
AWorkflow for the Synthesis of Irregular Memory Access
Microbenchmarks

Kevin Sheridan†, Jered Dominguez-Trujillo,
Galen Shipman

{kss,jereddt,gshipman}@lanl.gov
Los Alamos National Laboratory
Los Alamos, New Mexico, USA

Christopher Scott†, Agustin Vaca Valverde
{christopher.scott,jvalverde6}@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Patrick Lavin
prlavin@sandia.gov

Sandia National Laboratories
Albuquerque, New Mexico, USA

Richard Vuduc, Jeffrey Young
{rvuduc,jyoung9}@gatech.edu
Georgia Institute of Technology

Atlanta, Georgia, USA

ABSTRACT
Codesign of hardware technologies and applications for sparse
memory access dominated workloads can be challenging due to the
complexity of the codes, restrictions on access to the codes, or both.
To address this challenge we have developed a novel methodology
and set of tools, GS Patterns, that analyze and then synthesize
memory access patterns from applications of arbitrary complexity.
The results of this are patterns which only contain the normalized
sampled memory access addresses as an array of indirection indices
organized as either gather (read) or scatter (write) operations. These
patterns can then be used to generate memory traffic suitable for
hardware optimization and design.

In this paper we present GS Patterns including a detailed descrip-
tion of the workflow and algorithms underlying it. The results of
analysis and synthesis of access patterns in both proxy and real-
world applications using GS Patterns are presented followed by
evaluation of performance of these patterns on latest generation
hardware technologies including AMDEPYC 9654P, Intel XeonMax,
NVIDIA Grace, and NVIDIA Hopper H100 and H200. Results of
this evaluation clearly demonstrate performance differences across
different hardware technologies that are not captured by and in
many cases are contrary to the performance behavior of simpler
memory microbenchmarks.

KEYWORDS
Memory systems, Benchmarking, Sparse Algorithms, Workload
Analysis

1 INTRODUCTION
Sparse memory access patterns are common in a variety of applica-
tions spanning HPC [19], data intensive computing, and AI. These
access patterns are often fundamental to the choice of algorithms
and/or data structures necessitated by a variety of constraints such
as required discretization approaches or space complexity of the
problem being solved. Optimization of these sparse access patterns
at the hardware [20], software, and compiler level can provide sig-
nificant performance improvements but are often encumbered by
the sheer complexity of the applications that exhibit sparse patterns
making them intractable to a number of commonly used methods

in hardware and software codesign such as system modeling and
simulation.

Prior work on the Spatter [13] benchmark has helped narrow
this gap between the complexity of a full scale application and the
utility of microbenchmarks in assessment and codesign of systems
for sparse memory access patterns. While a significant advance, this
prior work did not address one of the major obstacles in bridging
this gap, namely the ability to easily analyze full scale applications
and capture the most important / critical memory access patterns
in a form suitable for subsequent use in codesign and technology
evaluation. Previous work with the Spatter benchmark used closed
source tools and analyzed vector-based memory traffic to obtain
sparse access patterns.

In this paper we present GS Patterns, a novel tool workflow
that enables rapid analysis of sparse memory access patterns in
applications on modern hardware and the synthesis of related mi-
crobenchmarks. GS Patterns has relatively few requirements be-
yond a modern program instrumentation tool such as Intel Pin [9,
21] or NVIDIA’s NVbit [23], a C/C++ compiler, and the use of
CMake for compilation. This workflow allows the user to execute a
representative application and dataset on both CPU and GPU tech-
nologies to generate compact representations of sparse memory
access patterns suitable that can then be used with the previously
released Spatter [13] tool for subsequent evaluation on both cur-
rent (using real hardware) and prospective future technologies
(using modeling/simulation). These access patterns are exceedingly
compact and are simple enough to enable their use in a variety of
environments.

Significant contributions to the state-of-the-art include:

• a novel algorithm for capturing repeated memory access
patterns that can be expressed as scatter or gather opera-
tions without relying upon a compiler successfully detect-
ing and emitting vector gather/scatter operations.

• a robust open-source toolkit, GS Patterns, for dynamic run-
time analysis of memory accesses on modern CPU and GPU
architectures

• deep analysis of memory access patterns of applications
spanning microbenchmarks to full-scale multi-physics ap-
plications exceeding 600K LOC.

• results of benchmarking these access patterns on a selection
of the most recent CPU and GPU architectures including

AMD EPYC 9654P, Intel Xeon Max, NVIDIA Grace, and
NVIDIA Hopper

The remainder of this paper is organized as follows: Section 2
describes the high-level workflow of GS Patterns. Section 2 provides
an overview of the open source GS Patterns tools and how to use
them. In section 2.4, changes required in the Spatter benchmark
itself in order to enable generation of representative workloads
based on sparse patterns captured by GS Patterns are discussed.
Section 3 details benchmarking results with Spatter as well as a
meta-analysis of patterns including detailed inspection of repre-
sentative patterns and relation of these patterns back to specific
code sections in real world applications followed by discussion in
Section 4 and conclusions in Section 5.

2 WORKFLOW OVERVIEW

Compile application
with symbols (CPU only)

Find ROIs (vTune, NSight)

Run Pin/NVBit client
to create ROI trace(s)

GS patterns to extract g/s trace(s)

Visualize traces from GS patterns

Spatter

Figure 1:Workflow for extracting and benchmarking non-trivial gather/scatter
memory access sequences.

The goal of the workflow (Figure-1) introduced here is to take as
input an application we wish to do memory performance analysis
on and output concise trace files containing the access sequences
of the top memory instruction aggressors. The trace(s) can then
be replayed by anyone using spatter on many types of systems to
characterize the memory performance of the application’s most
challenging accesses. Application instrumentation by-hand is not
needed, as prior knowledge of the code’s algorithms are not re-
quired. There are two main benefits of using replay performance
analysis. First, spatter is lightweight, runs fast and is fairly easy to
compile. Second, some applications are not publicly available, but
still need to have their performance measured and analyzed by a
broader audience on various systems.

The high-level view of the workflow is divided into six steps,
though some steps may be skipped depending on the use cases. First,
compile the application with symbol debugging on (not required
for CUDA code). Symbols help with identifying source code lines
in profiling, but also is a requirement for GS patterns if non-symbol
filtering is turned on (CPU only). The second step is to use your
favorite profiler to identify functions that are dominating runtime
and/or are cache missing excessively. Next, run a memory tracing

Figure 2: Example of vTune output showing AVX-512 gather/scatter
instructions.

tool that only traces the functions of interest from the profiling.
Intel Pin tool and NVBit clients were developed for this purpose
and are available for download at https://github.com/lanl/gs
_patterns [12]. For smaller applications, it is possible to create
one monolith trace for the entire application execution (main).
Optionally, instruction count ranges can be traced as well. After
creating the trace(s) we run GS patterns which extracts memory
index sequences of the likely top memory instruction aggressors.
The next section goes into detail about how GS patterns works. For
step five we developed plotting tools to help visualize each sequence
of gather/scatter accesses. Visualizing thememory accesses can help
identify patterns in the application and see expected or unexpected
memory behavior. Finally, spatter is run with the GS patterns traces
as input. Spatter replays the gather/scatter access sequences and
produces memory bandwidth metrics.

GS patterns is an open source tool to automatically extract gather
and scatter access sequences from arbitrary applications. This tool
was developed out of necessity to properly identify and character-
ize memory accesses likely to hurt application performance. The
basic approach of GS patterns is to look for repeating instruction
addresses (loops) with load/store operations, record the load/store
access sequences from each memory instruction and apply filters
to remove entire sequences with only trivial or close to trivial load-
/store access sequences. If there are multiple loads/stores in one
instruction, each is treated as their own access sequence. The final
results are the likely top memory instruction aggressors with their
respective normalized (lowest array index set to 0) index access se-
quences. Scalar and vector instructions are both analyzed with each
treated as a sequence of memory accesses. The input to GS patterns
are DynamoRio formatted traces which must first be created using
DynamoRio, Intel pin or Nvidia NVBit tool clients provided in the
GS patterns github repository [12]. Multiple process elements with
multi-threading is supported in the pin clients, but only thread 0
on process element 0 is traced by default with other options being
configurable. This feature is desirable as we can run large problems
on many nodes while still getting a concise trace of what is needed.
If there are widely different code paths and/or data patterns among
the process elements or threads then multiple traces may be needed.

2

https://github.com/lanl/gs_patterns
https://github.com/lanl/gs_patterns

Table 1: Memory access sequence removal filters.

Filter # Description

1 Index distances are only -1, 0, and/or 1
2 No symbol
3 Not in top 10 window appearance counts
4 Less than 1024 instances
5 Less than 6 unique index distances and less than

50% out of bounds distances*
Filter rules apply to each full memory access sequence. Sub-sequences are not
removed. *Default out of bounds index distances in (−∞, −513] or [513,∞) .

2.1 GS Patterns Core Implementation
The implementation of GS patterns required some optimizations
that have little or no effect on the accurate discovery of the result
access sequences. A pair of moving windows , one for loads and the
other for stores, are used to record memory instruction addresses
with their respective access sequences efficiently. Examples (1) and
(2) show the layout of the windows with truncated addresses for
illustration purposes. By default, the windows size is 1024 mem-
ory instruction addresses. This can be changed but 1024 entries
was determined to be sufficient to discover all or nearly all non-
trivial gather/scatter sequences for our applications. The pair of
windows are considered full and then emptied if the number of
unique memory instruction addresses in either window exceeds
1024 or the accumulated size in any memory instruction address
sequence exceeds 64 bytes. 64-bytes as the max accumulated load-
/store size per window row works well as the max vector width
in most current CPU hardware is 512-bits. 512-bits is also suited
well for most CPU compilers as they usually don’t expect vector
widths that exceed 512-bits. GS patterns makes the max size value
configurable to allow for more experimentation with large/smaller
vector widths, for example 2048-bits for Nvidia GPUs. Unrolling
in the application’s compilation is not necessarily recommended
because the compiler may split memory instructions into multi-
ple instruction addresses, though vectorization may be facilitated.
GS patterns considers memory instruction addresses independent,
each with their own memory sequence.

There are two passes in GS patterns. The first pass finds all
unique memory instruction addresses (iaddrs) and puts them in the
master list. The second pass records the memory address (maddr)
access sequences for each memory instruction address. The top non-
trivial gather / scatters stay in the master list if they make it through
a series of filters throughout the passes. The defined filters used in
Table-1 work well for finding non-trivial access sequences in our
applications. Though, the filter parameters are easily configurable
if less or more stringent filtering is needed. For example, disabling
the no symbol filter (Filter 2) may be desirable if non-symbol library
accesses are of interest. The full GS patterns algorithm flowchart is
illustrated in Figure-3.

GatherWindow =

maddr1 maddr2 ... maddrN 𝑖𝑎𝑑𝑑𝑟


0𝑥0080 0𝑥0088 ... 0𝑥1888 0x0000
0𝑥1280 0𝑥1388 ... 0𝑥0883 0x0002

...
0𝑥9080 0𝑥5088 ... 0𝑥3881 0x1018

(1)

ScatterWindow =

maddr1 maddr2 ... maddrN 𝑖𝑎𝑑𝑑𝑟


0𝑥0480 0𝑥0488 ... 0𝑥1488 0x0001
0𝑥1780 0𝑥1788 ... 0𝑥0783 0x0003

...
0𝑥9580 0𝑥5588 ... 0𝑥3581 0x1019

(2)

Read next load-
/store trace line

EOF? A window full? Fill in G/S window

Filter 1 Filter 1

Surviving iaddrs
to master list

Surviving iaddrs
to master list

Filter 2

Fi
rs
tP

as
s

Return to start
of DR trace

Read next load-
/store trace line

EOF?

Filter 3, 4 and 5

Append maddr
to sequence for

iaddr in master list

Second
Pass

Write spatter and
binary normalized
master list index
sequence files

no

yes

no

yes

no

yes

Figure 3: Core GS patterns algorithm.

3

2.2 GPU Features for GS Patterns
Increasingly GPUs represent a significant source of computational
(and memory access) concentration within many scientific and
high-performance applications, where SIMD (Single Instruction
Multiple Data) processing is used to parallelize execution of specific
portions of these applications. Such applications typically employ
NVIDIA’s CUDA framework and are structured around several
kernel functions which execute directly on the GPU. It is therefore
desirable to develop a way to trace CUDA based application kernels
and to enhance GS patterns to support the associated traces.

To support GPU based memory patterns we identified 3 logical
yet interrelated areas of work.

(1) Utilization of NVIDIA’s NVBit [23] – to provide trace data
for memory accesses of CUDA kernels.

(2) Restructuring of GS patterns to separate bucketing and pat-
tern generation logic, from trace file reading and memory
address handling.

(3) Organizing GS patterns into 3 components; a core shared
library which provides the pattern bucketing and trace
handling functionally (libgs_patterns_core), a binary
runner for command line execution (gs_patterns) and an
NVBit tool shared library suitable for instrumenting CUDA
kernels using NVBit (gsnv_trace).

2.2.1 Memory Traces via NVBit. NVBit is a framework created by
NVIDIA for instrumenting CUDA kernels, it provides an API which
gives direct access to the raw SASS (an architecture dependent
assembly created for NVIDIA GPUs) instructions performed by
the GPU. These APIs can be used to build an NVBit tool (similar
to a Pin tool) which is loaded at runtime by a CUDA application.
The NVBit tool itself is a shared library loaded via LD_PRELOAD
which intercepts calls made by CUDA based kernels. The typical
implementation inserts instructions before and/or after each kernel
instruction allowing the tool to inspect and/or modify those instruc-
tions at runtime. This approach is used to insert instrumentation
code which writes the details of instructions of interest (in our case
memory access instructions) over a channel to be handled by GS
Patterns.

Mem Trace (mem_trace), an NVBit tool provided with the NVBit
distribution was used as the basis of our trace efforts. Mem Trace
utilized the most performant way of extracting and passing back
traces to the GS Patterns code running on the CPU where there
was greater flexibility in how traces are handled. Mem trace also
already provided the instruction opcode and importantly the vector
of memory addresses being requested by the GPU threads. The
mem_trace tool was therefore modified to instantiate a new GSPat-
ternsForNV class when loaded. GSPatternsForNV handles adapting
GPU memory accesses to GS Patterns internal abstractions and
contains methods which are invoked on every memory instruc-
tion so that the addresses being referenced can be bucketed by
GS Patterns. Additional information has also been added to the
instrumentation code to extract the source lines where the memory
instruction occurred as well as passing back information describing
whether the memory access was a load, a store, and the memory
short opcode used (useful for classifying the type of memory ac-
cess). We also pass back mapping information for these pieces of
information which are included in the header of the NVBit trace

Figure 4: Example of warp-based memory traces showing 64bit load
instructions executed bywarps of 32 GPU threads, and the associated
source addresses.

so that integer representations can be used to reduce trace file size
and improve performance. The enhanced Mem Trace NVBit tool
was called GSNV Trace (gsnv_trace).

2.2.2 Creating a plugin-based Infrastructure. In addition to passing
back memory addresses to GS Patterns, GS Patterns can handle the
differences between CUDA memory accesses which are provided
per warp (e.g. 32 addresses at a time) vs CPU addresses which
are provided one at a time. More details on warps and how they
relate to GPU threads are provided in section 2.2.3, and a warp-
based memory trace example is shown in Figure-4. As alluded to
in the previous section these differences are handled by separate
classes allowing the same bucketing logic within GS Patterns to
be used regardless of whether the memory access was CPU or
GPU based. Other differences between the CPU and GPU memory
accesses include filtering out contiguous memory accesses which
we defined as a warp memory access where the minimum difference
between any 2 addresses in the warp is ≤ the size of the memory
request (usually 8 bytes). In GPUs these are typically coalesced
to reduce bank conflicts and improve performance, so filtering
them out allows us to focus on sparse accesses and further reduces
noise. We also filtered out memory access from divergent threads,
identified as when less than all 32 threads in a warp have issued
the memory access instruction. We believe these are infrequent
enough in a well written CUDA kernel that discarding them won’t
significantly impact the resulting memory patterns.

The gs_patterns_core library was developed to be agnostic re-
garding the source of the memory access (CPU or GPU based) being
passed to it, while preserving the existing CPU pattern behavior.
To allow for this and further extensions in the future, GS Patterns
was migrated to C++ and the implementation details were exposed
through various virtual functions which act as interfaces. The re-
structured Pin andNVBit based implementations, GSPatternsForPin
and GSPatternsForNV, respectively, implement these differences in
behavior and provide the appropriate details to the bucketing code
within gs_patterns_core thru standard interfaces.

In the NVBit based implementation, NBVit provides a direct API
for retrieving the source line for each instruction which is available
as long as the kernel was compiled with “–generate-line-info”. This
alleviated the need to call addr2line as well as the need to have
the original binary available in order to generate patterns with
source line details. This not only improved performance but also
allowed the target program to be built with full optimization levels
and without debug symbols which may not always be available.

2.2.3 Gather-Scatter on GPU Approach. As mentioned in the pre-
vious section, adapting GS Patterns to use GPU based memory
addresses required us to take a warp’s memory access of 32 threads

4

and normalize that into 32 memory accesses. However, there are
other differences which are important to mention.

Generally speaking, GPUs utilize Cooperative Thread Arrays
(CTAs). This is essentially a block of threads executed in groups
called warps according to the hardware capabilities but typically
32 at a time. Each warp executes an instruction in lock step, where
these threads have access to global memory, a per block shared
memory region, a read-only texture memory region, their own
stack, registers, and thread local storage. Each memory access that
is provided by gsnv_trace allows us to determine the type of
memory access. We use this information derived from the opcode
used, to filter this down to just global and shared memory accesses
(both are currently handled). We also use the address of the kernel
function plus offset of the respective memory instruction as the
instruction address (iaddr) which is required by GS Patterns. Also,
a warp memory access is considered to be a vector memory access
of sorts, in that each thread is in effect using an index derived
from its own thread ID (and potentially other information) into
the appropriate vector. This indexing is similar to what Intel’s
AVX-512 instruction does but with CTAs each thread is responsible
for a single index. Thus, rather than 512bits (64bits * 8 accesses)
of memory being read or written with AVX-512, a GPU can do
2048bits (64bits * 32 accesses) with each warp’s memory access.
Converting this to bytes AVX-512 can do 64 machine words on a
64bit machine while CTAs can do 256. These adaptions allow us to
map GPU memory accesses to patterns using the same bucketing
code within gs_patterns_core.

One other way the patterns generated for GPU memory accesses
differ from those of CPU memory accesses, is in terms of which
threads are traced. For CPU based patterns GS Patterns selects the
memory accesses of an exemplar thread, using that thread’s activ-
ity to reflect the pattern intrinsic to the application’s design. For
GPU based patterns the new GS Patterns traces all threads in a
warp as they all cooperate to perform a single memory instruction
across many addresses and so the composition of all memory ac-
cesses performed by the kernel are reflected within the generated
pattern. Pattern generation can optionally be limited to a single
warp (warp 0) analogous to the single thread used in CPU based
pattern generation. These differences makes it difficult to directly
compare an application’s CPU pattern with its GPU one (assuming
the application supports execution in CPU and GPU modes). There
is not yet an way to easily compact the GPU results to derive some-
thing which can be compared to the CPU pattern. However for the
purpose of comparing GPU to GPU memory accesses within the
Spatter workflow the current approach is sufficient.

2.2.4 Results. The GPU enabled features for GS patterns can han-
dle either Pin or DynamoRIO trace files for CPU memory accesses
and NVBit trace files (generated by gsnv_trace) for GPU mem-
ory accesses. The gsnv_trace NVBit tool can be used to extract
memory accesses and memory patterns from one or more kernels
within any CUDA application (as long as the application has been
built with the NVCC --generate-line-info option).

We have used gsnv_trace to extract memory access traces from
the UMT application ([16]) which has been built using CUDA 12.3
and using the --use_cuda_sweep runtime optionwhichwill invoke
the SweepUCBxyzKernel CUDA kernel. Memory patterns which

were generated from execution of UMT’s benchmark 1 and 2 for
both GPU and CPU based memory accesses are available on the
Spatter Patterns GitHub repo [18].

2.2.5 Related tools for GPU based patterns. Tools such as Ocelot [6],
GTPin [21] and Dyninst [22], provide similar functionality to NVBit
and are worth noting in the context of GS Patterns. Ocelet which
predates NVBit, operates at the PTX (Parallel Thread Execution)
level; a virtual ISA, where it provides tools for mapping between
data parallel execution and various models of threaded execution.
It can be used along with approaches from [11] to discover memory
patterns in applications and remap those patterns onto varying
hardware architectures. Unlike Ocelot, NVBit works at a lower
level e.g. on the raw SASS assembly executed on the GPU device,
where it dynamically recompiles code before execution. GTPin an
instrumentation framework created by Intel, can be used to instru-
ment Intel based GPU’s. It provides similar capabilities to NVBit in
that it provides access to the low level instructions in this case EU
assembly (including opcodes and their operands) executed on the
GPU at runtime without access to source code. Dyninst an api for
either static or dynamic instrumentation provides similar function-
ality to NVBit and supports various CPUs as well as AMD GPU’s.
In future versions of GS Patterns, support for Intel or AMD GPU
backends could be added based on GTPin or Dyninst respectively.

2.3 Spatter Patterns
Spatter is a benchmark designed to evaluate the performance of
sparse memory access on CPUs and GPUs [13]. Spatter takes as
input a number of memory access patterns and outputs the perfor-
mance of each in MB/s. These patterns can be specified individually
on the command line or they can be generated from traces of applica-
tions in order to create sets of patterns that are more representative
of application behavior than those generated by classical memory
benchmarks such as STREAM or pointer chasing. The Spatter pa-
per [13] used a proprietary simulator to generate Spatter inputs,
and as such could not be shared with the community. GS Patterns,
however, is an open source tool, meaning other researchers will be
able to repeat the entire workflow in this paper.

Spatter is able to represent a large class of memory access pat-
terns. A Spatter memory access pattern consists of four parts: (1)
kernel, (2) offsets, (3) delta, and (4) count.

The kernel specifies if we will be doing gathers, scatters, or one
of a number of new kernels, explained in Section 2.3.2. The offsets
specify the data elements that will be read or written by the gather
or scatter operations. The delta is how far we will move the base
pointer in our data array between gather or scatter operations, and
the count is how many gathers or scatters we will perform. With
all of that in mind, let us take a look at some pseudocode.

Algorithm 1 Gather pseudocode

for i in 1..count do
src = src + delta * i
for j in 1..len(offset) do

dst[j] = src[offset[j]]
end for

end for

5

Figure 5: A visual representation of the first two iterations of the
GatherScatter kernel. Both delta1 and delta2 are set to 1, and the
offset buffers are shown in the figure.

2.3.1 Kernel pseudocode. The gather kernel is defined in 1. In
words, the gather kernel performs the gather defined by the offset
buffer by coping data from src to dst, then moves the base pointer by
delta, and repeats this count times. The only difference between this
and the scatter kernel is that the scatter kernel performs indirect
writes instead of indirect reads, so the offset buffer is on the left of
the assignment and the dst buffer is incremented, instead of src.

2.3.2 New Spatter kernels. There are three new kernels in Spatter
since the original paper was published, MultiGather, MultiScatter,
and GatherScatter. The Multi kernels utilize multiple levels of indi-
rection, and the GatherScatter kernel will first gather data and then
scatter it. See Algorithm 2 and Algorithm 3 for the pseudocode for
these kernels. Notice that these patterns all require multiple offset
buffers, which must be of equal length. Additionally, a depiction of
the GatherScatter kernel is in Figure 5.

Algorithm 2MultiGather pseudocode

for i in 1..Count do
src = src + delta * i
for j in 1..len(off1) do

dst[j] = src[off1[off2[j]]]
end for

end for

Algorithm 3 GatherScatter pseudocode

for i in 1..Count do
src = src + delta1 * i
dst = dst + delta2 * i
for j in 1..len(off1) do

dst[off2[j]] = src[off1[j]]
end for

end for

2.4 Spatter Improvements
Since the original Spatter publication, a number of improvements
have been made to make it more suitable for evaluating HPC ap-
plications. These improvements include the ability for Spatter to

ingest very long gather/scatter traces, MPI calls for weak-scaling
and strong-scaling experiments, and the ability to truncate patterns
for GPU throughput testing.

Figure 6 provides a detailed illustration of how we implemented
each of these scaling and test workflows within the Spatter phase
of Figure 1. The weak-scaling and strong-scaling tests indicate
how the entire memory access pattern is passed to each rank for
weak-scale testing while the pattern is partitioned in to continuous
chunks for the strong-scaling tests. The GPU throughput test is
implemented as a sweep along the number of accesses performed
by the memory system across single-rank runs. As shown, this
requires the ability to truncate and expand the access pattern to
obtain the necessary number of accesses to saturate the GPUs SMs
and memory subsystem.

2.4.1 Offset Buffer Length. The prior work with Spatter focused
on very short gathers and scatters, typically of length 16. However,
this limits the ability of a single pattern to capture application
information. As such, Spatter was improved to support very long
offset buffers. In this work, the application-derived patterns will be
much longer.

2.4.2 MPI Support. While Spatter contained OpenMP support to
perform multi-threaded runs on a shared buffer, MPI support for
multi-process runs was needed to better represent a greater vari-
ety of application run configurations, such as MPI-only or MPI +
OpenMP. Given the assumption that the indirect memory access
pattern on each rank have similar characteristics during the appli-
cation run, we can use the same pattern on each rank to implement
MPI support.

Adding MPI support also required us to provide additional fea-
tures and scripts to support scaling experiments. Many of these
scripts [10] can be customized for weak-scaling, strong-scaling, or
GPU throughput testing (See 2.4.3) on a variety of hardware and
core counts with the use of command-line flags.

Weak-Scaling. Weak scaling support required the assumption
that the indirect memory access patterns across ranks have similar
characteristics. Therefore, each rank gets a copy of the entire pat-
tern output from GS patterns. The gather/scatter kernel is repeated
10 times by default, with each run separated by an MPI Barrier be-
fore recording the performance. We then developed scaling scripts
which sweep across the number of ranks and aggregate data from
each run to perform a full weak-scaling experiment for a single
pattern.

Strong-Scaling. Strong scaling support in Spatter required sup-
port for partitioning the indirect memory access pattern across
ranks as evenly as possible (see Figure 6). To approximate the data
decomposition as a problem is strong-scaled, each rank determines
which contiguous chunk of the pattern it is responsible for prior
to performing kernel runs separated by MPI barriers. The same
set of scaling scripts can then be configured to run strong-scaling
experiments on a single pattern.

2.4.3 GPU Throughput Testing. Performing throughput tests on
a GPU requires the user to vary the amount of memory moved
through the memory subsystem until the GPU is fully saturated.
Supporting throughput testing with Spatter required the addition

6

Figure 6: Spatter workflow for scaling and throughput testing.

of two additional features to Spatter: 1) the ability for Spatter to
truncate a pattern to a certain length as specified by user input, and
2) the ability for Spatter to expand a pattern an arbitrary number
of times. This allows the user to increase the effective size of the
pattern and the amount of memory traffic generated in order to
saturate the GPU with enough parallelism.

Specifically, looking at Algorithm 1, truncating the pattern would
be as simple as decreasing the size of the offset array. This would
have the effect of decreasing the size of the𝑑𝑠𝑡 array, since length(dst)
= lenght(offest), while the size of the src array would decrease by a
data dependent amount since the length of src is proportional to
max(offset).

Alternatively, expanding the pattern replayed by the Spatter
benchmark once the entire memory access pattern has already
been used to populate the offset array requires increasing the count
parameter in Algorithm 1. The result is that the base of the src
array is shifted by delta items (which is set to a default of 8), and
the offset pattern is then repeated until the base of the src array
has been shifted count times. This doesn’t require any additional
space for the offset array or the dst array, but requires the src array
to expand to length(src) = max(offset) + (count-1) * delta. The count
parameter is then used for a throughput test to increase the number
of accesses performed by the benchmark. This is done for a given
pattern of fixed length collected by GS Patterns and the workflow
in Figure 1.

2.4.4 Atomics. The scatter operation is susceptible to race condi-
tions when the offset array contains 2 equivalent offsets [17]. To
guarantee correctness in multi-threaded configurations, we added
an option to Spatter which enables atomic operations when using
the OpenMP and CUDA backends during any kernel which contains
a scatter.

3 EXPERIMENTS
The workflow illustrated in Figure 1 was utilized to collect indirect
access patterns of 5 HPC applications from various scientific do-
mains. This involved identifying regions of interest with vTUNE or
NSight, running the PIN Tool and NVBit client to generate the re-
quired traces, using GS Patterns to identify and extract the gather/s-
catter patterns, and visualizing the gather/scatter patterns extracted
from each application. The applications we collected patterns from
are described in detail in Section 3.2, while the patterns are visual-
ized in Section 3.3. Finally, the collected patterns were run through
Spatter to conduct weak-scaling studies on 6 CPU hardware plat-
forms and to perform throughput studies on 4 GPU hardware plat-
forms. The hardware utilized for this step is described in Section
3.1, while the results are presented and discussed in Section 3.4.

3.1 Experimental Setup
A heterogeneous research testbed was used to collect the band-
width results presented in this section across a variety of hardware
platforms. These hardware platforms span 6 CPU node configura-
tions and 4 GPU node configurations with a variety of memory
subsystems including DDR4, DDR5, LPDDR5X, HBM2e, and HBM3.
Details of the CPU node configurations and their memory subsys-
tems can be found in Table 2, while the GPU node configurations
and their memory subsystems can be found in Table 3.

First, the STREAM [14] benchmark was used to collect peak
DRAM bandwidth as a function of thread count on the CPU plat-
forms while the BabelSTREAM [5] benchmark was used on GPUs.
The STREAM benchmark was built to iterate over 150 million ele-
ments on the Intel and NVidia CPUs, requiring 1.1 GiB per array
and 3.4 GiB in total, while it was built to iterate over 800 million
elements on the AMD CPU requiring 6.0 GiB per array, ensuring
the arrays are much larger than the LLC. STREAM was run with
OMP_PROC_BIND=spread. The BabelSTREAM benchmark used an
array size of 268.4 MB for a total size of 805.3 MB. Figure 7 illustrates
the results of the STREAM and BabelSTREAM benchmarks.

Next, weak-scaling studies were performed for the collected
patterns. The weak-scaling tests were performed on all 6 CPU
configurations for 99 patterns across the 5 applications in Section
3.2. The total bandwidth and average bandwidth per rank were
measured for each pattern as the number of processes was swept
from 1 up to the number of cores on the CPU platform. Hyper-
threading was not used.

Finally, the GPU throughput tests were conducted across all pat-
terns for each of the 4 GPU configurations. This was performed
utilizing the scripts in the LANL Spatter repository [10] with the
default setup which sweeps from a count of 1 to 512. These experi-
ments all used the default delta of 8 and exercised the gather and
scatter kernels of the Spatter benchmark. Additionally, these exper-
iments required atomics to be enabled for any scatter patterns to

7

Table 2: CPU node configurations.

Grace Superchip 9480 Max Grace 9480L Platinum EPYC 9654P Gold 6152

CPU Cores / Socket 72 56 72 56 96 22

Sockets 2 2 1 2 1 2

L3 Cache 228 MB 225 MB 114 MB 215 MB 384 MB 30.25 MB

Memory Type LPDDR5X HBM2e LPDDR5X DDR5-4800 DDR5-4800 DDR4-2666

Memory Spec 8533 MT/s 3200 MT/s 8533 MT/s 4800 MT/s 4800 MT/s 2666 MT/s

Memory Bandwidth 1024 GB/s 1638.4 GB/s 512 GB/s 614.4 GB/s (16 channels) 460.8 GB/s (12 channels) 128.0 GB/s
Table 3: GPU node configurations.

GH 200 H100-PCIe A100-SXM4-40GB V100-PCIe

SMs 132 114 108 80

L2 Cache 60 MiB 50 MiB 40 MiB 6 MiB

Memory Type HBM3 HBM2e HBM2e HBM2

Total Memory Bandwidth 4.0 TB/s 2.0 TB/s 1.55 TB/s 900 GB/s

Figure 7: STREAM results on CPUs (Top) and GPUs (Bottom).

ensure correctness. The overhead of atomics has been measured to
be between 10%-30% in previous experiments for the LANL ATS-5
benchmarking effort.

3.2 Applications Used
3.2.1 UMT. UMT [8] (UnstructuredMesh Transport) is a Lawrence
Livermore National Laboratory (LLNL) Advanced Simulation and
Computing (ASC) proxy application (mini-app) that solves a ther-
mal radiative transport equation using discrete ordinates (Sn). It
utilizes an upstream corner balance method to compute the solu-
tion to the Boltzmann transport equation on unstructured spatial
grids. This class of problems is characterized by tens of thousands

of unknowns per zone and upwards of millions of zones, thus re-
quiring large, scalable, parallel computing platforms with tens of
processors per node.

3.2.2 xRAGE. xRAGE [7, 15] is a 1D, 2D, and 3D, multi-material
radiation transport hydrodynamics code developed by LANL. The
Hydrodynamics are based on Euler’s equations using cell-based
Adaptive Mesh Refinement (AMR). xRAGE is able to simulate be-
havior that spans very large dynamical state and phase spaces. The
choice of data structures to enable iteration over cells at the highest
resolution and to access adjacent cells in xRAGE result in inherently
sparse memory accesses (gather/scatter).

3.2.3 FLAG. FLAG [4] is an arbitrary Lagrangian-Eulerian (ALE)
adaptive mesh refinement (AMR)multiphysics hydrodynamics code
developed by LANL. To enable resolution to be concentrated where
it is most needed, FLAG supports fully unstructured polytopal grids.
FLAG has robust support for multiple materials with most opera-
tions taking place within material regions rather than across the
global mesh. The data structures used to support fully unstructured
grids and multiple materials result in inherently sparse memory
accesses (gather/scatter).

3.2.4 Quicksilver. Quicksilver is an open source proxy application
for theMercuryMonte Carlo particle transport code [3]. Quicksilver
solves a time-dependent fixed source particle transport problem
with significantly simplified and approximate physics, artificial
multigroup cross sections, and a simple mesh-based geometric
representation. The use of a dynamically 𝑞𝑠_𝑣𝑒𝑐𝑡𝑜𝑟 data structure
results in several different variants of sparse accesses as the core
vector structure is read and written by getter and setter methods
as well as being referenced often in the 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛_𝐸𝑣𝑒𝑛𝑡 function.

3.2.5 Branson. Branson is an proxy application for parallel Monte
Carlo transport[2]. Branson implements a particle passing method
for both replicated and domain decomposed meshes. In Branson,
individual particles are transported through the mesh and often
diverge significantly from the paths taken from previously adjacent
particles. Then can result in sparse memory access into a cell array

8

representing the underlying mesh from one particle transport to
another.

3.3 Pattern Examination
As discussed in Section 2, the GS Patterns workflow includes an
optional step for visualizing the traces extracted from applications.
This visualization uses a simple Python script to visualize the offsets
in a pattern, the deltas between accesses, and histograms of the delta
values found within a pattern. This visualization can be correlated
with the specific code functions reported via the GS Patterns tool to
investigate the sparsity characteristics of a specific gather or scatter
pattern.

3.3.1 Quicksilver Patterns. Listing 1 and listing 2 both show code
segments that result in sparse accesses that are captured by the GS
Patterns workflow.

In the case of listing 1, the access to _𝑐𝑟𝑜𝑠𝑠𝑆𝑒𝑐𝑡𝑖𝑜𝑛[𝑔𝑟𝑜𝑢𝑝] results
in a gather operation that is accessing a vector datatype common
to Quicksilver, 𝑞𝑠_𝑣𝑒𝑐𝑡𝑜𝑟 . The resultant pattern is shown in Fig. 8a
with the zoomed in version shown in Fig. 8c. What is important to
note here is that there this pattern demonstrates a relatively wide set
of offsets that is repeated across the application’s relative timescale.
The zoomed in version also shows that each "set" of accesses has a
somewhat sequential pattern, indicating some locality despite the
large offsets.

Figure 8b and Fig. 8d visualize the pattern represented by the
write to the x vector element in listing 2. Interestingly, this pattern
is visualized as a sickle shape with a somewhat random looking set
of offsets followed by a short monotonically increasing phase of
scatter operations.

189 HOST_DEVICE
190 // Return the cross section for this energy group
191 double NuclearDataReaction::getCrossSection(unsigned int group)
192 {
193 qs_assert(group < _crossSection.size());
194 return _crossSection[group]; // maps to Gather0
195 }
196 HOST_DEVICE_END

Listing 1: Quicksilver Gather0

20 HOST_DEVICE_CUDA
21 MC_Vector& operator=(const MC_Vector&tmp)
22 {
23 if (this == &tmp) { return ∗this; }
24

25 x = tmp.x; // maps to Scatter1
26 y = tmp.y;
27 z = tmp.z;
28

29 return ∗this;

Listing 2: Quicksilver Scatter1

3.3.2 Branson Patterns. Listing 3 demonstrates another gather op-
eration captured by GS Patterns that is accessing a data structure

called 𝑎𝑏𝑠_𝑔𝑟𝑜𝑢𝑝𝑠 . The resultant pattern in Fig. 9a has fewer data
points than the Quicksilver example gather, but it also demonstrate
an increasing offset with some amount of "near-0" offset values,
indicating reads from a small range of offsets. An exemplar Scatter
from Branson (code listing not shown) illustrates a repeated set of
writes to the same locations that are offset by a very large relative
offset (approximately 9 trillion).

3.3.3 xRAGE Patterns. A deeper dive in to the visualization tools
used in the workflow is illustrated by Figure 10. We have developed
tools to understand how the offset array is distributed, allowing
the temporal and spatial locality to be visually inspected.

Inspecting the full offset arrays of the Spatter5 gather pattern
(Figures 10a) and the Spatter9 scatter pattern (Figure 10b) from
the xRAGE application indicates several substructures and phases
exist during these sparse access patterns. They are not random, but
largely characterized by short monotonically increasing accesses
in address space, followed by hard to predict jumps to the next
monotonically increasing phase. Zooming in on to a single one of
thesemonotonically increasing phases with 10,000 accesses (Figures
10c - 10d) indicates additional hard to predict sparsity even within
these regions. Furthermore, we can visualize the evolution of the
deltas/jumps in address space between subsequent accesses as the
offset array is iterated through (Figures 10e - 10f) while inspecting
histograms to identify the frequency of deltas of particular sizes.
For these particular xRAGE patterns, many subsequent accesses
have deltas of 10,000 to 30,000 items between them, providing a
window in to the level and type of sparsity this pattern exhibits.
While outside the scope of this paper, future analysis is planned to
understand and model how different types of sparsity and sparse
patterns affect the bandwidth performance of different systems.

3.4 Spatter Results
Understanding the memory performance and bottlenecks of scien-
tific applications is paramount to improving their performance on
current and future architectures. Many microbenchmarks, such as
STREAM and GUPS, allow users to measure the hardware perfor-
mance of the systems they use to run their workloads, while Spatter
provides the ability to analyze the interaction between hardware,
software, and data that more closely resembles the conditions the
hardware would experience while running a workload. As many
hardware platforms continue to become more complex and het-
erogeneous, it is important for flexible workflows to exist which
can allow users to capture access patterns directly from applica-
tions and to “replay" them while performing scaling studies for
evaluation and benchmarking on a wide cross-section of existing
architectures.

In this section, a number of experiments are performed to demon-
strate the ability of the PIN and NVBit based workflows described in
Section 2 along with the Spatter improvements outlined in Section
2.2.5 to collect gather/scatter patterns from full applications and
to evaluate their performance on a variety of both CPU and GPU
node configurations. In Section 3.4.1, we demonstrate the ability
to use the MPI improvements to Spatter to conduct weak scaling
studies on the CPUs in Table 2 in addition to throughput studies
on the GPUs in Table 3 with patterns collected using the work-
flow described in this paper. Next, we demonstrate the ability to

9

(a) Quicksilver Gather0 offsets (b) Quicksilver Scatter1 offsets.

(c) Quicksilver Gather0 - zoomed in view (d) Quicksilver Scatter1 - zoomed in view

166 //! Return multigroup absorption opacity
167 GPU_HOST_DEVICE
168 inline double get_op_a(uint32_t g) const { return abs_groups[g]; }
169 //get_op_a maps to Gather0

Listing 3: Branson Gather0 in Cell.h

perform throughput experiments to analyze how improvements
across generation of NVidia hardware impact the performance of
our collected indirection patterns in Section 3.4.2. Finally, in Section
3.4.3 we combine STREAM and BabelSTREAM benchmark perfor-
mance across all 10 CPU and GPU platforms with the performance
collected from Spatter to evaluate how effectively each platform is
utilizing it’s available bandwidth on specific patterns.

3.4.1 Weak Scaling Experiments. In the first experiments, scaling
studies were performed on each of the 99 patterns collected from
the 5 applications across the 6 CPU platforms. These patterns were
split relatively evenly between gathers and scatters, and the scatters
are indicated by the dashed lines in the following figures. Only a
subset of these 99 patterns are presented due to space constraints.

The first experiment demonstrates the ability for this workflow
to evaluate how the performance of a specific pattern varies across
all 6 CPU node configurations. For this, we utilize a gather pat-
tern collected from the XRage application which is performing a
simulation of an asteroid collision.

The results of this experiment in Figure 11 illustrate that the 3
systems which use DDR-4 and DDR-5 all perform similarly, while
the single socket Grace system outperforms Sapphire Rapids up to
32 cores before plateauing. However, the AMD EPYC 9654P results
indicate interesting behavior at low-rank counts, where the node
achieves higher performance compared to the Sapphire Rapids DDR
node which also uses DDR5. However, the performance of the AMD
EPYC 9654P node quickly drops back to levels consistent with the
Sapphire Rapids DDR node which also contains DDR5 as its main
memory system. Furthermore, the Grace-Grace Superchip achieves

the highest bandwidth up to 72 cores before dropping below Sap-
phire Rapids with HBM when that node is saturated using all 112
cores, despite the Grace-Grace node having a lower STREAM band-
width due to using LPDDR5X than the Sapphire Rapids HBM node.
These results provide important feedback which allows hardware
researchers to identify subtle differences in hardware design and
their impact on real application access patterns, such as the im-
pact that the number of memory channels, the size and policies
of the caches, or the design of the memory controller may impact
memory access performance. It also allows facilities to evaluate the
same pattern across multiple systems to understand the trade-offs
and performance of hardware on indirect access patterns which
resemble their applications.

The next weak-scaling experiment provided data for all of the
patterns collected from a single application on a single CPU node.
For this, we used the 9 patterns collected from the xRAGE appli-
cation and performed weak-scaling tests for each on the Sapphire
Rapids HBM node. The patterns labeled Spatter[1-5] are all gather
patterns, while the patterns labeled Spatter[6-9] are scatter patterns.

Using all 112 physical cores across two sockets, these patterns
achieve between 341 GiB/s - 470 GiB/s, which is about a quarter
of the 1,638.4 GB/s memory bandwidth available on the Sapphire
Rapids HBM node. A consistent trend illustrated by Figure 12 is that
the scatter patterns from this particular application consistently
achieve lower bandwidths than the gather patterns at low core
counts. However, many of the gather patterns drop below the scatter
patterns as the node becomes saturated. The Spatter 4 pattern
exhibits particularly interesting behavior as its performance drops
noticeably from 64 ranks to 112 ranks, resulting in it achieving a
lower total bandwidth at 112 ranks than it did at 64 ranks. While
diagnosing why this may be the case is outside the scope of this
paper, the results from this experiment provide another example of
how using this workflow to collect real application access patterns
to benchmark systems can provide results which indicate where
researchers should look more closely at their access patterns and
hardware systems.

10

(a) Branson Gather0 Offsets (b) Branson Scatter1 offsets.

3.4.2 GPU Throughput Experiments. We performed GPU through-
put tests on 4 NVidia GPUs, spanning 3 different generations and 3
different memory systems. The first experiment looked at the same
gather pattern from xRAGE analyzed in Section 3.4.1. This pattern
was first truncated from its original length of 8,388,968 elements to
524,200 elements to minimize the amount of data transferred. The
pattern length was then increased until it reached the full 8,388,968
elements. At this point, the count parameter mentioned in Section
2.4.3 was increased from 1 to 128 by powers of 2 in order to increase
the number of indirect accesses accordingly. This resulted in the
amount of data transferred ranging from 4MB to 8GB in order to
conduct the throughput experiment.

The GH200 achieves the highest bandwidth at 1.78 TB/s as illus-
trated in Figure 13, less than half of the 4.0 TB/s available bandwidth
and about 52% of the measured 3.36 TB/s measured STREAM band-
width. This is comparable, but a slightly lower ratio of achieved
STREAM bandwidth on the H100 (78% or 1.38 TB/s out of 1.76
TB/s), A100 (65% or 914.6 GB/s out of 1.398 TB/s), and V100 (64%
or 512 GB/s out of 791 GB/s) GPUs, showing that an improvement
in available STREAM bandwidth doesn’t necessary translate to a
proportional gain in indirect memory access bandwidth. This cor-
responds to an improvement of 3.5x in indirect access bandwidth
from the V100 to the GH200 compared to an increase of 4.44x in
the specified achievable bandwidth.

Additionally, each GPU’s bandwidth plateaus in the regionwhere
128 MB - 512 MB was transferred during the gather kernel, indicat-
ing where each GPU becomes saturated enough to provide enough
memory level parallelism to the memory subsystem. Finally, the
number of accesses performed for the GPU throughput tests equals
the number of accesses performed on 112 cores of the Sapphire
Rapids CPU between the 2 rightmost points in the figure, which
correspond to expanding the pattern by 64x and 128x, respectively.
Given the tools developed to support this workflow, researchers
can construct their experiments to provide more direct comparison
between CPUs and GPUs by tuning the amount of accesses per-
formed and assessing the size of their data structures and kernels
in their applications.

The next experiment performed throughput tests for patterns
from each of our 5 applications on the GH200 GPU. Similar to the
previous experiment, the patterns were first truncated and then
expanded by sweeping the count parameter from 1 to 128 in order
to increase the amount of memory operations performed by the
GPU on each run. The differences in the original pattern lengths
results in each pattern achieving different data transferred values
while using an identical count of 128.

Similar to the CPU results in Figure 12, the data in Figure 14
illustrate that for all 5 applications the scatter patterns perform sig-
nificantlyworse than the gather patterns. This is likely due to scatter
patterns not being thread safe and requiring atomic operations to
ensure correctness due to aliasing on memory addresses caused by
multiple entries in the offset array pointing to the same address
in memory. Additionally, all of the patterns indicate a plateauing
around 64-128 MB, similar to the results obtained for the single
gather pattern in Figure 13. Finally, the variety of access patterns
and types of indirect kernel result in a wide range of performance,
with a difference in pattern performance of 3x-4x, demonstrating
how this workflow can identify indirect access patterns which are
better behaved and which ones may be important bottlenecks to
focus on.

3.4.3 Performance Relative to STREAM. In order to properly com-
pare changes to memory systems across generations, we want to see
not only improvements in the performance reported by Spatter, but
also a greater utilization of of the available memory bandwidth. To
visualize this, [13] introduced bandwidth-bandwidth plots. These
plots, shown in Fig. 15, allow us to see how each pattern performs as
a percentage of the STREAM (or BabelSTREAM) Copy bandwidth.
These plots use the same data as the weak scaling and GPU through-
put tests, but we only plot the highest performance achieved for
each pattern on each platform. As before, gather patterns are shown
with solid lines and scatter patterns with dashed lines.

In these log-log plots, the performance reported by Spatter for a
specific pattern is shown as a function of that platform’s STREAM
bandwidth. Thus, the following are all true, and are provided to
guide understanding of the plots:

(1) The y=x line shows the STREAM or BabelSTREAM band-
width for each platform

(2) All of the performance results for a given platform will
form a vertical line

(3) Two points that have the same y-value have the same per-
formance but utilize a different fraction of the available
memory bandwidth on those platforms

(4) Two points that are the same distance below the y=x line
have different performance but utilize the same fraction of
available bandwidth on those platforms

The last two points are particularly important: taken together,
they mean that we can use these plots to not only compare how
performance is different between platforms, but also how the frac-
tion of available bandwidth differs for different patterns and across
platforms.

11

(a) xRAGE Spatter 5 gather visualization. (b) xRAGE Spatter 9 scatter visualization.

(c) xRAGE Spatter 5 zoomed visualization. (d) xRAGE Spatter 9 zoomed visualization.

(e) xRAGE Spatter 5 deltas visualization. (f) xRAGE Spatter 9 deltas visualization.

(g) xRAGE Spatter 5 histogram of deltas visualization. (h) xRAGE Spatter 9 histogram of deltas visualization.
Figure 10: Visualization of GS Patterns from xRAGE.

The bandwidth-bandwidth plot for the GPU platforms is shown
in Fig. 15a. Looking at the diagonal y=x line, we see how the total
available memory bandwidth has increased across the past last
4 generations of NVidia GPUs. However, Spatter shows us that
the gains in STREAM bandwidth have not always translated to a
proportional increase for all memory access patterns. For instance,

a number of patterns perform worse on the A100 than they did on
the V100, including AllAbosorb12 and Marshak dd20. Additionally,
while most patterns increase by an amount greater than STREAM
bandwidth between the A100 and the H100, as shown by the lines
being steeper than the STREAM line in that region, we see the

12

Figure 11: Weak-scaling Spatter results across NVidia, AMD, and Intel Nodes
for an xRAGE gather pattern. Top: Average bandwidth measured per rank;
Bottom: Total bandwidth measured across the entire node.

Figure 12: xRAGE patterns Spatter results on Intel SPR HBM Nodes. Top:
Average bandwidth measured per rank; Bottom: Total bandwidth measured
across the entire node.

opposite trend when moving to the GH200. While the GPU trends
are easy to analyze, we see a different story when looking at CPUs.

In Fig. 15b, wee have a bandwidth-bandwidth plot for all of
our CPU platforms, as well at the GH200 to help us compare to
the GPUs. This chart makes even more clear the need for memory
system evaluations to include application patterns as close to reality
as possible. Consider Flag: 001_1 for example. This pattern performs
close to STREAM on the Intel Skylake and NVidia Grace-Grace
platforms. However, when comparing with Intel Sapphire Rapids, it
can perform either well above or well below STREAM, depending
on whether you have a DDR or an HBM model. The other Flag

Figure 13: Spatter results across multiple generations of NVidia GPUs for an
xRAGE gather pattern.

Figure 14: Spatter results of all 5 applications on GH200 GPU.

pattern that is included, Flag: 001_7, is similarly odd, performing
well above STREAM on some platforms and well below on others.

If we take Fig. 15 as a whole, we see that some platforms are
somewhat pessimistic for both CPUs and GPUs, in particular Mar-
shak dd20. Increases in STREAM bandwidth have little impact on
this scatter pattern.

These bandwidth-bandwidth plots allow us to take a holistic
look at how memory systems are evolving over time in relation
to the memory access patterns we care about. While GPUs have
shown steady improvement in performance for the majority of our
patterns, the CPUs in our dataset tell a more complicated story,
which must be considered when evaluating system performance.

13

100 GiB/s 1 TiB/s

STREAM Copy Bandwidth

10
0

Gi
B/

s
1

Ti
B/

s

Pa
tte

rn
 B

an
dw

id
th

Branson: Marshak dd20

Branson: Marshak dd7

Flag: 001_1

Flag: 001_7

Quicksilver: AllAbsorb13

Quicksilver: AllEscape1UMT: b1_3

xRAGE: Spatter9

ST
RE

AM
 Ba

nd
widt

h

1/2
 ST

REA
M

1/4 1/8 1/1
6

(a) GPU platform bandwith-bandwidth plot.

100 GiB/s 1 TiB/s

STREAM Copy Bandwidth
10

0
Gi

B/
s

1
Ti

B/
s

Pa
tte

rn
 B

an
dw

id
th

Branson: Marshak dd20

Branson: Marshak dd7

Flag: 001_1

Flag: 001_7

Quicksilver: AllAbsorb13

Quicksilver: AllEscape1UMT: b1_3

xRAGE: Spatter9

ST
RE

AM
 Ba

nd
widt

h

1/2
 ST

REA
M

1/4 1/8 1/1
6

(b) CPU platform bandwidth-bandwidth plot.
Figure 15: Bandwidth-Bandwidth plots. The performance reported by Spatter for each pattern is reported as a function of that platform’s STREAM bandwidth.

Those deciding betweenmodern CPUs such as Intel Sapphire Rapids
and NVidia Grace must carefully consider the characteristics of
their workloads.

4 DISCUSSION
The GS Patterns workflow provides significant enhancements to
previously published tools for the analysis and synthesis of sparse
memory access benchmarks.While previous tools likeHopscotch [1]
and Spatter [13] both provide for the evaluation of sparse patterns
with CPUs and GPUs, the missing link has been a path to capture
application-specific patterns and use them to synthesize new input
microbenchmarks.

However, there are a few caveats with this new approach that
may require further research. While new patterns can be quickly
pulled from application codes with GS Patterns, comparing patterns
from different inputs with the same application still requires a deep
knowledge of the application under test as well as inspection of the
code that is used to generate sparsemicrobenchmarks. Visualization
approaches like those presented in Section 3.3 provide some initial
insight into the differences between regions of interest within an
application, but more rigorous statistical analysis is likely required
to standardize comparisons across sparse microbenchmarks.

Furthermore, while the process is scripted and uses standard
toolsets, the full workflow requires some manual analysis and an-
notation to optimize the process. Specifically, creating the initial
regions of interest or hotspots to limit the search space for GS Pat-
terns requires the user to run a separate tool (vTune, nSight, or
possibly perf) and then to annotate their code to limit the runtime
of Pin-like tracing tools. We note that the workflow could be run
in a more automated fashion without this step, but the runtime of
GS Patterns would likely be much longer.

Despite these areas for future enhancement, we feel that the
presented approach provides an impressive step forward in the
synthesis of new memory microbenchmarks that ties into the co-
design of applications and simulation of new and improved memory
systems. For example, the generated patterns from GS Patterns
could likely be used with little modification as inputs to memory
traffic generators for architectural simulation frameworks like gem5
or SST to evaluate future near memory or processing-in-memory
designs.

5 CONCLUSION
In this paper we have presented a novel workflow and set of algo-
rithms implemented within GS Patterns which enable the analysis
and synthesis of memory access patterns in codes of arbitrary com-
plexity. GS Patterns captures a variety of access patterns during
application execution including sparse gather and scatter patterns
without relying upon compiler technology recognizing and emitting
gather/scatter instructions. To enable rapid performance analysis
of these access patterns, we have modified the Spatter microbench-
mark to enable replay of GS Patterns access patterns with support
for a wide variety of both CPU and GPU hardware architectures.

Performance analysis using Spatter and GS Patterns is presented
across a number of latest generation CPU and GPU hardware tech-
nologies. Results of our analysis indicate that many applications
that exhibit sparse memory access routinely achieve between 25%
and 50% of STREAM bandwidth while some patterns achieve less
than 6%. In a number of cases, the high STREAM bandwidth of GPU
systems delivers high access pattern bandwidth from hardware gen-
eration to generation, with some exceptions. As an example, for
most access patterns the % of STREAM bandwidth is significantly
higher on H100 compared to GH200. In most cases, the tested GPUs

14

provide significantly higher bandwidth for generated patterns than
CPU platforms but not always. In particular the performance of
Flag: 001_7 is nearly the same as that achieved on multiple CPU
platforms and the performance of Quicksilver: Allabsorb13 is bit
lower on GPU relative to CPUs.

This type of detailed analysis, enabled by GS Patterns, illus-
trates the importance of evaluating a diverse set of memory access
patterns with respect to delivered bandwidth. The ability to eas-
ily synthesize these access patterns in an automated fashion now
enables rapid assessment across a diverse set of applications and
hardware technologies.

6 ACKNOWLEDGMENTS
Kevin Sheridan, Galen Shipman, and Jered Dominguez-Trujillo
acknowledge support by the National Nuclear Security Administra-
tion. Los Alamos National Laboratory, an affirmative action/equal
opportunity employer, is operated by Triad National Security, LLC
for the National Nuclear Security Administration of U.S. Depart-
ment of Energy under contract 89233218CNA000001. By approving
this article, the publisher recognizes that the U.S. Government re-
tains nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so,
for U.S. Government purposes. Los Alamos National Laboratory
requests that the publisher identify this article as work performed
under the auspices of the U.S. Department of Energy. Los Alamos
National Laboratory strongly supports academic freedom and a
researcher’s right to publish; as an institution, however, the Labora-
tory does not endorse the viewpoint of a publication or guarantee
its technical correctness. LA-UR-24-24856.

This research used resources provided by the Darwin testbed
at Los Alamos National Laboratory (LANL) which is funded by
the Computational Systems and Software Environments subpro-
gram of LANL’s Advanced Simulation and Computing program
(NNSA/DOE).

GT CRNCH Rogues Gallery
This article has been authored by an employee of National Tech-

nology & Engineering Solutions of Sandia, LLC under Contract
No. DE-NA0003525 with the U.S. Department of Energy (DOE).
The employee owns all right, title and interest in and to the ar-
ticle and is solely responsible for its contents. The United States
Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government
retains a non-exclusive, paid up, irrevocable, world-wide license
to publish or reproduce the published form of this article or al-
low others to do so, for United States Government purposes. The
DOE will provide public access to these results of federally spon-
sored research in accordance with the DOE Public Access Plan
https://www.energy.gov/downloads/doe-public-access-plan.

REFERENCES
[1] Alif Ahmed and Kevin Skadron. 2019. Hopscotch: A micro-benchmark suite for

memory performance evaluation. In Proceedings of the International Symposium
on Memory Systems. 167–172.

[2] Daniel Macgee Alex Long, Kelly Thompson. [n. d.]. Github Site - Branson.
https://github.com/lanl/branson. Accessed: 2024-06-24.

[3] Patrick S Brantley, Ryan C Bleile, Shawn A Dawson, NA Gentile, M Scott McKin-
ley, Matthew J O’Brien, Michael M Pozulp, David F Richards, David E Stevens,
Jonathan A Walsh, et al. 2017. LLNL Monte Carlo transport research efforts for ad-
vanced computing architectures. Technical Report. Lawrence Livermore National

Lab.(LLNL), Livermore, CA (United States).
[4] Wendy K. Caldwell, Abigail Hunter, Catherine S. Plesko, and Stephen Wirkus.

2019. Verification and Validation of the FLAG Hydrocode for Impact Cratering
Simulations. Journal of Verification, Validation and Uncertainty Quantification 3,
3 (2 2019). https://doi.org/10.1115/1.4042516

[5] Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2018.
Evaluating attainable memory bandwidth of parallel programming models via
BabelStream. International Journal of Computational Science and Engineering 17,
3 (2018), 247–262.

[6] Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan Clark. 2010.
Ocelot: A dynamic optimization framework for bulk-synchronous applications
in heterogeneous systems. In 2010 19th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT). 353–364.

[7] Michael Gittings, Robert Weaver, Michael Clover, Thomas Betlach, Nelson Byrne,
Robert Coker, Edward Dendy, Robert Hueckstaedt, Kim New, W Rob Oakes,
et al. 2008. The RAGE radiation-hydrodynamic code. Computational Science &
Discovery 1, 1 (2008), 015005.

[8] Louis Howell. 2014. Characterization of UMT2013 performance on advanced
architectures. Technical Report. Lawrence Livermore National Laboratory (LLNL),
Livermore, CA (United States).

[9] Intel. 2020. GTPin - A Dynamic Binary Instrumentation Framework. https:
//software.intel.com/content/www/us/en/develop/articles/gtpin.html.

[10] Galen Shipman Jered Dominguez-Trujillo. [n. d.]. Github Site - LANL Spatter
Site. https://github.com/lanl/spatter. Accessed: 2023-05-28.

[11] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2009. A characteriza-
tion and analysis of PTX kernels. In 2009 IEEE International Symposium on Work-
load Characterization (IISWC). 3–12. https://doi.org/10.1109/IISWC.2009.5306801

[12] Agustin Vaca Valverde Kevin Sheridan, Christopher Scott. [n. d.]. Github Site -
GS patterns. https://github.com/lanl/gs_patterns. Accessed: 2023-05-28.

[13] Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel
Ernst. 2020. Evaluating Gather and Scatter Performance on CPUs and GPUs. In
The International Symposium on Memory Systems. 209–222.

[14] John D McCalpin. 1995. Stream benchmark. Link: www. cs. virginia.
edu/stream/ref. html# what 22, 7 (1995).

[15] Zachary James Medin. 2022. xRAGE: A Brief Overview. (November 2022).
https://doi.org/10.2172/1900431

[16] P Nowak. 2013. Unstructured-Mesh Deterministic Radiation Transport. Single
Physics Package Code. Technical Report. Lawrence Livermore National Labora-
tory (LLNL), Livermore, CA (United States).

[17] Douglas Michael Pase and Anthony Michael Agelastos. 2019. Performance of
Gather/Scatter Operations. Technical Report. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States).

[18] Jeffrey Young Patrick Lavin, Agustin Vaca Valverde. [n. d.]. Github Site - Spatter
Patterns. https://github.com/hpcgarage/spatter-patterns. Accessed: 2024-06-21.

[19] G. M. Shipman, J. Dominguez-Trujillo, K. Sheridan, and S. Swaminarayan. 2022.
Assessing the Memory Wall in Complex Codes. In 2022 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE Computer Society,
Los Alamitos, CA, USA, 30–35. https://doi.org/10.1109/MCHPC56545.2022.00009

[20] Galen M. Shipman, Sriram Swaminarayan, Gary Alan Grider, James Westley
Lujan, and Robert Joseph Zerr. 2022. Early Performance Results on 4th Gen
Intel(R) Xeon (R) Scalable Processors with DDR and Intel(R) Xeon(R) processors,
codenamed Sapphire Rapids with HBM. (11 2022). https://doi.org/10.2172/1898
330

[21] Alex Skaletsky, Konstantin Levit-Gurevich, Michael Berezalsky, Yulia Kuznet-
cova, and Hila Yakov. 2022. Flexible Binary Instrumentation Framework to
Profile Code Running on Intel GPUs. In 2022 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 109–120. https:
//doi.org/10.1109/ISPASS55109.2022.00011

[22] Various. [n. d.]. DyninstAPI: Tools for binary instrumentation, analysis, and
modification. https://github.com/dyninst/dyninst/. Accessed: 2024-08-25.

[23] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keckler. 2019.
NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (Columbus, OH, USA) (MICRO ’52). Association for ComputingMachinery,
New York, NY, USA, 372–383. https://doi.org/10.1145/3352460.3358307

15

https://www.energy.gov/downloads/doe-public-access-plan
https://github.com/lanl/branson
https://doi.org/10.1115/1.4042516
https://software.intel.com/content/www/us/en/develop/articles/gtpin.html
https://software.intel.com/content/www/us/en/develop/articles/gtpin.html
https://github.com/lanl/spatter
https://doi.org/10.1109/IISWC.2009.5306801
https://github.com/lanl/gs_patterns
https://doi.org/10.2172/1900431
 https://github.com/hpcgarage/spatter-patterns
https://doi.org/10.1109/MCHPC56545.2022.00009
https://doi.org/10.2172/1898330
https://doi.org/10.2172/1898330
https://doi.org/10.1109/ISPASS55109.2022.00011
https://doi.org/10.1109/ISPASS55109.2022.00011
https://github.com/dyninst/dyninst/
https://doi.org/10.1145/3352460.3358307

	Abstract
	1 Introduction
	2 Workflow Overview
	2.1 GS Patterns Core Implementation
	2.2 GPU Features for GS Patterns
	2.3 Spatter Patterns
	2.4 Spatter Improvements

	3 Experiments
	3.1 Experimental Setup
	3.2 Applications Used
	3.3 Pattern Examination
	3.4 Spatter Results

	4 Discussion
	5 Conclusion
	6 Acknowledgments
	References

