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ABSTRACT

Historically, software engineers and hardware engineers represent
disparate groups that don’t talk to each other. Because these two
groups don’t interact much, neither knows much of the other’s
discipline, and therefore those they teach learn next to nothing
of the other’s discipline. This is problematic because computer
design and computer security (software) are intimately dependent
on each other, and when system designers fail to understand both
topics, catastrophe results. For example, critical vulnerabilities like
buffer overflows and Spectre/Meltdown arose because designers
inadvertently bypassed protections that could have ensured robust
security. Moreover, teaching security and hardware as separate
disciplines obscures the root causes of security failures, leading to
ineffective solutions that fail to tackle the fundamental flaws.
This paper will show how an understanding of both memory
systems (or, more generally, computer architecture) and security
will help one to recognize and even foresee how memory devices
and memory systems can be used to undermine data security.

1 INTRODUCTION

Jim Stevens, a Ph.D. candidate at the University of Maryland in the
2010s, focused his dissertation on computer hardware. He interned
for several years at the Johns Hopkins Applied Physics Laboratory,
doing R&D in the field of security, and once made the following
wry observation:

Hardware people don’t know [much] about security,
and security people don’t know [much] about hardware.

— Jim Stevens, U. Maryland Ph.D. student

Traditionally, computer hardware and computer security have been
treated as separate domains, and this division has led to several
disastrous results. For simplicity and convenience, system designers
have undermined hardware and software primitives that would
otherwise have ensured robust security. These decisions, likely
made without an understanding of the repercussions, have left
modern systems extremely vulnerable.

For example, in certain scenarios, modern operating systems
grant superuser privileges to software rather than to users, a prac-
tice that enables privilege-escalation exploits which would not
happen otherwise. Similarly, microprocessors allow user-level ap-
plications to generate physical memory addresses directly, paving
the way for vulnerabilities like Meltdown and Spectre. All of these ex-
ploits could have been prevented simply by adhering to traditional
computing models.

Understanding both hardware and security reveals that many
vulnerabilities stem from deliberate design choices that weakened
existing protections. This paper focuses on memory-system vul-
nerabilities, exploring buffer overflows and Spectre/Meltdown, and
proposing how a re-thinking of how we teach these topics (as well
as our treatment of microprocessor-based memory components)
can enhance security.

2 SPECTRE/MELTDOWN IS ENTIRELY A
MEMORY-SYSTEMS ISSUE

The Spectre/Meltdown vulnerabilities [5, 11, 12] are not a speculative-
execution problem but instead stem from hardware engineers al-
lowing user applications to generate memory addresses that do not
belong to them. The protection otherwise guaranteed by virtual
memory was inadvertently undermined to simplify I/O hardware
and kernel operations.

2.1 Virtual Memory and I/O

Virtual memory, developed in the 1960s, automates data movement
between main memory and disk, mapping virtual addresses to
physical memory at the granularity of pages [2, 7, 8]. As shown in
Figure 1, processes A, B, and C have virtual address spaces translated
by the operating system and hardware into physical addresses. This
enables sharing (e.g., shared libraries) while enforcing isolation.

Currently, the operating system leverages virtual memory to
regulate software’s access to physical resources. Applications, un-
less operating in privileged mode, cannot directly interact with
physical memory or I/O devices. All memory operations, such as
instruction fetch or load/store instructions, undergo a translation
process controlled by the operating system, which restricts access
to certain memory regions based on program or user identity. This
enables the kernel to shield itself from user-level applications and
to isolate user applications from one another.

In addition, modern systems employ memory-mapped I/O, in
which access to hardware controllers for peripherals (e.g., disks,
keyboards, monitors, networks, printers) is routed through the
memory system using regular load/store instructions, as opposed
to using specialized I/O instructions as was done many decades ago.
Consequently, the same virtual memory protections that prevent
unauthorized access by faulty or malicious user applications also
secure the I/O subsystem.

The diagram in Figure 2 shows the same user-level processes as
before (A, B, and C), just in more detail. Each has its own virtual
environment and address space, ranging from 0x0000 to 0xFFFF (or
whatever the maximum integer value is). Software uses numeric
addresses to reference locations in its address space, and these
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Figure 1: The general concept of virtual memory: translation from a virtual space onto a physical space
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Figure 2: The VM theory: processes execute in virtual address spaces ranging from zero to MAX

numeric addresses are allowed to range over the entire space that
an integer can represent, from zero to the largest integer value.
These addresses only have meaning within the process’s virtual
address space and must be translated into physical addresses before
they can be used for accessing memory or I/O.

2.2 Meltdown Vulnerabilities

Here is the problem: modern computer systems break this model.
Instead of treating all numbers in the range [0 .. max] as virtual
addresses to be translated, modern hardware and software, for
purposes of convenience, divide the address space into separate
user and kernel regions, as shown in Figure 3.

Addresses with the most significant bit set to ‘1’ are reserved
for the kernel, while addresses in the positive-integer range (from
0x0000 to 0x7FFF) are given to user applications. All modern pro-
cessors do this, in some form; and they designate different ranges
within the kernel region to have different side-effects, such as being
cacheable, or non-cacheable, or virtual (translated through the vir-
tual memory system), or non-virtual (mapped directly to physical
memory), etc. This design, intended to enable memory-mapped
/O and simplify kernel copyin/copyout operations, exposes kernel
addresses to user applications, thereby undermining security. The
following discussion explains.

As shown in Figure 2 (the “VM theory” illustration), user appli-
cations operate solely with virtual addresses, meaning that they are
wholly unaware of physical memory. To an application, memory
addresses outside its address space simply do not exist. However,
in the subsequent diagram (Figure 3, the “VM reality” illustration),

we see that, in reality, kernel addresses are exposed to user applica-
tions, directly, meaning that an application can express an address
representing something outside of its address space.

This shift severely undermines security and is the primary cause
of the Meltdown vulnerability. Previously, user processes could
not name anything outside their virtual address space, and this
arrangement ensured the isolation of user applications from other
applications, the kernel, and all of I/O space. By revealing kernel
addresses to user processes, our microprocessors now allow user
applications to reference physical memory directly, thereby eroding
this isolation. The only remaining safeguard is the microproces-
sor’s privilege check, which Meltdown bypasses using speculative
execution to violate processor rules undetected.

The pseudocode below illustrates how Meltdown works.

char array[256 * CACHE_BLOCK];

for (PA=0x8000; PA<=0XFFFF; PA++) {
flush cache

if (@) {
load-byte-via-phys-addr r1 <- mem[PA]
mul r1 <- r1 * CACHE_BLOCK
load-byte re <- mem[r1 + arrayl]
}
for (i=idx=0@; i<256; i++, idx+=CACHE_BLOCK) {
t0 = now();
x = array[idx];
t1 = now();

if t1-t0 is low, we know that mem[PA]==i
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Figure 3: The VM reality: user processes have direct access to kernel addresses; they just aren’t supposed to use them

For each targeted physical address PA, the cache is flushed, a byte
value at the physical address PA is read (note: this is an illegal
operation), and the retrieved value is scaled by the cache block size
and used to index into an array. The scaling ensures that each array
index corresponds to a unique cache block.

After the second load-byte finishes, the array is swept through
with timing checks. Since the cache was flushed beforehand, most
array accesses are slow (cache misses), but one element — say, the
nt" — will be retrieved quickly, meaning that it will have been
cached. It is this n*" element of the array that was brought into the
cache by the second of the two load-byte operations. The value n is
therefore the byte value that the first (illegal) load-byte instruction
retrieved, and n is therefore the value found at the physical address
PA. This whole process is done for each physical address PA the
attacker wishes to read.

Key questions arise. For starters: What is the purpose of the if (0)
statement? Modern microprocessors overlook illegal operations if
they are executed unintentionally. The code within the if (0) block
isn’t meant to execute, so if it runs due to a mispredicted branch,
the application isn’t penalized. Assuming that one can trick the
branch predictor (and one certainly can ... see for example [5, 11,
12]), then one can cause the processor to execute the illegal load
instruction and the two instructions after it speculatively. When the
processor later detects the misprediction, it discards the speculative
instructions, but not before they impact the cache.

Another question: How is the physical address’s value retrieved
if such access is prohibited? Indeed, speculative instructions are
not allowed to alter architectural state (e.g., registers, memory,
or I/0), and hardware enforces this. The answer is that the value
from the first load isn’t retrieved directly but rather indirectly; it is
passed to the second load within the speculative block, which uses
it as an index into the array, thereby modifying the corresponding
cache block. Crucially, the cache — as it is considered to be non-
architectural state — can be modified by speculative instructions.
The final for() loop uses side-channel analysis, measuring access
times, to deduce what the loaded value was. The process indirectly
extracts data that would be inaccessible through direct means.

Note that all of this hinges on one deeply problematic instruction
being allowed in the first place:

load-byte-via-phys-addr r1 <- mem[PA]

Why does this instruction even exist? Why are user applications
ever allowed to generate physical addresses directly?

As noted earlier, this design decision was made to simplify sys-
tem implementation. Unfortunately, this decision also introduced
a massive security vulnerability. In a system where user applica-
tions can only generate virtual addresses, it is guaranteed that user
applications cannot access memory outside their sandboxed space.
Allowing applications to generate physical addresses directly was
a shortsighted decision, likely due to a lack of cross-disciplinary
knowledge between hardware designers and security experts. Melt-
down exploited this fundamental flaw, which could have been
avoided by maintaining strict virtual memory boundaries.

In other words, Meltdown only happened because we opened
the door for it, by undermining virtual memory.

2.3 Spectre Vulnerabilities

Spectre similarly exploits speculative execution but targets memory
addresses outside software-defined sandboxes, as opposed to the
hardware-enforced sandbox of physical memory. Spectre exploits
the fact that hardware cannot differentiate between the virtual
addresses generated by different threads in the same address space.

Today, we use a hardware address-space identifier (ASID) to tag
virtual addresses with a process ID and thereby isolate different pro-
cess address spaces from each other. This also protects the operating
system from user processes.

A natural extension of this concept would be to include a Thread
ID within the ASID. This would allow a server to run third-party
threads safely within its own address space, each thread limited to
accessing only the addresses within its hardware-enforced sandbox.
Such a mechanism would enable the server to protect itself against
subservient threads within its address space, just as ASIDs enable
the kernel to protect itself against processes running on the same
machine, within the same physical memory system as the kernel.
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Figure 4: The Operating System comprises the kernel and a
collection of user-level utilities

This could be done with new processor designs but could also be
implemented entirely within the kernel, without requiring new
hardware, as one could map multiple ASIDs to the same PID.

3 BUFFER OVERFLOWS ARE NOT A
MEMORY-SYSTEM ISSUE

In a similar vein, while buffer overflows are presented as a memory-
systems issue, with a memory-systems solution, this is not the
case. Buffer-overflow exploits, including stack smashing [13] and
return-oriented programming [14], are the result of allowing certain
applications to run with superuser privileges regardless of what
user account invokes the application.

3.1 The Operating System vs. the REAL
Operating System
Traditionally, the general organization of a system is presented as
shown in Figure 4. All user-level applications run in unprivileged
mode, even operating system utilities such as mail, messaging, the
shell, windowing system, etc. Keeping all but the kernel out of
privileged mode is one of the critical ways in which the operating
system maintains security and protects itself from user applications.
This presented organization turns out not to be true. In reality, as
implemented, all modern operating systems (but VMS, as far as we
can tell) actually do what is shown in Figure 5. Modern operating
systems have utilities that run in privileged mode, irrespective of
the user account that starts up the application. This means that
one need not be an admin to give these programs superuser privi-
leges. Privileged utilities include many servers and administrative
programs. One of the most well-known is the Linux CUPS facility
(Common UNIX Printing System). As we will see, and as should be
intuitively obvious, the existence of these privileged-level utilities
causes significant security problems.

3.2 Stack Smashing

It is widely known that if we can deliberately trigger an application
that uses unsafe system calls, we could gain control over the entire
system. But how does it happen? What exactly are “unsafe” system
calls, and why does this lead to compromising the whole machine
rather than just the flawed application?

An unsafe system call typically refers to one that fails to perform
proper checks, such as bounds checking on buffer sizes. Software
developers, including those working on operating system code,
sometimes neglect to verify a buffer’s size before writing to it. This
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Figure 5: The Operating System comprises the kernel and a
collection of user-level utilities, some of which are privileged

oversight makes the software susceptible to buffer-overflow attacks.
In a typical call stack, a function’s local variables reside at lower
memory addresses than the function’s return address. Thus, if a
program writes more data into a buffer than the buffer can hold
(a buffer overflow), the extra data that extends beyond the end of
the buffer can overwrite the function’s return address. When the
function returns, the program then jumps to this new, attacker-
controlled address instead of the one it was supposed to use.
Consider the following code:

void getline(char *buf, int max)

{
int c;
while ((c = getchar()) != '\n") {
*buf++ = c;
}
*buf = '\0';
}
void main()
{
char line[128];
while (1) {
getline(line, 128);
if (process(line) == DONE) {
return;
3
3
}

Although getline() receives a max value representing the maximum
length of the input buffer, the function never uses it. If too much
input is received, the buffer overflows.

The stack frame looks something like what is shown in Figure 6.
Since the buffer line[128] is a local variable of the main() function,
it is in the function’s stack frame immediately below the return
address. A buffer overflow would therefore overwrite the return ad-
dress in main()’s stack frame. Under normal circumstances, main()
would return to _start, which is the routine that initialized the
program, set up the stack, and then called main(). But with the
return address overwritten, the program will instead jump to an
attacker-specified location — such as within the input buffer itself.

Let us suppose that the process() function will return DONE if
the first item in the input array is a NULL character. We can thus
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Figure 6: Stack frame in the code example above

imagine providing as input to this application a carefully crafted

data block that looks like the following:

0: "\o'

1: # machine code for a rudimentary shell
# ...
#

127: # last (valid) entry in the input buffer
128-131: 4-byte pointer to line[1]
132:  '\n'

The newline character at location 132 in the input block will cause
the getline() function to stop collecting input and return to mainy().
When getline() returns, the stack will look like the illustration in
Figure 7. Note the overwritten return address at SPp,4in.

At this point, main() then calls process(). The leading \0’ in the
buffer causes process() to return DONE, so main() exits. However,
the return address on main()’s stack has been overwritten to point
to line[1], where the attacker’s shellcode resides. Thus, instead
of returning to the _start routine, main() jumps into attacker-
controlled code that we are told implements a rudimentary shell. At
this point, the application has effectively been hijacked to become
a shell process — a classic buffer-overflow exploit.

Important question: This example explains how an attacker can
hijack a specific application, but why does it result in system-wide
compromise?

The answer lies in the earlier design decision to let some appli-
cations run with kernel-level privileges. These are the applications
that are targeted by attackers — because if an attacker can take
over an application that runs with the same privilege level as the
kernel, then they’ve effectively taken over the entire machine.

Just like Meltdown and Spectre, this class of vulnerabilities exists
because we opened the door for it. The choice to blur boundaries
between user and kernel privileges created an attack surface that
should never have existed.

3.3 Return-Oriented Programming (ROP)
How can we address the issue above? Several approaches exist:

o Make the stack non-executable. The exploit relies on the
microprocessor executing code placed on the stack, which
is meant for automatic variables, not code. Many operating
systems historically permitted executable stacks, likely for
practical reasons, but prioritizing system security suggests
this should be disallowed.

OXFFFF ) 1o N
saved registers register values from

ious functi
no' previous function

'main —> pointer to line[1] <— return to prev. function

SP,

Stack frame

Exploit code: for main()

machine code that implements
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linel —> | "0’ J

local variable/s

Figure 7: Stack frame in the code example above, after data
block (highlighted in grey) has been read in

o Enforce array bounds checking. Certain programming
languages inherently perform bounds checks on array ac-
cesses, ensuring indices stay within defined limits, thus
preventing buffer overruns.

e Use canary guards. Cowan proposed a software canary
guard in 1998 [1]. The idea was to probe if stack memory
had been overwritten by checking if an extra value stored
to the stack was still there.

e Use a shadow stack. A shadow stack is a secondary stack
that “shadows" the main stack (all push/pop operations are
applied to both) and therefore allows for verifying the main
stack’s integrity [17].

The first approach — making the stack non-executable — is known
as WX (“write-xor-ex”) and requires the operating system to en-
sure memory regions are either writable or executable, but not both.
While this does block the specific stack-smashing exploit described
above, it falls short in two significant ways.

One prominent way to bypass W"X is through return-oriented
programming (ROP) [14]. Instead of placing executable code on
the stack, attackers overwrite the stack with a sequence of return
addresses pointing to existing code snippets, called gadgets, that
lie within the program. Each gadget executes a small task and
ends with a ret (function-return) instruction. Intel x86 and Arm
architectures use a ret instruction that pops the top stack value,
increments the stack pointer, and jumps to the popped address.
This allows one to “chain” multiple invocations of different gadgets,
thereby enabling essentially arbitrary software operation.

Imagine that the following shows the contents of a small region
of the stack:

OxCDEF
0x90AB
0x5678
0x1234 <- sp

Here, higher addresses are upward; the stack pointer moves down-
ward when pushing and upward when popping. On Intel x86 or



Arm, executing a ret instruction pops 0x1234, increments the stack
pointer to point to 0x5678, and jumps to address 0x1234. If that
address contains a gadget ending in another ret, the next value
(0x5678) is popped, and execution jumps to address 0x5678, continu-
ing the chain. Attackers set this up in the same way as our previous
buffer-overflow attack: by overwriting the buffer with a sequence
of gadget addresses and altering the function’s return address to
initiate the chain.

Thus, W"X fails to fully resolve the issue, due to ROP. Addition-
ally, the root of the problem isn’t really buffer overflows but the
broader issue of user-level applications running with kernel-level
privileges. As long as this opportunity exists, attackers will find
ways to bypass any protective security measures.

The second approach — array bounds checking — effectively
prevents buffer-overflow attacks by blocking writes beyond buffer
limits. However, despite its security benefits, the (perceived) per-
formance overhead discourages widespread adoption.

The third approach — the use of canary guards — has been
integrated into the Gnu C compiler. GCC adopted the stack canary
concept in 1998, and it matured into a standard feature by 2003. In
general, the check occurs when the function returns; if the canary
value has been altered it may be due to stack smashing. The idea was
also a move toward proactive security enhancements for software
engineering, differing from the earlier model of patching issues as
they are discovered in binaries.

However, as canaries are both heuristic and probabilistic, re-
searchers have looked for more precise and deterministic mecha-
nisms. One such is the fourth approach listed above: the shadow
stack, proposed by Szekeres [17]. This is a separate stack that is
operated in sync with the real stack and checked for consistency.
Linux support for hardware-enforced shadow stacks was merged
into the kernel in version 6.6 in October 2023.

Like automatic array-bounds checking, canary guards and shadow
stacks both require extra overhead; shadow stacks require extra
memory overhead as well as CPU overhead.

4 ANYTHING THAT CAN BE MODIFIED IS A
DE FACTO MEMORY DEVICE

Proposals have been made to solve the side-channel problem by
having a separate kernel cache and/or protecting caches from tim-
ing probes. This fails, however. Given the lens of security, we can
now view all of the components in our system as potential memory
devices. Anything that can be modified and then later activated,
directly or indirectly, is capable of storing information, however
fleetingly. The entire computer system is thus a memory device
when viewed through this lens. The following are a few examples.

4.1 Branch Predictors, Prefetch Buffers, etc.,
Can All Be Modified and Read

As other papers have shown, one can fool branch predictors by
training them to predict a specific path. Therefore, writing data
consists of training the predictor on a particular branch instruction,
and reading the data is done through a simple if-then-else statement
based on that branch.

This is easily extended to include prefetch buffers, data predic-
tors, etc.
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Note that this type of adversarial behavior — i.e., repeated reli-
able miss training of the branch predictor, or training of the data

prefetcher, etc. — connects to “adversarial machine learning," a topic
connecting to data-science curricula [6].

4.2 Memory Locations and their
Virtual-Memory Mappings
Virtual memory’s translation look aside buffer (TLB) can also be

used like the branch predictor above to store data. For instance, one
could encode 1024 bits in the following example:

char xptr = malloc( 1024 * PAGE_SIZE );
for (i=0; i<1024; i++) {
data = get next bit of data to store
if (data == 1) {
ptr [ i*PAGE_SIZE ] = random();

In most operating systems, when one creates large regions of mem-
ory through calls to malloc(), those regions are not immediately
allocated and mapped by the kernel; allocation only happens on
demand, when a given page is actually used. In the mean time, those
pages exist in name only. Therefore, at the start of the for() loop
in the code above, all of the malloc()’ed pages will be unallocated
and unmapped. This means that any access to any of the pages will
take a long time: each reference to these pages-in-name-only will
generate a PAGE FAULT, causing the operating system to allocate
a page and map it into the process’s page table.

Once the code snippet above is finished, one can simply go
through the allocated array to see which pages have a fast access
time because they have been allocated and mapped (and therefore
represent a value of ‘1’), versus those that have a slow access time
and represent a value of ‘0’. Note that this is independent of the
cache; it will work whether one has a cache or not, as it depends
on the operating system’s virtual memory system.

Also, for obvious reasons, only malloc() would work here; a
calloc() would defeat the process, as it initializes the entire array
before returning.

4.3 Flash Cells Wear Out Quickly

Flash cells can only be erased and rewritten about 1000 times before
they no longer reliably hold a value. Thus, if wants to encode a
ROM message in a particular flash page, one can intentionally burn
out individual cells and leave others alone and thereby indicate ‘0’
and ‘1’ bit values.

Every time a logical page is rewritten, the corresponding physical
flash page gets moved onto the free list and therefore can no longer
be read directly by normal flash drivers. This effectively hides the
page from normal hardware.

Custom hardware or something like Open Channel SSD (see, for
example, lightnvm.io) would allow one to read and write the flash
devices in this way.
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5 CONCLUSION #1: WE NEED TO TEACH
HARDWARE AND SECURITY TOGETHER

Understanding the relationship between computer security and
computer hardware (the memory system, and the field of computer
architecture in general) is critical.

o We were told that buffer-overflow attacks were all about
the memory system. They are not. At their root, they are
enabled by allowing user-level applications to run as supe-
ruser.

o We were told that Spectre and Meltdown were all about
speculative execution. They are not. At its root, Meltdown
is enabled by an intentional modification (and the result-
ing unintentional weakening) of the virtual memory sys-
tem. Spectre exploits the fact that hardware cannot distin-
guish between the memory addresses generated by different
threads operating in the same address space.

e Proposals to limit the interaction of the kernel and user
code through the cache system and/or memory system are
short-sighted, as nearly every component in a modern CPU
can be used as a memory device. Solving the cache-as-a-
side-channel problem doesn’t solve the general side-channel
problem.

These cognitive disconnects happened because researchers in the
two domains, hardware and security, do not communicate, their
domains are siloed, and students are not taught both topics to-
gether. Thus, the intersection between the two domains represents
a significant amount of cross-disciplinary material that is not well
understood by many people, yet represents an extremely significant
potential for security vulnerabilities.

This is far from ideal.

The obvious solution is to teach these two topics together and
ensure that the intersection between the two domains is well un-
derstood by both hardware designers and security experts. In other
words, hardware students should be taught security, and security
students should be taught hardware. Doing so will eliminate vulner-
abilities that slip through the cracks between the two disciplines.
As mentioned, these types of vulnerabilities are the most significant
ones we know of today, so addressing this simply, through educa-
tion, would be easy to do and would also represent a tremendous
improvement.

6 CONCLUSION #2: WE NEED A NEW
DEFINITION FOR ‘ARCHITECTURAL STATE’

Teaching the topics of hardware and security together will solve
many future problems. In the mean time, however, there are exist-
ing problems that cannot be solved through education alone. As
described earlier, side-channel exploits are very powerful and can
turn any structure in the system that holds state into a de facto mem-
ory device providing indirect communications between speculative
code and non-speculative code.

We believe that the simplest solution to this problem is to include
these stateful structures in the definition of Architectural State,
so that they are included in both correctness proofs and security
models. The following sections describe this approach.

6.1 Redefine Architectural State to Include All
Shared Structures

The security issues we face stem from the divergence between mi-
croarchitecture and architectural state, a problem highlighted by
researchers when Spectre and Meltdown first emerged [4]. Over
decades, computer architects have developed increasingly sophis-
ticated microarchitectures to boost performance, incorporating
features like caches, pipelines, superscalar and out-of-order exe-
cution, branch prediction, speculative execution, data prefetching,
multi-core designs, and multi-threaded execution. The components
involved are not directly manipulated by instructions and are thus
excluded from the traditional notion of what constitutes Archi-
tectural State. For instance, instructions interact directly with the
program counter, register file, or memory system — and instructions
do not interact directly with branch predictors or prefetch buffers,
as these are designed to be transparent performance enhancers.
Thus, these latter structures are not included in Architectural State.

This separation creates an ever-widening gap between what a
microarchitecture does and what security analyses assume it does,
with vulnerabilities like Spectre and Meltdown exploiting the space
between the two. Traditionally, Architectural State includes only
elements directly manipulated by the instruction set. Architects
have assumed that new mechanisms are safe to include if they do
not alter Architectural State, a practice that ensures backwards
compatibility with legacy software. However, this assumption fails
for security analysis, a fact that can be demonstrated by considering
caches. Caches are considered “safe” to add to a design, because
they do not impact Architectural State. Nonetheless, as we have
seen, caches create exploitable side channels, which means they are
not actually “safe” at all. Part of the disconnect is that the two fields
of hardware and security have completely different perspectives
and objectives:

Regarding the analysis of potential structural changes
one might make to a system, computer architects
define “safe” in terms of backwards compatibility;
security analysts define “safe” in terms of vulnera-
bility.

This is problematic. Members of the two disciplines are not working
toward the same goal, and as we have shown, they each have made
system-design decisions that contradict the other’s fundamental
assumptions, thereby undermining system security. The misalign-
ment of these two definitions needs to be rectified if future systems
are to satisfy both definitions, which is the ultimate goal.

Our existing definition of Architectural State renders current
security analyses flawed. It is thus to be considered outdated; it
needs updating, so that it supports security analysis.

We propose redefining Architectural State to encompass all
shared microarchitectural components, such as caches, branch pre-
dictors, write buffers, and translation lookaside buffers. This new
definition should enhance security in modern systems by prevent-
ing unintended information leaks. Any structure that can hold state
across different instructions — unlike individual pipeline registers
or reorder-buffer entries, which only hold state for a single instruc-
tion at a time — must be included.

The following section shows why this definition would work.



6.2 Apply the Notion of Atomic Operation to
this New Architectural State

Our research group at the U.S. Naval Academy has developed a
formal model for analyzing microarchitectural security, with a brief
overview, including an analysis of Spectre/Meltdown on an out-of-
order processor, provided in [19]. The model shows that, as one
might expect, current out-of-order microarchitectures are vulner-
able to Spectre/Meltdown if their speculative execution window
is large enough to accommodate the exploit code. This model also
reveals a key insight:

e Ensuring that speculative effects remain confined to the
speculation window prevents all such exploits.

This is critical: by guaranteeing that speculative instructions do
not leak information beyond their execution window, we can block
current and future attacks exploiting speculative execution and
side channels. This aligns with transactional processing, where
operations are said to be atomic if they either fully complete or
leave no trace. If we can make all access to shared structures atomic
(recall that shared structures are the ones that behave as de facto
memory devices), such that those structures are only modified by
an instruction if and when it successfully commits from the reorder
buffer, then the side-channel problem is solved.

Computer architects are already familiar with atomic transac-
tions (e.g., see [3]) and already implement atomic update of the
register file in high-performance processors. In modern reorder-
buffer designs (a combination of [15, 16, 18]), while an instruction
is in flight, its computed result is stored temporarily in the reorder-
buffer entry. The result is only written to the register file if and
when the instruction successfully commits — i.e., the instruction is
later determined to be non-speculative and unaffected by branches,
exceptions, or interrupts.

This is effectively atomic operation, at least with respect to the
register file. An atomic approach to register-file update ensures that
the register file either reflects the instruction’s result or appears
as if the instruction never executed. Note that computer architects
treat the register file in this atomic manner specifically because the
register file is a component of the traditional Architectural State.
Similar mechanisms apply to the other members of Architectural
State: the program counter and the memory system.

In contrast, other microarchitectural structures that are supposed
to be transparent performance-enhancers (e.g., caches, branch-
predictor tables, prefetch buffers, translation lookaside buffers, etc.)
are not considered to be part of Architectural State, and therefore
the microprocessor’s operations on them are not atomic.

Our proposed redefinition extends the atomic treatment to cover
all shared structures — caches, branch predictors, write buffers, TLBs,
instruction buffers, prefetch buffers, etc. These structures must be
updated by a given instruction only when that instruction commits;
if the instruction is canceled, the state of these structures should
remain unchanged, as if the instruction never occurred.

By adopting this approach in future microprocessor designs, we
can create systems that are secure against speculative and side-
channel attacks. The technology to implement these changes al-
ready exists, making this a feasible path towards robust, long-term
security.

Jacob, Casey, and Melaragno

7 CONCLUSION #3: ESCHEW COMPLEXITY
OBFUSCATION

A famous maxim is eschew obfuscation, a somewhat self-explanatory
way of saying “keep it simple, stupid!" When it comes to computer
security, complexity of the system design is especially problem-
atic, as it can cloud the foreground and thereby hide underlying
implementation issues from all but the most in-depth of analyses.

Security exploits that target implementation flaws are much
easier to discover than those that target design flaws. If there is a
clear mismatch between the design and the final implementation,
then there is an evident bug, and it could potentially be exploited.
However, if the implementation matches the design, but there is a
flaw in the design’s logic, then that is harder to recognize. Further,
the more complex the design, the more difficult it is to recognize
any such error. Complexity of design can hide underlying problems,
and it should therefore be avoided if possible.

Consider as an example the C-vs-Rust debate.

C is a relatively simple language that is nonetheless extremely
powerful in its expressive capabilities. It has been around for a
half century and has seen relatively little change since the second
edition of K&R [9]. In contrast, as we have described in the previ-
ous sections, computer-system designs changed significantly over
the same period, and those changes led to several important and
problematic security holes.

The general consensus of the language crowd has been that C
is the problem and needs updating. The language Rust [10] was
introduced as a solution to the problem: Rust is considered to be a
“safe" programming language (note: a term without definition) and
therefore a viable replacement for C.

However safe (or “safe") the language may be, Rust introduces
tremendous complexity to the system, through its hardware ab-
stractions and sometimes bizarre syntax & semantics. We argue
that this complexity is unnecessary, and furthermore, because of it,
Rust is likely to introduce a new breed of security concerns that (a)
would not exist in a simpler language and (b) will be obfuscated by
the complexity of both the language and its implementation and
will therefore be difficult to detect.

8 REITERATION

A Venn diagram of the relationship between computer security and
computer hardware would show several important details regarding
their overlapping region:

(1) Today’s most devastating (e.g., problematic and difficult to
solve) security holes lie in this region.

(2) There are relatively few subject-matter experts to be found
in this region.

(3) As the two fields mature, both microarchitectures and their
security issues will become more complex; thus the region
is likely to become larger, more complex, and therefore
increasingly important over time.

The intersection between the two fields is problematic, is poorly
understood, and is growing over time. Such a scenario constitutes
a present and growing danger, one that must be addressed if we
are to have secure systems in the future.



The Case for Teaching Computer Hardware and Computer Security Together

Explicitly teaching hardware students about security, and secu-
rity students about hardware, will help to mitigate the problem.
See [19] for an example treatment of the topics.
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