
SMS: Solving Many-sided RowHammer
Samiksha Verma

samiksha@cse.iitb.ac.in
Indian Institute of Technology, Bombay

India

Virendra Singh
singhv@iitb.ac.in

Indian Institute of Technology, Bombay
India

ABSTRACT
Dynamic Random-Access Memory forms the backbone of modern
memory systems. However, a critical security vulnerability known
as RowHammer threatens the integrity of this cornerstone technol-
ogy. As DRAM advancements progress, the RowHammer problem
worsens due to a concerning trend: the threshold for triggering a bit
flip is steadily decreasing. While numerous solutions have been pro-
posed to mitigate RowHammer over the past decade, however these
solutions primarily excel at addressing traditional RowHammer
scenarios. More complex variations, such as many-sided RowHam-
mer can circumvent existing defenses and compromise the security
of main memory. To address this gap, we propose SMS, a solution
specifically designed to tackle many-sided RowHammer while also
mitigating classic RowHammer. Our model demonstrates notable
performance and energy efficiency, with only 3.22% performance
overhead and 8.83% DRAM energy overhead, as evidenced by our
evaluation on the Spec2017, PARSEC, and LIGRA benchmark suites.
In contrast, the current state-of-the-art solution (Hydra+AQUA)
incurs a much higher slowdown of 15.61% and a DRAM energy
overhead of 32.36%.

KEYWORDS
Microarchitecture security, Secure memory systems, DRAM secu-
rity, Row hammer attacks

1 INTRODUCTION
Contemporary computing systems place an ever-growing demand
on high-capacity primary memory, with Dynamic Random-Access
Memory (DRAM) serving as the foundational cornerstone of these
modern memory architectures. As our computing technology con-
tinues to advance, the capacity of DRAMs experiences a consistent
expansion. This expansion necessitates the shrinking and tighter ar-
rangement of DRAM cells, resulting in the emergence of challenges
related to inter-cell interference and disturbance errors.

One such vulnerability is known as RowHammer (RH) [12].When
a specific row is frequently activated, it can induce bit-flips in the
neighboring rows. The repeatedly activated row is aptly termed
the aggressor while the adversely impacted adjacent rows are re-
ferred as victim rows. The number of activations required to cause
bit flips in adjacent rows is called RowHammer threshold (T𝑅𝐻).
Unfortunately the RH threshold has seen a significant decrease
with newer generations of DRAM, elevating the seriousness of RH
as a security threat. Figure 1 illustrates the pronounced decline in
the RH threshold since its initial demonstration in older DRAM
generations. Following the trend, we can anticipate RH threshold
dropping to just a few of hundred for current and future DRAMs.

Moreover, based on the location of aggressors and the specific
hammering patterns, more severe variants of RH like many-sided

hammer have emerged and they can bypass conventional mitiga-
tion techniques designed for classic RowHammer [6, 9, 14]. While
numerous solutions effectively address classic RH, many-sided RH
poses a severe threat [5, 6] and remains capable of eluding tradi-
tional mitigation methods. Therefore, finding an efficient solution
for this formidable variant of RH is essential [6, 19]. Although re-
cent literature [29, 32] suggest lowering the thresholds of classic
RH solutions will guard DRAM with many-sided hammer, however
this invariably results in a notable drop in system performance.
Our research aims to overcome these limitations and to provide an
efficient solution to many-sided RH. Our major contributions are
as follows:
(1) Proposing SMS, an efficient solution to address many-sided
hammering while mitigating classic RH.
(2) Demonstrating through experiments that existing classic RH
solutions are unsuitable for addressing many-sided RowHammer.

Driven by the observed decrease in RowHammer threshold over
the past decade, in this paper, we search for a solution at an ul-
tra low threshold of 250. We conducted evaluations of our model
using SPEC CPU 17, PARSEC, and LIGRA benchmark suites. In
comparison to current and previous state-of-the-art solutions, the
HYDRA tracker [21] combined with the AQUA mitigator [23], and
the Graphene tracker [20] paired with the RRS mitigator [22], SMS
consistently outperforms them. Notably, SMS successfully addresses
many-sided hammer attacks even at ultra-low thresholds (250 ac-
tivations), exhibiting only 3.22% performance overhead and 8.83%
increase in DRAM energy consumption.

The paper is organized as follows: Section 2 provides an overview
of the threat model, the basics of DRAM organization, the types and
severity of RowHammer attacks, an introduction to current and
previous state-of-the-art solutions, and the motivation for the pro-
posed work. Section 3 offers a detailed explanation of the various
structures required in our model and how our model operates. Sec-
tion 4 covers the evaluation of SMS, including experimental details,
results, overhead analysis, sensitivity test, and storage overhead
analysis. Section 5 demonstrates security analysis and discusses
potential areas for improvement in the proposed model. Section 6
and Section 7 provide related work and conclusion respectively.

2 BACKGROUND & MOTIVATION
2.1 Threat Model
Our threat model assumes an attacker with user-level privileges
on a system using DRAM as main memory. The attacker aims to
launch untargeted many-sided or classic RowHammer attacks. For
a successful attack, the attacker needs frequent access to specific
DRAM addresses (achieved by evicting data from cache) and the
ability to determine the physical locations of adjacent rows within
a row group (through reverse engineering DRAM mapping). In

Trovato and Tobin, et al.

Figure 1: The graph illustrates the declining trend of the
RowHammer threshold over the past decade.

Table 1: Average group access count (mean number of acti-
vations occurring within each 64ms) and MPKI of SPEC-17
workloads

Workloads LLC
MPKI

Groups
ACT-
400+

Groups
ACT-
1600+

Groups
ACT-
3200+

perlbench 0.430 0 0 0
gcc 24.354 1960 263.333 0
namd 0.828 330.66 7.64 0
bwaves 11.103 6208.857 746.428 0
mcf 23.790 1396.5 1010.5 297.5

cactuBSSN 3.487 2181 1035.25 0
lbm 40.583 38268 16875.5 0

omnetop 10.683 511.5 112 7
wrf 1.531 719 392 0

xalancbmk 7.323 2612 558.5 37.5
x264 0.714 260.6 119.8 0.6
cam4 0.878 272.5 59.75 0
pop2 3.531 1799 1119 121

deepsjeng 0.417 0 0 0
imagick 0.119 130.66 4 0
leela 0.099 88.5 31.5 0
nab 0.659 216 61.2 25.4

exchange2 0.001 0 0 0
fotonik3d 10.398 5551.2 1044.8 0.6
roms 5.709 3308 1173.6 252
xz 0.884 302.5 66.75 0

aster 2.068 517.5 108.5 11
Average 6.800 3028.817 1126.820 34.209

many-sided RowHammer, the attacker’s goal is to manipulate ac-
cess patterns such that the combined access count of a row group
surpasses a threshold within 64 milliseconds. Classic RowHammer
focuses on hammering a single row beyond its threshold (T𝑅𝐻)
within the same time-frame. A successful attack is defined by at
least one bit flip occurring in the victim row.

2.2 DRAM Organization
Modern DRAM operates hierarchically, with channels at the top.
Memory controllers access these channels in parallel. Dual in-line
memory modules (DIMMs) contain multiple DRAM chips, each typ-
ically having two ranks. Each rank contains multiple banks, further
divided into subarrays. These subarrays consist of rows connected
to a local row buffer. A DRAM bank resembles a 2D array of DRAM
cells, where cells are connected horizontally via a wordline, and
vertically to a local row buffer via bitlines. Figure 2 illustrates basic
organisation of a DRAM. Each DRAM cell comprises one transis-
tor and one storage capacitor, where data is stored as charge in
these capacitors. Initially, rows are in a closed (precharged) state.
To serve read or write requests, the corresponding row must be
opened, known as Row Activation. Before activating a row, the
previously opened row must be precharged to half V𝐷𝐷 . When a
row is accessed, the corresponding wordline is enabled, and charge
from capacitors flows into the bitline, either charging it to V𝐷𝐷

or discharging it to zero. In both cases, the sense amplifier am-
plifies the voltage change and drives the bitline to either zero or
V𝐷𝐷 . Repeatedly accessing the same row is a row hit, resulting in
low latency. Accessing a different row is a row miss, requiring the
disabling of the currently enabled wordline and precharging the
bitlines to half V𝐷𝐷 before activating another row. Consecutive
accesses to an already opened row, without closing it, are row hits
and are faster. Accessing a different row in the same bank leads
to a row miss, incurring additional time. In addition to read and
write operations, DRAM requires periodic row refreshes [2, 28] to
maintain data integrity . Due to the leaky nature of DRAM cells,
the charge stored in the capacitors gradually dissipates over time,
necessitating periodic refreshes to retain the charge and ensure
data is not lost.

2.3 Classic & Many-sided RowHammer
Frequent access to a single row in DRAM within a short time frame
can result in bit flips in neighboring rows. This phenomenon is
referred to as RH. The extent of bit flips depends on the physical
location of the aggressor row and the specific hammering pattern,
which in turn determines the RH threshold and the severity of the
RH threat. Figure 3 illustrates various hammering patterns:

• Figure 3 (i) depicts the classic RH scenario, where a red-
colored row serves as the aggressor, causing bit flips in the
adjacent blue-colored victim rows. In the case of single-
sided hammering, there is a single aggressor responsible
for inducing bit flips in its immediate neighboring rows.

• Figure 3 (ii) illustrates double-sided hammering, with ag-
gressors and victims arranged in a sandwich-like configu-
ration. Notably, the middle victim row, colored in dark blue,
is particularly susceptible to bit flips as it is affected by two
aggressors.

• Figure 3 (iii) showcases a highly dangerous variant of RH
known as many-sided hammer. The diagram illustrates
the case of four-sided hammering. This pattern, featuring
four aggressor rows located alternately, leads to signifi-
cant higher bit flips, particularly in the dark blue rows. In
such hammering patterns, the threshold for having bit flips

SMS: Solving Many-sided RowHammer

Figure 2: DRAM organization

becomes significantly lower compared to the classic RH
threshold, rendering these attacks more threatening [6].

2.4 State-of-the-art RH Detector & Mitigator
Hydra [21] stands as the state-of-the-art solution for detecting RH
attacks. Hydra framework introduces a comprehensive approach
that utilizes both SRAM and DRAM-based structures to monitor
aggressor rows effectively. In the initial stages of tracking, Hydra
focuses on monitoring the access count of groups of rows. If access
counts to these groups crosses a predefined threshold, Hydra starts
tracking accesses at row level. To facilitate this tracking process,
Hydra incorporates two key components. First, it maintains a Group
Count Table (GCT), located in SRAM within the memory controller.
This table serves as a repository for access counts associated with
groups of rows. Second, Hydra utilizes a Row Count Table (RCT),
stored in DRAM, to keep a detailed record of access counts at the
individual row level. Hydra employs a Row Count Cache (RCC),
strategically positioned within the memory controller. This cache
helps minimize access latency for RCT and optimize the overall
efficiency of the row-wise access tracking process.

Aqua [23], the state-of-the-art RH mitigator, employs a strategy
to isolate aggressor rows in a designated Quarantine Row Area
(QRA). When an aggressor row is identified by the Aggressor Row
Tracker, the memory controller copies it to an available location
in QRA. Aqua manages row mappings using two tables namely,
Forward Pointer Table (FPT) and Reverse Pointer Table (RPT).When
an access request reaches the DRAM, the memory controller checks
the Forward Pointer Table. If a mapping is found, indicating the row
is in the quarantine area, the request is redirected there. Otherwise,
it proceeds with the activation command as usual. This proactive
approach ensures effective isolation and management of aggressor
rows to prevent RH.

2.5 Graphene and Randomised-Row-Swap
Before the emergence of Hydra and Aqua, Graphene [20] and Ran-
domized Row Swap (RRS) [22] were considered state-of-the-art
solutions for tracking and mitigating RowHammer respectively.
Graphene operates as a tracker utilizing the Misra-Gries algorithm
[18], which efficiently identifies frequently occurring items within

a stream of data (See Appendix A). Graphene was effective for
RowHammer thresholds of around 50K activations (typical for older
DRAM versions). However, as modern and future DRAMs exhibit
thresholds as low as 500 activations or even fewer, Graphene be-
comes impractical due to its high Content Addressable Memory
(CAM) overhead.

On the other hand, Randomized Row Swap serves as a mitigator
by employing aggressive row migration. It swaps the aggressor
row with another row in DRAM randomly. However, due to the
possibility of inadvertently rediscovering previously attacked rows
through random chance (as highlighted by the birthday paradox),
RRS must maintain a significantly lower swapping threshold than
the actual RowHammer threshold. RRS suggests using one-sixth of
the RH threshold as the row-swapping threshold. For recent and
future DRAMs, where RH threshold is as low as a few hundred,
the row-swapping threshold for RRS becomes a few tens, resulting
in RRS continuously swapping rows after only a few activations.
So, RRS is impractical and inefficient for newer DRAMs for classic
RowHammer. To track many-sided hammer, when per row thresh-
old becomes significantly lower than classic RH then Thesemethods
become even more inefficient and difficult to adapt.

2.6 Motivation
The growing threat of RowHammer attacks has spurred the devel-
opment of numerous mitigation strategies over time. As discussed
in Section 2.4, Hydra is an RH detector and Aqua serves as a robust
RH mitigator. Together, Hydra and AQUA represent cutting-edge
solution for RH. However, it is important to note that these solutions
excel primarily in addressing classic RH. The challenges posed by
more complex variant many-sided RH lack solutions. many-sided
RowHammer can bypass the traditional RH solutions because the
frequent activation of numerous nearby rows results in cumulative
electrical interference. This cumulative effect can potentially induce
bit flips, even if individual rows haven’t surpassed the RH threshold.
Although some works [5, 6, 9] emphasize the substantial severity of
many-sided hammering and its capability to circumvent traditional
classic RH solutions, it is noteworthy that there is a clear absence of
a dedicated solution to address many-sided hammering [19]. Cur-
rent RowHammer mitigation techniques optimized for classic RH

Trovato and Tobin, et al.

Figure 3: Hammering patterns. Aggressor: red, major victim: dark blue, minor victim: light blue

thresholds are ineffective against Many-sided RowHammer attacks,
and simply lowering their thresholds to address Many-sided attacks
comes at a significant efficiency cost.

Our research specifically targets the security threat posed by
many-sided RowHammer. Our goal is to develop an efficient solu-
tion that mitigates many-sided RowHammer attacks with minimal
performance and area overhead.

3 PROPOSEDWORK
3.1 SMS: Overview and Organization
We propose SMS, a comprehensive model for monitoring and miti-
gating both the multi-sided hammering and the classic RH vulnera-
bility. Initially, our work focuses on tracking accesses to groups of
rows, providing essential insights into addressing the multi-sided
RH issue. However, beyond a specified threshold, it refines its track-
ing approach to the granularity of individual rows, enabling the de-
tection and mitigation of the classic RH as well. In our methodology,
we group 16 rows together within a single cluster. As demonstrated
in the work by Kim et al.[11], a row subject to hammering can
impact up to the sixth row in proximity. To accommodate newer
generation DRAM with exceptionally low RH thresholds, we ex-
tend our tracking range up to a distance of 8 rows. We have set an
aggregate group threshold (denoted as T𝐴) at 250. When the access
count for a group reaches T𝐴 , we commence row-level monitoring
to identify the single-sided RH. Setting T𝐴 at 250 is safe to detect
classic RH at ultra-low T𝑅𝐻 of 250. Even at the row-level tracking
stage, we maintain our vigilance over the total accesses directed
towards a row group, ensuring the detection of the many-sided
hammering phenomenon. Our threshold for detecting the many-
sided hammer is set at 3200, calculated as the product of the group
size and aggressor’s threshold (T𝑀 = 16×200).

The idea of setting the threshold at 200 accesses per row in
many-sided RH (i.e. 80% of the classic RH threshold) is driven by
the notably lower threshold of aggressors in multi-sided RH [6].
Since Graphene+RRS and Hydra+AQUA do not handle many-sided
hammer separately, RH threshold for these model is considered 200.
Upon detection of a row reaching to T𝑅 , we initiate mitigation by
calling Target Row Refresh (TRR) [6] for victim rows. Addition-
ally, if the access count for a group reaches to many-sided hammer

threshold T𝑀 , we blacklist the group for a refresh period, effec-
tively preventing multi-sided hammering within that group. This
proactive approach safeguards DRAM against the multi-sided RH
threat.

3.2 Structures
Group Count Table (GCT): Tracking accesses at the group level
to track classic RH is straightforward, as demonstrated in the Hydra
tracker. However, the major challenge lies in efficiently monitoring
the activation count of rows when tracking a many-sided hammer-
ing pattern. In many-sided hammering, the aggressor rows can
originate from various locations within a set of rows. To address
this, we propose a method for tracking the access count of groups
of rows in a manner that guarantees to detect many-sided ham-
mering, even when it involves aggressor rows from two adjacent
groups. As mentioned earlier, we are organizing 16 rows within
each row group while meticulously monitoring accesses to these
groups. The core concept is to ensure that the next group does not
commence where the previous one concludes. This is essential to
avoid overlooking the scenario where certain rows belong to one
group while others belong to another. This way, we are using a
sliding window with an overlap of half the window size. Figure 5
illustrates our model’s proposed row grouping scheme. Specifically,
rows 1 to 16 form group 1, while group 2 spans from row 8 to row
24. Moving forward, group 3 encompasses row 16 through 32, and
so forth. By adopting this approach, we are diligently keeping tabs
on all groups that could potentially trigger the many-sided RH. In
our model, we employ an SRAM-based group count table in the
memory controller, which is similar to Hydra. Each entry stores
the aggregated access count of a group.
Row Count Cache & Row Count Table: These components are
designed to monitor classic RowHammer. The Row Count Table
(RCT) and Row Count Cache (RCC) become active when the access
count exceeds the aggregated threshold, shifting tracking from the
group level to the row level. The RCT, located in DRAM, stores the
access count for each individual row and functions as an untagged
table with one entry per row. Since accessing the RCT in DRAM
frequently can cause significant slowdown, the RCC serves as a
set-associative cache for the Row Count Table, reducing access
latency.

SMS: Solving Many-sided RowHammer

Figure 4: Working of SMS. Case I : When group access count is less than the aggregate threshold, Case II: Tacking is refined at
row level for classic RowHammer, Case III: When the access count reaches many-sided hammer threshold.

Figure 5: Creating row-groups for Group Count Table.We use
a sliding window approach with a window size of 16, where
half of the window overlaps.

Group blocklist: The blocklist is a SRAM-based structure inte-
grated in controller. It stores the aggressor groups and, is reset
after every refresh period (i.e. 64 ms). Determining the appropriate
size for the blocklist is a critical task, as it directly impacts system
security and hardware overhead. If the blocklist size is too small,
it becomes inadequate for blocking all aggressor groups within
a 64 ms window. This deficiency can potentially lead to security
vulnerabilities. Conversely, employing an excessively large block-
list consumes unnecessary SRAM resources and contributes to
controller area overhead. For security assurances, the size of the
blocklist should match the maximum number of groups that can
cross many-sided hammer threshold within a refresh window. In-
ternally, DRAM refreshes rows in small batches, with the memory
controller issuing refresh commands every 7.8 µs (t𝑅𝐸𝐹𝐼), and it
takes 350 ns (t𝑅𝐹𝐶) for DRAM to refresh a batch. Consequently, the
maximum number of row activations per bank can be calculated
using the formula: Maximum activation = Refresh period × (1 -
t𝑅𝐹𝐶 /t𝑅𝐸𝐹𝐼)/t𝑅𝐶 , where t𝑅𝐶 represents the row cycle delay (45 ns
for DDR4). Simplifying this equation yields approximately 1360K

accesses. Considering a memory space of 32 GB with a RowHam-
mer threshold of 250, the maximum number of aggressors can be
5440 per bank. A total number of groups that can cross many-sided
hammer threshold (i.e. 3200) is 425. With a total of 4 million rows,
each requiring 22 bits for addressing. Since we have to store group
(group size 16, sliding window size 8) address in blocklist, a unique
group can be represented using 19 bits. Thus, the blocklist com-
prises 425 entries, each requiring 19 bits. This computation results
in a blocklist size of approximately 1.009 KB per bank and 16.14 KB
for 16 banks in a rank.

Whenever the aggregated count of a group surpasses the many-
sided hammer threshold (T𝑀), a blocking action is triggered by
adding the group to the blocklist. Groups on the blocklist are inac-
cessible for a refresh period of 64 ms.

3.3 Working of SMS
Figure 4 illustrates the working of SMS. Upon a DRAM access
request, there are three primary cases to consider:

(1) Case I: If the access count of the associated group is be-
low the aggregated group threshold (𝑇𝐴), it increments the
group count.

(2) Case II: If the access count exceeds 𝑇𝐴 but remains below
the many-sided hammer threshold (𝑇𝑀), two tasks are per-
formed: (i) Increment the count of the respective group in
GCT. (ii) Switch to classic RH detector: The counter asso-
ciated with the row is checked in the RCC. If a hit occurs,
the counter is compared with the RH threshold (𝑇𝑅). If the
counter is below the threshold, it is incremented. If the
counter equals the 𝑇𝑅 , it means the row is aggressor and
target row refresh (TRR) is issued for neighboring rows.
Concurrently, we increment the access count associated
with victim rows, as refreshing a row may induce a bit flip
in its neighboring rows, given that row refresh requires
row activation. In case of a cache miss in RCC, access count

Trovato and Tobin, et al.

Figure 6: IPC values of the models normalised to standard DRAM. SMS incurs a slowdown of 3.22% where Graphene+RRS and
Hydra+AQUA cause slowdowns of 32.43% and 15.61% respectively

of the row is brought to cache from RCT then the rest is
similar to cache hit.

(3) Case III: If the counter value exceeds 𝑇𝑀 , the correspond-
ing group is added to the blocklist and becomes unavailable
for the duration of the refresh period.

For each DRAM access request, the controller checks if correspond-
ing row group is on the blocklist. If present, the request is scheduled
for processing after the refresh period.

Table 2: Simulation configuration

CPU Out of Order, 3.2GHz
ROB size 160
LLC 16-way, 1024 sets

bus speed 1.6 GHZ
main memory 32 GB, DDR4, 3.2GHz

T𝑅𝐶𝐷 −𝑇𝑅𝑃 −𝑇𝐶𝐴𝑆 14-14-14 ns
Channel, Rank, Banks 2,1,16

DRAM Row size 8 KB

4 EXPERIMENTS AND RESULTS
We assess our model using DRAMSim3 [17] simulator interfaced
with Champsim [7]. We use SPEC CPU 17 [4], LIGRA [1], and PAR-
SEC [3] benchmark suites. Table 1 displays the characteristics of
SPEC CPU 17 benchmarks. The table provides the MPKI at LLC
and the average number of row groups surpassing various thresh-
olds within a 64-millisecond time-frame. Specifically, it includes
data on the number of row groups exceeding one-fourth, half, and
the full many-sided threshold (i.e., 400+, 1600+, and 3200+ activa-
tions, respectively). Details on the characteristics of the LIGRA and
PARSEC benchmarks are provided in Appendix A. We compare
SMS with Hydra & AQUA combination (a state-of-the-art detector
and mitigator) and Graphene+RRS, As discussed in Section 2, it is

important to note that HYDRA+AQUA and Graphene+RRS do not
provide a comprehensive solution for addressing the intricate prob-
lem of many-sided RH. To overcome this limitation, we adopted a
commonly suggested approach of configuring a lower RH threshold.
We re-implemented HYDRA+AQUA and Graphene+RRS, adjusting
their parameters to function with this lower threshold (T𝑅𝐻=250),
and subsequently compared their performance with our model.

Table 2 illustrates the system configuration used in our exper-
iments. We evaluate the efficiency of our model by comparing
slowdown, total DRAM energy, sensitivity to lower RH thresh-
olds, and hardware overhead against both current and previous
state-of-the-art solutions.

4.1 Performance
Figure 6 illustrates the normalised IPC (Instructions Per Cycle) for
Hydra+AQUA, Graphene+RRS, and our model. The graph shows
that our model outperforms Hydra+AQUA and Graphene+RRS. The
performance challenges observed with Hydra+AQUA may be at-
tributed to its approach of migrating aggressor row to a reserve
DRAM area (referred as quarantine area). However, in many-sided
RH scenarios, where multiple aggressors are involved, migrating an
entire group of rows becomes necessary. The process of migrating
a row entails reading data from one location and writing it to an-
other, introduces a significant number of additional read and write
operations. This influx of operations, in turn, results in a reduction
in IPC, negatively impacting overall system performance. Similarly,
Graphene and RRS exhibit substantial performance overhead due
to their designs being inefficient for current and future RH thresh-
olds. RRS initiates row swaps after just a few tens of activations,
resulting in considerable additional reads and writes, ultimately
leading to diminished IPC. The experimental results indicate that
Graphene+RRS incurs a performance overhead of 32.43%, while
Hydra+AQUA exhibits a slightly lower overhead of 15.61%. In stark

SMS: Solving Many-sided RowHammer

contrast, our model demonstrates a mere 3.22% performance over-
head, all values being normalized to the baseline system. These
results unequivocally highlight the superior performance of our
model compared to both current and prior state-of-the-art solutions.

4.2 Energy Consumption
Figure 7 illustrates the normalized total energy of Hydra+AQUA,
Graphene+RRS, and ourmodel. The graph showsHydra+AQUA and
Graphene+RRS, come at a significant energy cost. Compared to stan-
dard DRAM, Hydra+AQUA consumes 32.36% more energy, while
Graphene+RRS suffers from an even higher overhead of 58.23%. In
contrast, our model only requires 8.83% more energy than stan-
dard DRAM. The higher energy consumption of Hydra+AQUA is
attributed to the additional read and write operations involved in
aggressor migration. Similarly, Graphene+RRS consumes excessive
energy due to the significant increase in reads and writes required
for swapping.

4.3 Sensitivity to RowHammer Threshold
We conducted experiments to assess the performance of SMS across
different RowHammer thresholds. Figure 8 illustrates the normal-
ized IPC for Hydra+AQUA, Graphene+RRS, and ourmodel at thresh-
old values of 500, 250, and 125, respectively. At a threshold value of
500, SMS incurs a performance overhead of 2.4%, which increases to
3.14% at a threshold value of 250, and further to 5.46% at a threshold
value of 125. Comparatively, Hydra+AQUA experiences slowdowns
of 6.74%, 15.6%, and 30.65% for RH threshold values of 500, 250,
and 125, respectively. Similarly, Graphene+RRS exhibits slowdowns
of 17.46%, 32.43%, and 71.05% for the same threshold values. It’s
notable that as we decrease the RH threshold, the performance loss
incurred by SMS, compared to Hydra+AQUA and Graphene+RRS
also decreases. This observation underscores the scalability of our
model, demonstrating its ability to adapt and maintain efficient
performance for present and future DRAMs.

4.4 Storage Overhead
As previously calculated for a RowHammer threshold of 250, the
maximum number of aggressors can be 5440 per bank and 87040
per rank. Since Graphene+RRS and Hydra+AQUA does not handle
many-sided hammer separately, RowHammer threshold for theses
model is reduced to 200. For the given configuration of a 32 GB
DRAM with 2 channels and an 8 KB row size, the storage over-
head of Hydra+Aqua is as follows: Hydra requires GCT of 154 KB
for the given threshold. Additionally Hydra requires 24 KB RCC
with 8k entries 24-bit (valid+tag+ 8-bit counter) each. GCT size
is 4 KB DRAM. AQUA requires 108 KB for FPT, 64 KB for RPT.
They require 360 MB of quarantine area in DRAM for given con-
figuration. Hydra+AQUA together incurs 252 KB SRAM and 364
MB DRAM storage overhead. given a total of 4 million rows, each
requiring 22 bits for addressing. Graphene requires the doubling
of tracker state due to periodic resets, leading to the loss of track-
ing information. To mitigate the vulnerability resulting from these
resets, Graphene operates the tracker at half of the threshold. Con-
sequently, Graphene operates with a threshold of 100. However, for
this lower threshold, the storage overhead of Graphene exceeds 2.6
MB of CAM. RRS requires row indirection table (RIT) in controller

that stores the rowmapping of swapped rows. one entry in RIT con-
tains (valid+lock+source+destination). They require swap buffers
for swapping. SRAM overhead of 0.65 MB grows up to around 13
MB as threshold decreases from 4K to 200. This significant increase
in overhead renders Graphene+RRS nearly impossible to adapt.

Our work requires a group count table of 512K entries of 12-bit
counters that conclude in 786 KB, RCC has 8K entries with 24-bit
entry size. We require GCT in DRAM of size 4 MB. Blocklist has
425 entries per bank each size of 19 bits. So blocklist becomes of
size 16.144 KB for a rank with 16 banks . Our model causes around
816 KB SRAM and only 4 MB DRAM overhead. Clearly, the SRAM
overhead of our model is slightly higher than Hydra+Aqua, but the
DRAM overhead is significantly lower.

5 DISCUSSION
Many-sided RowHammer poses a challenge to traditional RH so-
lutions because the frequent activation of numerous nearby rows
results in cumulative interference, potentially inducing bit flips
even if individual rows haven’t surpassed the RH threshold. In re-
sponse, we’ve reduced the per-row threshold to 80% of the classic
RH threshold when rows formmany-sided groups. As demonstrated
in the study by Kim et al. [11], a row under hammering can affect
up to the sixth neighboring row. To address the needs of newer
generation DRAMs with exceptionally low RH thresholds, we’ve
extended our tracking range to encompass up to 8 rows. These
adaptations showcase our model’s efficacy in safeguarding current
and future DRAMs frommany-sided RH attacks. Our model initially
monitors access at the group level. When transitioning to per-row
tracking, the access count begins from the group level threshold,
considering the worst-case scenario where all accesses converge
onto a single row within a group. Upon detecting a RowHammer
event, the victim row undergoes a Target Row Refresh (TRR). TRR
commands hold the highest priority among other read-write op-
erations, ensuring that the victim row is refreshed without data
loss. To prevent the victim row refresh from inadvertently causing
RH in its neighboring rows [14], we treat the issuance of TRR for
victim rows as an access for the row itself, thereby incrementing
its access count. This mechanism ensures protection against classic
RowHammer attacks.

While TRR safeguards data, it introduces performance overhead
due to refresh latency of victim rows. To address this challenge, a re-
cently proposed technique HiRA [30] can be immensely beneficial.
HiRA operates by mitigating the latency of refresh operations, ac-
complishing this by concurrently refreshing a row while accessing
or refreshing another row within the same bank. By enabling victim
row refresh to occur in parallel with other memory access com-
mands, HiRA effectively enhances the performance by eliminating
additional latency.

TheHiRA refresh technique can enhance system resilience against
Denial-of-Service (DoS) attacks leveraging classic RowHammer. By
eliminating the extra latency incurred during victim row refresh,
HiRA ensures that other access requests are serviced without delays.
This significantly hinders the attacker’s ability to disrupt system
performance through classic RowHammer techniques.

Trovato and Tobin, et al.

Figure 7: Total DRAM energy consumption normalised to standard DRAM. Graphene+RRS and Hydra+AQUA incur DRAM
energy overheads of 58.23% and 32.36%, respectively, whereas SMS results in a significantly lower DRAM energy overhead of
only 8.83%.

Table 3: Comparison of storage overhead of SMS with Hydra+Aqua and Graphene+RRS

Model Structures Cost Total SRAM Total CAM Total DRAM

GCT 154 KB
RCT 4 MB
RCC 32 KB
FPT 108 KB
RPT 64 KB

Hydra+AQUA

RQA 360 MB

358 KB 0 364 MB

CAM 2.6 MB
RIT 13 MBGraphene+RRS

Buffer 16 KB
13.02 MB 2.6 MB 0

GCT 768 KB
RCT 4 MB
GCC 32 KB

SMS (Proposed)

Blocklist 16.14 KB

816 KB 0 4 MB

6 RELATEDWORK
RowHammer remains an active area of research, with ongoing in-
vestigations focusing on trackers, mitigators, and even security
threats that exploit this vulnerability. Numerous trackers, both
SRAM and DRAM-based, have been proposed to detect RowHam-
mer vulnerabilities. SRAM-based trackers offer speed but comewith
higher area and cost overheads, while DRAM-based alternatives are
more cost-effective and area-efficient but suffer from performance
inefficiencies. Prior works [16, 20] use SRAM-based table to track
the access count of DRAM rows. Some solutions [10, 26] propose

to use DRAM based trackers. Hydra [21] is a hybrid tracker that
uses both SRAM and DRAM based structures to track activations.

RowHammer mitigators generally fall into two categories: miti-
gation through victim row refreshes and aggressor migration. Previ-
ous works [12] [20, 24, 25] propose refreshing victim rows before bit
flips occur. Alternatively, mitigators like RRS[22] and Aqua [23] mi-
grate aggressors to prevent them from affecting neighboring rows.
Such as CROW [8] creates copies of rows to safeguard against
RowHammer attacks. BlockHammer [29] functions by blocking
rows that are frequently accessed once they surpass a certain thresh-
old, thereby preventing them from causing RowHammer issues.

SMS: Solving Many-sided RowHammer

Figure 8: Normalised IPC for different RH thresholds

Numerous severe security threats exploiting RowHammer vul-
nerabilities have been proposed in the literature. For example,
PThammer [31] induces bit-flips in page tables to achieve privi-
lege escalation. SpecHammer [27] combines the transient attack
Spectre [13] with RowHammer to form a new speculative attack.
Rambleed [15] demonstrates that RH not only compromises data
integrity but also poses a significant threat to data confidentiality
by analyzing the tendency of bit-flips.

Several works [5, 9, 14] have proposed even more dangerous
variants of RH with different hammering patterns that are difficult
to mitigate. TRRespass [6] demonstrates that by using many-sided
hammering, the widely deployed Target Row Refresh (TRR) mitiga-
tion can be bypassed.

In a recent study by Onur et al. [19], the research on RowHam-
mer highlights enduring challenges and unanswered questions,
underscoring the ongoing need for exploration and innovation in
this field.

7 CONCLUSION
RH is a significant security concern in modern DRAM technology.
Various hammering patterns have been developed that result in
RH variants that are more threatening and challenging to mitigate.
Many-sided hammering is one such variant that can bypass the
mitigation techniques deployed in DRAMs to guard against RH.
In response to the evolving threat landscape, we introduce SMS,
a solution crafted to effectively counter many-sided Hammer at-
tacks while concurrently addressing the conventional RH. SMS
outperforms current and previous state-of-art solutions. Our model
effectively addresses many-sided hammer with only 3.22% perfor-
mance and 8.83% energy overhead. We show that SMS is a robust
and scalable solution for both current and future DRAMs.

REFERENCES
[1] André Bauer, Marwin Züfle, Simon Eismann, Johannes Grohmann, Nikolas

Herbst, and Samuel Kounev. 2021. Libra: A Benchmark for Time Series Fore-
casting Methods. In Proceedings of the ACM/SPEC International Conference on

Performance Engineering (Virtual Event, France) (ICPE ’21). Association for Com-
putingMachinery, NewYork, NY, USA, 189–200. https://doi.org/10.1145/3427921.
3450241

[2] Ishwar Bhati, Mu-Tien Chang, Zeshan Chishti, Shih-Lien Lu, and Bruce Jacob.
2016. DRAMRefreshMechanisms, Penalties, and Trade-Offs. IEEE Trans. Comput.
65, 1 (jan 2016), 108–121. https://doi.org/10.1109/TC.2015.2417540

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
2008 International Conference on Parallel Architectures and Compilation Techniques
(PACT). 72–81.

[4] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (Berlin, Germany) (ICPE
’18). Association for Computing Machinery, New York, NY, USA, 41–42.

[5] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. 2021. SMASH: Synchronized Many-sided Rowhammer
Attacks from JavaScript. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 1001–1018.

[6] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur
Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020. TRRespass:
Exploiting the Many Sides of Target Row Refresh. arXiv:2004.01807 [cs.CR]

[7] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simulator: Ar-
chitectural Simulation for Education and Competition. arXiv:2210.14324 [cs.AR]

[8] Hasan Hassan, Minesh Patel, Jeremie S. Kim, A. Giray Yaglikci, Nandita Vijayku-
mar, Nika Mansouri Ghiasi, Saugata Ghose, and Onur Mutlu. 2019. CROW: a
low-cost substrate for improving DRAM performance, energy efficiency, and
reliability. In Proceedings of the 46th International Symposium on Computer Archi-
tecture (<conf-loc>, <city>Phoenix</city>, <state>Arizona</state>, </conf-loc>)
(ISCA ’19). Association for Computing Machinery, New York, NY, USA, 129–142.
https://doi.org/10.1145/3307650.3322231

[9] Patrick Jattke, Victor Van Der Veen, Pietro Frigo, Stijn Gunter, and Kaveh Razavi.
2022. BLACKSMITH: Scalable Rowhammering in the Frequency Domain. In
2022 IEEE Symposium on Security and Privacy (SP). 716–734. https://doi.org/10.
1109/SP46214.2022.9833772

[10] Dae-Hyun Kim, Prashant J. Nair, and Moinuddin K. Qureshi. 2015. Architectural
Support for Mitigating Row Hammering in DRAM Memories. IEEE CAL 14, 1
(2015), 9–12. https://doi.org/10.1109/LCA.2014.2332177

[11] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan, Roknoddin
Azizi, Lois Orosa, and Onur Mutlu. 2020. Revisiting RowHammer: An Exper-
imental Analysis of Modern DRAM Devices and Mitigation Techniques. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Com-
puter Architecture (Virtual Event) (ISCA ’20). IEEE Press, 638–651. https:
//doi.org/10.1109/ISCA45697.2020.00059

[12] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
SIGARCH Comput. Archit. News 42, 3 (jun 2014), 361–372.

[13] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,Werner Haas,
MikeHamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1–19. https://doi.org/10.1109/
SP.2019.00002

[14] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz Lipp, Nicolas
Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss. 2022. Half-Double: Ham-
mering From the Next Row Over. In USENIX Security 22. USENIX Association,
3807–3824.

[15] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. RAMBleed:
Reading Bits in Memory Without Accessing Them. In 2020 IEEE Symposium on
Security and Privacy (SP). 695–711. https://doi.org/10.1109/SP40000.2020.00020

[16] Eojin Lee, Ingab Kang, Sukhan Lee, G. Edward Suh, and Jung Ho Ahn. 2019.
TWiCe: Preventing Row-hammering by Exploiting Time Window Counters. In
2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). 385–396.

[17] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Com-
puter Architecture Letters 19, 2 (2020), 106–109. https://doi.org/10.1109/LCA.
2020.2973991

[18] J. Misra and David Gries. 1982. Finding repeated elements. Science of Computer
Programming 2, 2 (1982), 143–152. https://doi.org/10.1016/0167-6423(82)90012-0

[19] Onur Mutlu, Ataberk Olgun, and A. Giray Yağlıkcı. 2023. Fundamentally Un-
derstanding and Solving RowHammer. In Proceedings of the 28th Asia and
South Pacific Design Automation Conference (Tokyo, Japan) (ASPDAC ’23). As-
sociation for Computing Machinery, New York, NY, USA, 461–468. https:
//doi.org/10.1145/3566097.3568350

[20] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, and Jae
Lee. 2020. Graphene: Strong yet Lightweight Row Hammer Protection. 1–13.
https://doi.org/10.1109/MICRO50266.2020.00014

https://doi.org/10.1145/3427921.3450241
https://doi.org/10.1145/3427921.3450241
https://doi.org/10.1109/TC.2015.2417540
https://arxiv.org/abs/2004.01807
https://arxiv.org/abs/2210.14324
https://doi.org/10.1145/3307650.3322231
https://doi.org/10.1109/SP46214.2022.9833772
https://doi.org/10.1109/SP46214.2022.9833772
https://doi.org/10.1109/LCA.2014.2332177
https://doi.org/10.1109/ISCA45697.2020.00059
https://doi.org/10.1109/ISCA45697.2020.00059
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1016/0167-6423(82)90012-0
https://doi.org/10.1145/3566097.3568350
https://doi.org/10.1145/3566097.3568350
https://doi.org/10.1109/MICRO50266.2020.00014

Trovato and Tobin, et al.

[21] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar, and Prashant J. Nair.
2022. Hydra: Enabling Low-Overhead Mitigation of Row-Hammer at Ultra-Low
Thresholds via Hybrid Tracking. In ISCA (New York, New York) (ISCA ’22). ACM,
New York, NY, USA, 699–710.

[22] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J. Nair.
2022. Randomized row-swap: mitigating Row Hammer by breaking spatial
correlation between aggressor and victim rows. In Proceedings of the 27th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 1056–1069. https:
//doi.org/10.1145/3503222.3507716

[23] Anish Saxena, Gururaj Saileshwar, Prashant J. Nair, and Moinuddin Qureshi.
2022. AQUA: Scalable Rowhammer Mitigation by Quarantining Aggressor Rows
at Runtime. In MICRO 2022. 108–123.

[24] SeyedMohammad Seyedzadeh, Alex K. Jones, and RamiMelhem. 2018. Mitigating
Wordline Crosstalk Using Adaptive Trees of Counters. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). 612–623. https:
//doi.org/10.1109/ISCA.2018.00057

[25] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. 2017. Making
DRAM Stronger Against Row Hammering. In Proceedings of the 54th Annual
Design Automation Conference 2017 (Austin, TX, USA) (DAC ’17). Association
for Computing Machinery, New York, NY, USA, Article 55, 6 pages. https:
//doi.org/10.1145/3061639.3062281

[26] § TanjBennett, Stefan Saroiu, AlecWolman, Lucian Cojocar Microsoft, and Avant-
Gray Llc. 2021. Panopticon: A Complete In-DRAM Rowhammer Mitigation.
https://api.semanticscholar.org/CorpusID:235420813

[27] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and Kang G. Shin.
2022. SpecHammer: Combining Spectre and Rowhammer for New Speculative
Attacks. In 2022 IEEE Symposium on Security and Privacy (SP). 681–698. https:
//doi.org/10.1109/SP46214.2022.9833802

[28] Samiksha Verma, Shirshendu Das, and Vipul Bondre. 2023. Hybrid Refresh:
Improving DRAM Performance by Handling Weak Rows Smartly. In Proceedings
of the 2022 International Symposium on Memory Systems (Washington, DC, USA)
(MEMSYS ’22). Association for ComputingMachinery, NewYork, NY, USA, Article
7, 11 pages. https://doi.org/10.1145/3565053.3565060

[29] A. Giray Yağlikçi, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Ol-
gun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Saugata Ghose, and Onur Mutlu. 2021. BlockHammer: Preventing
RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows. In
HPCA 202. 345–358. https://doi.org/10.1109/HPCA51647.2021.00037

[30] Abdullah Giray Yağlıkçı, Ataberk Olgun, Minesh Patel, Haocong Luo, Hasan
Hassan, Lois Orosa, Oğuz Ergin, and Onur Mutlu. 2022. HiRA: Hidden
Row Activation for Reducing Refresh Latency of Off-the-Shelf DRAM Chips.
arXiv:2209.10198 [cs.AR]

[31] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal, Zhi Wang, and Yuval
Yarom. 2020. PThammer: Cross-User-Kernel-Boundary Rowhammer through
Implicit Accesses.

[32] Zhi Zhang, Yueqiang Cheng, Minghua Wang, Wei He, Wenhao Wang, Surya
Nepal, Yansong Gao, Kang Li, Zhe Wang, and Chenggang Wu. 2022. SoftTRR:
Protect Page Tables against Rowhammer Attacks using Software-only Target
Row Refresh. In USENIX ATC 22. USENIX Association, Carlsbad, CA, 399–414.
https://www.usenix.org/conference/atc22/presentation/zhang-zhi

APPENDIX-A
Characteristics of PARSEC and LIGRA
Table 4 provides an overview of the characteristics of LIGRA and
PARSEC workloads. The table provides the MPKI at LLC and the av-
erage number of row groups surpassing various thresholds within
a 64-millisecond time-frame. Specifically, it includes data on the
number of row groups exceeding one-fourth, half, and the full
many-sided threshold (i.e., 400+, 1600+, and 3200+ activations, re-
spectively). This information offers insights into the memory access
patterns and workload intensities of the PARSEC and LIGRA bench-
marks, aiding in the analysis and comparison of their performance
implications on memory systems.

Target Row Refresh (TRR)
In our model, we employ Target Row Refresh (TRR) as a mitigative
measure to address classic RowHammer For DDRx memory tech-
nology, Target Row Refresh (TRR) emerges as a pivotal mitigation

strategy against the pernicious RowHammer vulnerability. TRR
operates by strategically deploying additional refresh commands
to memory rows identified as potential targets for RowHammer
attacks.

By subjecting these vulnerable rows to more frequent refresh-
ing, TRR aims to disrupt the repetitive accessing patterns that can
lead to bit flips and memory corruption. While TRR’s efficacy in
curbing RowHammer attacks on modern DDR4 systems is widely
acknowledged, its inner workings and specific implementation
details remain somewhat opaque. This underscores the need for
further exploration and understanding of TRR’s mechanisms to en-
sure robust protection against emerging memory-related security
threats.

Figure 9: Working of Misra-Gries algorithm

Table 4: Characteristics of PARSEC and LIGRA.

Workloads
LLC

MPKI

Groups

ACT-

400+

Groups

ACT-

1600+

Groups

ACT-

3200+

xz 0.88 302.50 66.75 0
BC 2.58 2,771.50 814.50 0

BellmanFord 2.94 2,860.50 1,000 0
BFS 2.96 2,654 810.25 0

Components 14.16 5,286 2,290.25 585.75
MIS 4.98 4,722 1,384 0

PageRank 51.79 20,349 3,350 197
Radii 3.83 3,505.50 1,384 0

Triangle 10.05 9,878.50 0 0
bodytrack 0.19 145 2 0
cannel 6.08 4,753 2,779.50 14.50
dedup 1.26 827 39 1
facesim 3.07 2,731.50 1,582.50 171

fluidanimate 2.59 668.50 0 0
swaptions 0 0 0 0
raytrace 0.03 0 0 0
vips 0.10 35 1 0

Average 6.87 3,440.63 1,084.29 46.24

https://doi.org/10.1145/3503222.3507716
https://doi.org/10.1145/3503222.3507716
https://doi.org/10.1109/ISCA.2018.00057
https://doi.org/10.1109/ISCA.2018.00057
https://doi.org/10.1145/3061639.3062281
https://doi.org/10.1145/3061639.3062281
https://api.semanticscholar.org/CorpusID:235420813
https://doi.org/10.1109/SP46214.2022.9833802
https://doi.org/10.1109/SP46214.2022.9833802
https://doi.org/10.1145/3565053.3565060
https://doi.org/10.1109/HPCA51647.2021.00037
https://arxiv.org/abs/2209.10198
https://www.usenix.org/conference/atc22/presentation/zhang-zhi

SMS: Solving Many-sided RowHammer

Working of Misra-Gries algorithm
Graphene utilizes the Misra-Gries algorithm to identify frequently
accessed rows from incoming row activations. Figure 9 provides an
explanation of how Misra-Gries operates in identifying frequently
occurring items. The algorithm maintains a spillover counter: when
a new entry arrives, it searches for it in the table. If the entry is

found, its counter is incremented; if not, the algorithm checks if any
other item’s counter equals the spillover count. If so, the algorithm
replaces that entry with the new one and increments its counter by
one; if not, it simply increments the spillover counter.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Threat Model
	2.2 DRAM Organization
	2.3 Classic & Many-sided RowHammer
	2.4 State-of-the-art RH Detector & Mitigator
	2.5 Graphene and Randomised-Row-Swap
	2.6 Motivation

	3 Proposed Work
	3.1 SMS: Overview and Organization
	3.2 Structures
	3.3 Working of SMS

	4 Experiments and Results
	4.1 Performance
	4.2 Energy Consumption
	4.3 Sensitivity to RowHammer Threshold
	4.4 Storage Overhead

	5 Discussion
	6 Related Work
	7 Conclusion
	References

