 MACs, Gearbox
has 8192 ALUs, and Newton also has 8192 MACs. Despite having
similar number of MAC units, for the TGN-attn model, our ap-
proach has 5.2x higher throughput than subarray-level Gearbox
and 4.4x higher throughput than bank-level Newton. There are a

Alif Ahmed, Felix Lin, Jundong Li, and Kevin Skadron

TGN-attn TGN-sum

w
o
]
0
o
S}

N
o
=]

g z
200 [T PPN £ SR v, e B e e B s B
i X< 500
= -
= 150 3 400
2 5
S 100 g X au
3 £ 200 L=
£ 50 o
= 100 g
m—rn/
0 [===
” S8 5 8 RS A
=1 S
CPU —B—GPU Gearbox —#&—Newton —%—tFPGA —@— TGN-PNM-hybrid

Figure 8: Throughput with varying batch sizes on the
Wikipedia dataset.

few key advantages of our approach that enable this throughput
gain: i) VPUs of TGN-PNM run at a much higher clock frequency
than both Gearbox and Newton’s compute units. This is becuase
DRAM transistors in the memory layers are designed for low cost
and leakage. The logic die uses high-performance transistors [49].
Although, note that we have used 164 MHz for Gearbox, which
the authors reported for a 32-bit ALU, not 16-bit. Therefore, the
attainable frequency of Gearbox could be higher for 16-bit FP. ii)
Another advantage of TGN-PNM over the other two approaches
is handling time encoding. In case of Gearbox and Newton, their
processing elements have to be extremely simple to meet the strict
area/power overhead budget of only about 20% [30] or otherwise
lose capacity [31]. Thus, those two approaches cannot accommo-
date units for transcendental functions needed by time encoding.
As a result, time encoding needs to be performed by the host in
case of Newton and at the logic layer in case of Gearbox. The time
encoding itself is not a bottleneck, however, as time encoding sits
at the intermediate stages, data have to move frequently in/out
of their subarrays/banks. iii) As Newton only supports broadcast
(one of the operands in their bank-level SIMD unit always comes
from the broadcast buffer), it cannot handle elementwise opera-
tions efficiently. In case of Gearbox, elementwise operations may
require re-layout of the data in the intermediate steps. iv) In case of
Newton, underutilization can occur if the matrix dimension is less
than the total number of banks [30], which is often the case for the
node states. Despite these shortcomings, Gearbox and Newton per-
form fairly closely to our approach for the more memory-intensive
workload of TGN-sum, only trailing by 2.4x and 2.2x, respectively.
Finally, our experiment shows that using hybrid storage scheme
(i.e., feature-based partitioning for large matrix/vectors and tradi-
tional for others) improves the throughput slightly by 12-23% over
the feature-based only approach of TGN_PNM_feat.

5.5 Impact of batch size

Figure 8 shows the throughput results with varying batch sizes on
the Wikipedia dataset. Other datasets are not shown to avoid clutter,
as they demonstrate a similar pattern. As mentioned earlier, Gear-
box and Newton are optimized for matrix-vector multiplication and
does not benefit from reuse. As a result, their throughput remains
same irrespective of the batch size. On the other hand, TGN-PNM

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

Component Count Per unit area (mm?) Total area (mm?)
Scalar core (ARM Cortex A-35) 1 0.68 0.68
Partial Sum Acc. Unit 1 2.25 2.25
Global NoC 1 1.43 1.43
GSPad 1 1.03 1.03
Memory controller and DDRPHY 32 0.18 5.90
Systolic array 32 0.25 8.08
SIMD: FP add & mul 32 0.02 0.51
SIMD: CORDIC 32 0.03 0.96
SIMD: Activation 32 0.15 4.68
VSPad 32 0.32 10.31
Total: 35.83

Table 5: Area estimation of TGN-PNM.

benefits from increasing batch size up to 16 (= Sy). At this point
TGN-PNM leverages maximum reuse within its systolic arrays.
Increasing the batch size further does not improve throughput. Sim-
ilarly, CPU and GPU gain throughput with batch size increment
up to a certain point, after which the benefit flattens. This plateau
occurs at around batch size of 256 for both. With large batches, GPU
outperforms other PIM-based approaches on compute intensive
TGN-attn model. However, using large batch can negatively impact
the batch processing latency and the model accuracy.

5.6 Area estimation

The area of processing elements and control logic are derived by
synthesizing RTL models on the SAED 14 nm node using the Synop-
sys Design Compiler. The area of the SRAM buffers and scratchpad
memories are modeled using CACTI-3DD [54] on a 32 nm node
and then scaled to 14 nm. The memory controller and interconnect
areas are modeled using McPAT [55]. The resulting area estimation
for the major components are given in Table 5. Note that although
the total amount of memory is the same for GSPad and VSPad
(32kB * 32 = 1MB), VSPad requires a much larger area as it has to
accommodate many read/write ports. The total estimated area of
these components is 35.83mm?, which is 53% of the total logic-die
area of 68mm? of an HMC stack [49]. This leaves around 32mm? for
the components that we haven’t accounted for, such as I/O circuits,
memory built-in self-test (MBIST), and features to support testing
and debugging. In comparison, Gearbox requires an estimated die
area of 80.64mm? (area of Newton is unavailable).

6 Related Work

With the emergence of machine learning workloads, a lot of hard-
ware accelerators have been proposed by researchers targeting
either the compute-intensive [60-64] or memory-intensive [30, 31]
kernels of neural networks. Unfortunately, these approaches are
not specifically designed for irregular access patterns exhibited
by the neighborhood aggregation of graph neural networks. On
the other hand, there are many hardware accelerators tailored for
graph analytics workloads [29, 65-69]. However, these approaches
cannot handle the compute-intensive portion of the temporal GNN
workloads efficiently.

A few works cater to the unique hybrid nature of the GNN work-
loads. HyGCN [13] proposed an ASIC accelerator for static GCN,
where the aggregation is scheduled on a series of SIMD units and
node embeddings are processed by a collection of configurable

systolic arrays. AWB-GCN [14] improved upon HyGCN by adding
workload balancing mechanism for power-law graphs by distri-
bution smoothing and row remapping. GCoD [15] proposed an
algorithm/hardware co-design with separate micro-architectures
for dense and sparse matrix. StreamGCN [17] targets streaming
processing of many small graphs. FlowGNN [16] introduced sup-
port for edge embeddings. Recently, a PIM-based GNN accelerator
has been proposed that accelerates the memory-bound kernels on
PIM side and delegates compute-bound kernels on GPU [70]. A few
general purpose PIM architectures can handle the GNN workloads
efficiently if the graph is stored in specific sparse formats [32, 33].
However, these aforementioned approaches are only applicable to
static GNNs where the graph topology does not change over time.
On the other hand, Mint [71] proposes an accelerator architecture
for mining small motifs in temporal graphs. However, Mint is specif-
ically designed for mining motifs and cannot process the neural
network portion of the TGNN workloads.

There is only one prior accelerator of which we are aware specif-
ically targeting temporal GNN [28]. Authors in this work proposed
an algorithm-hardware co-optimization, where they mapped the
TGN framework [19] on an HBM-enabled FPGA. Optimizations pro-
posed by this approach include hardware pipeline stages, look-up
table based time-encoding function, double buffering and prefetch-
ing mechanisms. However, this approach can only accommodate
a small number of MAC units due to FPGA resource constraint,
limiting the potential speedup. We evaluated against this approach
in Section 5 and observed vastly superior performance.

7 Conclusions

In this paper, we proposed TGN-PNM, a near-memory architecture
for accelerating TGNN workloads. In our approach, we placed a
SIMD unit for memory-intensive operations and a systolic array for
GEMM operations at the vault level. The potential bottleneck aris-
ing from inter-vault communication during neighbor aggregation
is avoided by partitioning the graph along the feature dimension,
facilitating near perfect workload balance as well, which is very
difficult to achieve on evolving graphs. Out evaluation against a
few other architectures revealed that near-/in-memory approaches
perform the best for TGNN-type workloads.

Acknowledgments

This work was supported in part by PRISM, one of seven centers in
JUMP 2.0, an SRC program sponsored by DARPA.

References

[1] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M
Bronstein. Fake news detection on social media using geometric deep learning.
arXiv preprint arXiv:1902.06673, 2019.

[2] Emanuele Rossi, Federico Monti, Michael Bronstein, and Pietro Lid. ncrna
classification with graph convolutional networks. arXiv preprint arXiv:1905.06515,
2019.

[3] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics, 34(13):1457-i466,
2018.

[4] Kirill Veselkov, Guadalupe Gonzalez, Shahad Aljifri, Dieter Galea, Reza
Mirnezami, Jozef Youssef, Michael Bronstein, and Ivan Laponogov. Hyperfoods:
Machine intelligent mapping of cancer-beating molecules in foods. Scientific
reports, 9(1):9237, 2019.

)

[10]

[11]
[12]

[13]

[14]

[15]

[16

=
=

(18]

[19]

[20]

[21]

[22]

[23

[24]

[25]

[26]

[27]

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. Graph convolutional neural networks for web-scale recom-
mender systems. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 974-983, 2018.

Hongxia Yang. Aligraph: A comprehensive graph neural network platform.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 3165-3166, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,
Timothy Hirzel, Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks
on graphs for learning molecular fingerprints. Advances in neural information
processing systems, 28, 2015.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface
prediction using graph convolutional networks. Advances in neural information
processing systems, 30, 2017.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.
Advances in neural information processing systems, 31, 2018.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. Advances in neural information processing systems, 31, 2018.

Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing Feng, Xiaochun Ye, Zhimin
Zhang, Dongrui Fan, and Yuan Xie. Hygcen: A gen accelerator with hybrid
architecture. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 15-29. IEEE, 2020.

Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi Wang, Yanfei Li, Pouya
Haghi, Antonino Tumeo, Shuai Che, Steve Reinhardt, et al. Awb-gen: A graph
convolutional network accelerator with runtime workload rebalancing. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 922-936. IEEE, 2020.

Haoran You, Tong Geng, Yongan Zhang, Ang Li, and Yingyan Lin. Gcod: Graph
convolutional network acceleration via dedicated algorithm and accelerator co-
design. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 460-474. IEEE, 2022.

Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and Cong Hao.
Flowgnn: A dataflow architecture for real-time workload-agnostic graph neural
network inference. In 2023 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 1099-1112. IEEE, 2023.

Atefeh Sohrabizadeh, Yuze Chi, and Jason Cong. Streamgcn: Accelerating graph
convolutional networks with streaming processing. In 2022 IEEE Custom Inte-
grated Circuits Conference (CICC), pages 1-8. IEEE, 2022.

Mingi Yoo, Jaeyong Song, Jounghoo Lee, Namhyung Kim, Youngsok Kim, and
Jinho Lee. Sgen: Exploiting compressed-sparse features in deep graph convo-
lutional network accelerators. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 1-14. IEEE, 2023.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. Temporal graph networks for deep learning on
dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962, 2020.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding
trajectory in temporal interaction networks. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pages
1269-1278, 2019.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan
Achan. Inductive representation learning on temporal graphs. arXiv preprint
arXiv:2002.07962, 2020.

Priyank Faldu, Jeff Diamond, and Boris Grot. A closer look at lightweight graph
reordering. In 2019 IEEE International Symposium on Workload Characterization
(ISWC), pages 1-13. IEEE, 2019.

Vignesh Balaji and Brandon Lucia. When is graph reordering an optimization?
studying the effect of lightweight graph reordering across applications and input
graphs. In 2018 IEEE International Symposium on Workload Characterization
(ISWC), pages 203-214. IEEE, 2018.

Junya Arai, Hiroaki Shiokawa, Takeshi Yamamuro, Makoto Onizuka, and Sotetsu
Iwamura. Rabbit order: Just-in-time parallel reordering for fast graph analysis.
In 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 22-31. IEEE, 2016.

Andrew McCrabb and Valeria Bertacco. Optimizing vertex pressure dynamic
graph partitioning in many-core systems. IEEE Transactions on Computers,
70(6):936-949, 2021.

Andrew McCrabb, Eric Winsor, and Valeria Bertacco. Dredge: Dynamic repar-
titioning during dynamic graph execution. In Proceedings of the 56th Annual
Design Automation Conference 2019, pages 1-6, 2019.

(28]

[29]

(30]

[31

[32

[33

[35

[36]

[38

(39]

[40

[41]

[42

[43]

[44]

[45

=
&

[47

Alif Ahmed, Felix Lin, Jundong Li, and Kevin Skadron

Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna, and Carl
Busart. Model-architecture co-design for high performance temporal gnn in-
ference on fpga. In 2022 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 1108-1117. IEEE, 2022.

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
A scalable processing-in-memory accelerator for parallel graph processing. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture,
pages 105-117, 2015.

Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho Kim, Il Park,
Mithuna Thottethodi, and TN Vijaykumar. Newton: A dram-maker’s accelerator-
in-memory (aim) architecture for machine learning. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 372-385.
IEEE, 2020.

Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woongjae Song,
Yuhwan Ro, Seungwon Lee, David Wang, Hyunsung Shin, Bengseng Phuah, et al.
Aquabolt-xl: Samsung hbm2-pim with in-memory processing for ml accelerators
and beyond. In 2021 IEEE Hot Chips 33 Symposium (HCS), pages 1-26. IEEE, 2021.
Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan
Xie, Ameen Akel, Sean Eilert, Mircea R. Stan, and Kevin Skadron. Fulcrum: a
Simplified Control and Access Mechanism toward Flexible and Practical in-situ
Accelerators. In HPCA, 2020.

Marzieh Lenjani, Ahmed Alif, Mircea R. Stan, and Kevin Skadron. Gearbox:
A Case for Supporting Accumulation Dispatching and Hybrid Partitioning in
PIM-based Accelerators. In "To Appear in ISCA, 2022.

Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan,
and Yuan Xie. DRISA: A DRAM-based reconfigurable in-situ accelerator. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2017.

Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, Jodo Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gomez-Luna, and Onur Mutlu. SIMDRAM: a framework for bit-serial SIMD
processing using DRAM. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2021.

Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. Ambit: In-memory accelerator for bulk bitwise operations using
commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 273-287, 2017.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael Bronstein. Temporal graph networks for deep learning on
dynamic graphs. arXiv preprint arXiv:2006.10637, 2006.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang
Tong, and Mehrdad Mahdavi. Do we really need complicated model architectures
for temporal networks? arXiv preprint arXiv:2302.11636, 2023.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous
propagation attention network for real-time temporal graph embedding. In
Proceedings of the 2021 international conference on management of data, pages
2628-2638, 2021.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha.
Dyrep: Learning representations over dynamic graphs. In International conference
on learning representations, 2019.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. Tgl: A general framework for temporal gnn training on billion-
scale graphs. arXiv preprint arXiv:2203.14883, 2022.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus
Brubaker. Time2vec: Learning a vector representation of time. arXiv preprint
arXiv:1907.05321, 2019.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. Representation learning for dynamic graphs:
A survey. The Journal of Machine Learning Research, 21(1):2648-2720, 2020.
Hybrid Memory Cube Consortium. Hybrid memory cube specification 2.1.
https://www.hybridmemorycube.org/, 2015.

Ramyad Hadidi, Bahar Asgari, Burhan Ahmad Mudassar, Saibal Mukhopadhyay,
Sudhakar Yalamanchili, and Hyesoon Kim. Demystifying the characteristics of
3d-stacked memories: A case study for hybrid memory cube. In Proceedings of
the IEEE International Symposium on Workload Characterization , pages 66-75,
2017.

Christian Weis, Norbert Wehn, Loi Igor, and Luca Benini. Design space explo-
ration for 3d-stacked drams. In 2011 Design, Automation & Test in Europe, pages
1-6. IEEE, 2011.

Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing
Hu, and Yuan Xie. Spacea: Sparse matrix vector multiplication on processing-in-
memory accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 570-583. IEEE, 2021.

TGN-PNM: A Near-Memory Architecture for Temporal GNN Inference on 3D-Stacked Memory

[48] JEDEC. High bandwidth memory 3 specification.
https://www.jedec.org/standards-documents/docs/jesd238a, 2023.

[49] Joe Jeddeloh and Brent Keeth. Hybrid memory cube new DRAM architecture
increases density and performance. In 2012 symposium on VLSI technology
(VLSIT), pages 87-88. IEEE, 2012.

[50] Ivan Fernandez, Ricardo Quislant, Eladio Gutiérrez, Oscar Plata, Christina Gian-
noula, Mohammed Alser, Juan Gémez-Luna, and Onur Mutlu. Natsa: a near-data
processing accelerator for time series analysis. In 2020 IEEE 38th International
Conference on Computer Design (ICCD), pages 120-129. IEEE, 2020.

[51] UPMEM. https://www.upmem.com/.

[52] Alif Ahmed, Farzana A Siddique, and Kevin Skadron. Graphtango: A hybrid

representation format for efficient streaming graph updates and analysis. In

IPDPS, (under submission), 2023.

Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. Dram-

sim3: A cycle-accurate, thermal-capable dram simulator. IEEE Computer Archi-

tecture Letters, 19(2):106—-109, 2020.

[54] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman, and
Norman P Jouppi. Cacti-3dd: Architecture-level modeling for 3d die-stacked
dram main memory. In 2012 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 33-38. IEEE, 2012.

[55] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
annual ieee/acm international symposium on microarchitecture, pages 469-480,
2009.

[56] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Snap dataset collection: Jodie.

https://snap.stanford.edu/jodie/, 2019.

Rossi et al. TGN github repository. URL: https://github.com/twitter-research/tgn,

2020.

[58] FulcumV3. https://github.com/MarziehLenjani/FulcrumV3.

[59] Hongkuan Zhou, Bingyi Zhang, Rajgopal Kannan, Viktor Prasanna, and Carl
Busart. Github repository, model-architecture co-design for high perfor-
mance temporal gnn inference on fpga. https://github.com/zjjzby/TGNN-FPGA-
IPDPS2022, 2022.

[60] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for

energy-efficient dataflow for convolutional neural networks. ACM SIGARCH

computer architecture news, 44(3):367-379, 2016.

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible

accelerator for emerging deep neural networks on mobile devices. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, 9(2):292-308, 2019.

[62] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings
of the 44th annual international symposium on computer architecture, pages 1-12,
2017.

[63] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten
lessons from three generations shaped google’s tpuv4i: Industrial product. In
2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pages 1-14. IEEE, 2021.

[64] Md Aamir Raihan, Negar Goli, and Tor M Aamodt. Modeling deep learning
accelerator enabled gpus. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 79-92. IEEE, 2019.

[65] Ham et al. Graphicionado: A high-performance and energy-efficient accelerator
for graph analytics. In MICRO, pages 1-13, 2016.

[53

[57

(61

[66] Hu et al. Graphlily: Accelerating graph linear algebra on hbm-equipped fpgas.
In ICCAD, pages 1-9, 2021.

[67] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Graphr:
Accelerating graph processing using reram. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 531-543. IEEE, 2018.

[68] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang

Chen, Christos Kozyrakis, and Xuehai Qian. Graphp: Reducing communication
for pim-based graph processing with efficient data partition. In 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA), pages
544-557. IEEE, 2018.

[69] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and
Hyesoon Kim. Graphpim: Enabling instruction-level pim offloading in graph
computing frameworks. In 2017 IEEE International symposium on high perfor-
mance computer architecture (HPCA), pages 457-468. IEEE, 2017.

[70] Hai Jin, Dan Chen, Long Zheng, Yu Huang, Pengcheng Yao, Jin Zhao, Xiaofei
Liao, and Wenbin Jiang. Accelerating graph convolutional networks through a
pim-accelerated approach. IEEE Transactions on Computers, 2023.

[71] Nishil Talati, Haojie Ye, Sanketh Vedula, Kuan-Yu Chen, Yuhan Chen, Daniel
Liu, Yichao Yuan, David Blaauw, Alex Bronstein, Trevor Mudge, et al. Mint: An
accelerator for mining temporal motifs. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1270-1287. IEEE, 2022.

https://www.upmem.com/
https://github.com/MarziehLenjani/FulcrumV3

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Temporal Graph Neural Network (TGNN)
	2.2 3D-Stacked Memory

	3 TGN-PNM Microarchitecture
	3.1 Vault-level Processing Unit (VPU)
	3.2 Global Control Unit (GLCU)
	3.3 Partial-Sum Accumulation Unit (PSAU)

	4 Mapping TGNN Frameworks on TGN-PNM
	4.1 Mapping of common operations
	4.2 Graph Storage Format

	5 Evaluation
	5.1 Methodology
	5.2 Datasets
	5.3 Mapping on evaluated architectures
	5.4 Throughput and latency results
	5.5 Impact of batch size
	5.6 Area estimation

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

