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Abstract Node 1 Node 2 Node3
Memory disaggregation in data centers has been approaching prac-
ticality, owing tf) the maturity of interconnect standards like Com— ‘ T Em, ‘ ‘ Local Mem. ‘ ‘ Local Mem. ‘
pute Express Link (CXL) [3]. CXL presents a hardware centric
. i, CXL.mem CXL.mem l CXL.mem
approach for multiple compute nodes to pool memory capacities
from a shared Fabric Attached Memory (FAM) node, on a per need Memory Node
basis. Using FAM for memory provisioning can potentially mitigate Pooled Mem. | Pooled Mem.
resource underutilization and yield in cost savings, but can cost the Pooled Mem. | Pooled Mem.
application it’s performance due to relatively longer access latency. Poaltzl Lo, | Fople e
R Pooled Mem. | Pooled Mem.
Modern processors attempt to hide memory access latency by

employing sophisticated cache prefetchers. While resourceful, cur-
rent cache prefetching techniques can be further optimized, in light
of the long access latency of CXL FAM. To that end, we consider
multi-level cache prefetcher that adds additional layer of prefetch-
ing at Last Level Cache (LLC). Our multi-level prefetching scheme
increases the fraction of requests that hit in LLC, potentially decreas-
ing the sensitivity of workload to FAM latency. We implemented our
multi-level cache prefetcher using SST simulation components [27],
and evaluated it with workloads from standard benchmarks suites
in single and multi-node system configuration. Our evaluation re-
veals that, comparing to using only per-core prefetcher, multi-level
prefetcher resulted in performance improvement of 2-7% , with LLC
hit fraction increasing by 13%.
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1 Introduction

Workloads are evolving rapidly. Proliferate use of techniques like
Machine Learning (ML) and Natural Language Processing (NLP) in
applications at scale (ex: large language models(LLM) [14, 33, 34]),
is warranting memory organization, that is large in capacity, and
offers high performance. More importantly, memory capacity needs
of data center workloads are growing at steady pace. For instance,
parameter count of Transformer models is increasing by 410 X for
every 2 years, and consequently necessitating increasing memory
capacity needed to serve these models [15].

Increased data needs of such emergent workloads, is prompting
cloud providers/integrators to increase the memory capacity in
their systems, for every generation. Plateaued $/GB price of DDR
memory [2] means that memory provisioning costs are a significant
contributor to Total Operation Cost (TCO) of datacenters; Memory
contributes about 37% -50% to TCO of today’s server fleet [1, 25].

Cloud servers support applications with diverse memory re-
quirements and use cases. Large DRAM capacities while warranted
by a set of applications, are not being fully utilized by the rest,

Figure 1: Logical view of multiple nodes pooling capacities
from memory node using CXL.mem protocol

resulting in Memory Underutilization. Analysis from production
clusters at Google and Alibaba reveals that 45%-60% of allocated
memory to jobs is not utilized [29]. Microsoft reports that about
25% of machines across the Azure server fleet, have their compute
capacity fully used by virtual machine instances (VM) while having
untouched memory, leading in stranding of memory resources [23].
Sub optimal usage of memory resources cannot be tolerated given
the scale and infrastructure costs involved in today’s datacenters.

Memory Disaggregation presents an alternative approach to pro-
vision large memory capacities while mitigating the underutiliza-
tion problem. With disaggregation, applications allocate memory
from a central resource on a per-need basis, freeing the memory
from being tied up statically at node-level. Prior systems research
have explored the potential of resource disaggregation in datacen-
ters [17, 22, 29].

Compute Express Link (CXL) enables multiple nodes to share a
common pool of memory that can be accessed through load/store
instructions without the need to rewrite application software. Fig. 1
shows compute nodes pooling capacities from a memory node using
CXL.mem protocol. We refer to memory attached to CXL fabric as
Fabric Attached Memory(FAM). Accessing FAM from pooling nodes
involves traversing off-node fabric and perhaps switches, resulting
in access latency that is as high as few 100’s of nanoseconds. Thus,
relying on FAM to suffice application’s memory needs although
resource efficient, comes at a penalty in the form of performance
degradation.

Cache prefetching techniques are prevalent among current pro-
cessors to hide main memory access latency. Prefetcher typically
reads ahead memory resident data into on-chip CPU caches to cap-
italize on low latency & high bandwidth characterstics of caches.
Prefetchers track application’s historic memory access patterns to
predict addresses of future memory requests. Although instrumen-
tal in hiding the memory access latency, prefetching can be further
refined to better manage the long latency of CXL FAM pools.
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Figure 2: CXL & Fabric Attached Memory(FAM) Architecture

In this paper, We explore the design of a multi-level cache prefetcher
that augments the CPU with a prefetcher at last level cache (LLC)
to work in conjunction with per-core prefetcher. We evaluate the
impact of this multi-level prefetcher on overall performance using
workloads from standard benchmark suites, running in single and
multi-node system configurations, and with different CXL fabric
latencies. Our analysis reveals that multi-level prefetcher has re-
sulted in IPC to be improved by 2.2%-6.9% and LLC hit fraction to
be improved by 13%.

2 Background
2.1 CXL enabled memory pooling

Compute Express Link (CXL) [3] is a cache-coherent interconnect
standard for CPU to communicate with peripheral devices like
accelerators and memory expanders. CXL is physically compatible
with PCle offering 3 kinds of protocols- CXL.cache, CXL.mem,
CXL.io. Devices that connect to the host processor using CXL can
use either one or more of these protocols, depending on use case,
and the operation model.

CXL protocol classifies devices into 3 types. Type-1 devices like
Network Interface Controllers (NICs) that maintain a local cache hi-
erarchy but do not have any attached memory use only CXL.cache
protocol. Type-2 devices like GPU, FPGA comprise both local cache
hierarchy and attached memory, so they use both CXL.cache and
CXL.mem protocols. Type-3 devices like memory expanders do not
have a local cache hierarchy, but have device attached memory,
hence use CXL.mem protocol only. Our discussion in this paper
is based on systems that use type-3 devices for memory pooling,
through CXL.mem protocol, as shown in Fig. ??. We call the mem-
ory attached to the processor using CXL as Fabric Attached Mem-
ory(FAM). Fig. 2 shows the architectural components that enable
memory pooling within each of the compute and FAM nodes. CXL
root complex of the compute node comprises of an agent that imple-
ments all communication and data transfers with the the end point
in compliance with the CXL.mem protocol. In our system CXL end
point comprises of a FAM device and a FAM Controller. FAM Con-
troller serves as a translation layer to convert CXL.mem commands
into requests that can be understood by the FAM device(eg: DDR
commands).

As illustrated, LLC load misses and writebacks requests are han-
dled either by the local memory controller or CXL root complex
based on the physical addresss. The address decoding is handled
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by Host managed device memory (HDM) decoders. During the de-
vice enumeration phase, HDM decoders are programmed for every
CXL.mem device and their contribution to flat address space of the
processor. Device identification and enumeration is handled in CXL
kernel driver [4].

CXL 3.0 supports multi-level switching, implying that FAM ac-
cess now includes traversing network switches which further in-
creases latency as high as few 100’s of nano seconds. depending on
switch topology. Thus, in context of our discussion in this paper,
we consider 3 CXL fabric latency configurations - 70, 140, 210 nano
seconds.

2.2 Prefetching & Signature Path Prefetcher
(SPP)

Data prefetching techniques to hide access latency across differ-
ent levels of memory hierarchy, are well studied in the literature
[6, 7, 10, 11, 26]. Cache prefetchers typically use learning based
approaches to predict addresses of future memory accesses, fetch
them ahead in time into the CPU caches. Most common learning
features include address delta correlation, program counter (PC)
of instruction resulting in cache misses, and access history. Re-
cent work [9, 30] has applied sophisticated mechanisms like neural
networks, reinforcement learning to cache prefetcher.

2.2.1 Signature Path Prefetcher (SPP). In this paper, we use SPP
[18] as a cache prefetcher. SPP uses signatures as a compact repre-
sentation of address deltas ! across workload’s memory accesses.
Architecturally, SPP comprises of 2 tables- Signature Table and
Pattern Table.

The Signature Table is indexed by the physical page address, and
each entry in this table, stores the last cache miss address(within
the same physical page), and current signature. Pattern table maps
the signature obtained from the signature table to address delta.
Each entry in the pattern table has the following fields.

(1) Signature - Obtained from the signature table. Serves as an
index to this table.

(2) Signature weight - Counts the number of times the corre-
sponding signature has been accessed since the creation of
entry.

(3) delta, weight [4] - Address delta that comprise the signature
and their corresponding access count. 4 ordered pairs.

Learning process of SPP is as follows. On a cache access, the
physical page address of the access is used to index into the signa-
ture table. Based on the output of signature table, we can calculate
the delta and update the signature as per formulae shown below.

delta = (Miss Addresscyrrent — Miss Addressprevious)

signature = (signature << 4) & delta

The generated signature is used to index into the pattern table,
which gives us the ordered pairs of delta and the corresponding
confidence (ratio of weights). Furthermore, speculative signature
can be formed by combining the current iteration signature (just
generated) and the obtained delta, according to the above formu-
lation. Thus, through this recursive calculation of signature and

! Address deltas are difference between consecutive accessed memory address. Cache
Prefetchers typically predict the delta for future accesses based on the current address.
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Figure 3: Signature and Pattern tables of SPP
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Access Delta
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indexing the pattern table, future access delta’s can be obtained
desired number of times or till there is no valid entries in the pattern
table for the indexing signature.

For learning access patterns, SPP updates the weight correspond-
ing to the current delta (output from signature table). Signature
table is also updated with current block address and current sig-
nature. Fig. 3 shows the tables of SPP. Additionally, SPP maintains
global history table that bootstraps the learning of access history,
when the data access stream moves from one page to another.

SPP is typically used as L2 cache. For every prefetch request
generated, SPP predicts the confidence value. Prefetch cache blocks
with high confidence are placed in L2, on the other hand ones
with lower confidence are placed in Last Level Cache (LLC). Confi-
dence based prefetch block placement achieves two goals, first it
minimizes cache pollution due to low confidence prefetch blocks
in smaller capacity caches like at L2. Second, it takes complete
advantage of large capacity of LLC.

2.3 Related work

Previous work has considered establishing a low latency access
path to FAM, by using a portion of local memory as a hardware
managed cache for FAM [21, 32]. Such memory system approaches
are orthogonal to work we present this paper.

Intel’s Flat memory is a hardware based memory tiering tech-
nique [36]. With flat memory, CPU is presented with a flat address
space divided among DRAM and FAM in 1:1 ratio. Based on appli-
cation’s access pattern, specialized hardware moves the hot cache
lines into DRAM and cold cache lines to FAM, updating the cor-
responding metadata. Similarly, Software based memory tiering
approaches like Pond by Microsoft [23] uses machine learning based
techniques to manage memory tiers, predicting the optimal mem-
ory pages to be allocated from FAM for a given virtual machine
(VM). Cache prefetchers work with memory tiers irrespective of
whether implemented in hardware or software.

Recent research have explored the possibility of expanding avail-
able memory bandwidth using CXL connected FAM [16, 24, 31, 35].
Cache prefetcher enhancements that we present in this paper are
independent of CXL enabled memory bandwidth expansion.

3 Multi-level cache prefetching

Data prefetching mechanisms are typically implemented on a per-
core basis (at L1/L2 caches). Additional layer of prefetching can be
added at last level cache (LLC) to further improve overall perfor-
mance. Such multi-level prefetching schemes offers the following
advantages.

(1) Promotes prefetching deeper into future access stream, po-
tentially covering demand requests that would otherwise
result in cache misses.

(2) Capitalize on relatively large capacity of LLC to aggres-
sively prefetch data from main memory.

(3) Increases the hit fraction for requests at LLC, potentially
minimizing performance degradation of workloads using
CXL FAM pools which have longer access latencies.

(4) Better support higher level caches and their respective
prefetchers by reading ahead both demand and prefetch
blocks that might be needed in the future.

[ L2 Cache I[ L2 Cache | [ L2 Cache | [ L2 Cache |
Per Core Per Core Per Core Per Core
Prefetcher Prefetcher Prefetcher Prefetcher

Last Level Cache(LLC
l Miss Address, ID of requestor

: LLC Prefetcher

To Local Memory &

Fabric Attached Memory
Figure 4: Multi-level prefecher de31gn -atL2 (per-core) & LLC
Fig. 4 shows the design of our multi-level prefetching scheme with
an added LLC prefetcher. LLC prefetcher is logically organized as
an array of sub-prefetchers, each for tracking access patterns for a
single core. This design takes the core-ID and access address of the
request as inputs. The core-ID is used to select a sub-prefetcher from
the array, and the access address is passed as an input to the selected
sub-prefetcher. For a given input, the sub-prefetcher updates its
internal tracking state and subsequently generate addresses for
prefetch requests.

Our LLC prefetcher solates access patterns on a per-core basis,
enabling applications (processes) running on different cores to be
tracked without interference. Capacity and logic overhead require-
ments for our design would scale linearly with number of cores in
the CPU.

Core

[ L2 Cache e-mmmm=z -{ Per Core Prefetcher ]
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Figure 5: Prefetch Block placement with multi-level prefetch-
ing at L2 and LLC

Prefetch block placement with L2 and LLC prefetchers is shown
in Fig. 5. L2 prefetcher places block either into L2 or LLC, based on
the calculated confidence, while the LLC prefetcher places all of the
blocks it brings into LLC. In this work, we made a design choice
to train the LLC prefetcher only on addresses of the requests(both
prefetch and demands) that miss in LLC.



Alternative design considerations like, training LLC prefetcher
only on demands and/or training on accesses irrespective of hit
status, are possible. The intuition behind our design choice is that
the LLC prefetcher needs to cover requests that are not covered by
prefetch blocks placed in LLC by per-core (L2) prefetcher. Hence it
is logical that we train only on address that miss in LLC, instead of
all access addresses. Heuristically, this design choice can reduce the
number of redundant requests generated by the LLC prefetcher.

Prefetch request generation & placement with L2 and LLC prefetch-
ers is as follows. Both L2 demand misses and prefetch requests
follow the same flow

(1) L2 prefetcher is activated for every cache access to pro-
duce prefetch requests. Addresses of the generated prefetch
requests are checked for redundancy in L2 cache and its
MSHR. Requests with blocks that are present in either of
these structures are dropped and rest proceed to LLC.

(2) AtLLC, we repeat the same redundancy checks. If requested
prefetch block is absent in LLC and its MSHR, the request
is sent to main memory controller, along with forwarding
the address & core-id of prefetch request to train the LLC
prefetcher.

(3) In the LLC prefetcher, we use the core-ID pick one sub-

prefetcher from the array. Selected sub-prefetcher trains on

the address that missed in LLC to further generate prefetch
requests.

Similar to L2 prefetch requests, LLC prefetch requests are

checked for redundancy before being sent to the memory

controller.

(5) While the prefetch requests are in flight in an inclusive
cache hierarchy, Each of the L2 prefetch blocks that are to
be placed in L2 (high-confidence) will have an entry created
in both L2 & LLC MSHR, whereas L2 prefetch blocks that
are to be placed in LLC (low-confidence) will have an entry
only in LLC MSHR. LLC prefetch requests that are in flight
will have their entries created in LLC MSHR.

(4

=

In our implementation, we use SPP as prefetcher at L2, and as sub-
prefetcher(in the array) at LLC. Other designs can be implemented.
For both instances of SPP, we configure 75% as high confidence
threshold and 25% as minimum confidence threshold for generated
prefetch requests. Prefetch requests (both L2 and LLC) with con-
fidence less than 25% are dropped immediately after generation.
Data from L2 prefetch requests with confidence greater than 25%
and less than 75% are placed in LLC, while those prefetch requests
that are greater than 75% are brought to L2. LLC prefetch requests
that are not dropped are placed in LLC.

4 Evaluation
4.1 Methodology

We use simulation components built using SST [27] to evaluate our
multi-level cache prefetcher for CXL FAM. Ariel - pin based pro-
cessor simulator was used to model the multi-core CPU. Ramulator
[19] was used to model memory modules in local memory and FAM
pool. Opal [20] was used to emulate the role of FAM-aware memory
allocator of the operating system. Opal allows for configuration of
workload’s memory to be divided among local DRAM and pooled

Chandrahas Tirumalasetty and Narasimha Reddy

Processor 8 OOO0 cores
clock: 3.3 GHz, 6 issue/cycle
L1 cache 32 KB, 4 ways
4 cycle access latency
L2 cache 256 kB, 8 ways
12 cycle access latency
L2 Signature Path
Cache Prefetcher Prefetcher(SPP) [18]
LLC 32 MB, 16 ways
30 cycle access latency
Local memory DDR4-3200
2 channels, 2 ranks
Nodes 1-4
CXL Network 256B flit-size, Min-packet size: 28B
Bandwidth: 128 GB/s
Min. Latency: 70-210 ns
Per-Node 256
prefetch queue size
Pooled FAM DDR4-2400

2 channels, 2 ranks

Table 1: Simulated system configuration

FAM. CXL network is modeled using a flit-based network model
with configurable delay and bandwidth.

We evaluated 19 memory bound workloads from standard bench-
mark suites like SPEC [13], PARSEC [12], GAP [8], Splash3 [28], and
NPB [5]. Considering the simulation speeds, we simulate a scaled
down configuration of a representative server system, that runs
regions of interest (ROI) within each benchmark. We expect that
observed performance characteristics through our evaluation to
scale to a system with realistic configuration. Plus, Our simulation
methodology yielded in deterministic and consistent performance
metrics across different simulation runs. Simulated system configu-
ration is shown in Table. 1. Workloads are configured have their
memory footprint atleast 4-8 times the size of LLC, in order to
ensure that they are memory bound.

We evaluate both single and multi node system configurations,
we simulate up to 4 nodes sharing 2 DDR4 memory channels at FAM.
In multi-node systems, we ran copies of the same application on
different nodes, as well as different applications on different nodes
(mixes). We expect applications in the mix to have diverse memory
access patterns, and subsequently each mix to behave differently
when sharing available bandwidth at FAM. We evaluated 8 such
workload mixes on a 4-node system.

We parametrize memory allocations from FAM in the form of
FAM/DRAM allocation ratio. FAM/DRAM allocation ratio of x indi-
cates that memory pages are allocated b/w local DRAM and pooled
FAM in ratio of 1:x. For example, FAM/DRAM allocation ratio of 0.5
indicates that 66% of application’s pages are allocated in DRAM and
33% in FAM. Similarly, FAM/DRAM allocation ratio of 1, indicates
workload’s pages are equally divided between local DRAM and
FAM. In this paper, we consider FAM/DRAM allocations of 0.125,
0.25, 0.5, 1.

We use the following figures of merit in the discussion through
the rest of this section
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(1) IPC gain - Amount of increase in Instructions per Cycle
(IPC) due to multi-level prefetching compared to using
prefetcher at only L2 cache.

(2) Relative LLC hit fraction - Ratio of hit fraction for loads at
LLC with multi-level prefetcher to hit fraction for accesses
at LLC with L2 prefetcher.

(3) Relative off chip prefetch - Ratio of prefetch requests that
are issued to main memory with mulit-level prefetcher to
that of prefetch requests issued to main memory with per-
core L2 prefetcher. Indicates the increase in amount of data
being prefetched from main memory into on-chip to CPU
caches.

(4) Relative LLC miss latency - Ratio of miss latency for LLC
misses (main memory accesses) with multi-level prefetcher
to miss latency for LLC misses with L2 prefetcher. Quanti-
fies the potential downside of aggressive/multi-level prefetch-
ing.

4.2 Evaluation

4.2.1 Single and Multi-node systems. We evaluate a single node
system running an application with portion of its memory pages
allocated from FAM. Fig. 6a shows IPC gain due to addition of LLC
prefetcher, across different FAM/DRAM allocation ratio for different
benchmarks. Average IPC gain for these workloads across allocation
ratio is 2.2%(0.125), 2.8%(0.25), 2.7%(0.5) and 3.6%(1) respectively. As
we can see, average IPC gain increases with increase in memory al-
location fraction for FAM. Benchmarks like bfs, LU, 654.roms_s, mg
show linear increasing characteristic of performance gain with al-
location fraction, while IPC gain for 603.bwaves_s, 619.lbm_s is not
monotonically dependent on FAM/DRAM allocation ratio. 607.cac-
tuBSSN_s interestingly have its performance gain slightly reduced
with increase in FAM/DRAM allocation ratio, likely due to increase
of off-chip LLC prefetch requests with increase in FAM/DRAM
allocation ratio, while LLC hit fraction increases marginally by 1%.

Fig. 6b shows the relative LLC hit fraction for these workloads in
a single node system, across different FAM/DRAM allocation ratios.
Multi-level prefetcher results in LLC hit fraction to be increased by
13%. Canneal has the highest increase in requests that hit in LLC,
by about 70-80%, while 607.cactuBSSN_s has the lowest increment
only by 1-2%. Canneal benchmark despite having highest increment
in LLC hit fraction, only has modest performance improvement
indicating that it is insensitive to LLC miss latency.

Fig. 6¢ show relative off chip prefetch request analysis for bench-
marks in single node system across different allocation ratios. Multi-
level prefetcher has resulted 17-20% more prefetch requests to be
issued for main memory. XSBench has relatively more LLC prefetch
requests to be issued despite having no performance gain or LLC
hit fraction improvement, likely showing inefficient use of memory
bandwidth. Fig. 6d shows the relative LLC miss latency analysis for
this system configuration. Addition of LLC prefetcher has resulted
in increment of miss latency by 4.9%(0.125), 4.3%(0.25), 3.1%(0.5),
2.5%(1). Latency increment due to aggressive prefetching becomes
less significant with increase in FAM/DRAM allocation fraction.

Similar to the performance analysis presented for a single node,
we evaluate applications running on multiple nodes (4), with a
fraction of their memory footprint in FAM. Fig. 7a shows the IPC

gain for multi-node system for different applications across differ-
ent allocation ratios. LLC prefetcher addition has resulted in IPC
improvement of 2%(0.125), 3%(0.25), 3%(0.5) and 2%(1) across the
configured FAM/DRAM allocation ratios. Performance trends are
similar to that of a single node system configuration. The corre-
sponding relative LLC hit fraction analysis in shown in Fig. 7b.
LLC hit fraction improved by an average of 13% across different
FAM/DRAM allocation fractions.

Fig. 7c shows the relative off chip requests for evaluated bench-
marks across different allocation fractions in multi-node configura-
tion. On average, each node issued 19% more prefetch requests to
main memory due to addition of a prefetcher at LLC. Relative miss
latency analysis presented in Fig. 7d indicates that miss latency has
increased by about 3.9% - 4.7%, tad higher than single node system
configuration.

4.2.2  Multi-node workload mixes. 8 shows our workload mix evalu-
ation. We further characterize the impact of multi-level prefetching
with workload mixes running in a multi-node system. Fig. 8a shows
IPC gains for workload mixes across different FAM/DRAM allo-
cation ratios. For these mixes, additional prefetching resulted in
IPC improvement of 2.5%, 2.0%, 2.1%, 3.3% for allocation fraction of
0.125, 0.25, 0.5 and 1 respectively. Mixes 2 & 4 have about 5-9% IPC
improvement due to multi-level prefetching, while mix1 has slight
performance decrement of about 1-3% for some allocation ratios.

Fig. 8b shows the corresponding relative LLC hit fraction for
these workload mixes. Due to our multi-level cache prefetcher, hit
fraction at LLC has increased by an average of 14-15%. Mix7 has
highest increment in LLC hit fraction, of about 23%, while mix8 has
the least increment of about 8-10%.

Fig. 8c shows relative off chip prefetch request analysis for these
mixes. On average, 16-18.7% more prefetch requests are issued to
main memory, due to multi-level cache prefetching. Mix2 and 3
have the highest increase in memory bound prefetch requests of
about 23-40%. Fig. 8d shows the LLC relative miss latency for these
multi-node mixes has increased by an average of 9-10%. Mix8 has
the highest increment in LLC miss latency, by about 12.1-22.5%. All
of the measured metrics across different workload mixes are related
to FAM/DRAM allocation ratio non-deterministically.

4.2.3 CXL Fabric Latency. In this experiment, we evaluate the
multi-level prefetcher in a single node configuration with different
CXL fabric latencies. We consider 70 ns, 140 ns, 210 ns as fabric
latencies, Fig. 9 shows our analysis. Fig. 9a shows IPC gain due
to our multi-level prefetcher across different CXL fabric latencies
for evaluated workloads, Across different fabric latencies, addition
of LLC prefetcher has resulted in performance gain of 3.8%(70),
5.4%(150), 6.9%(210). Most of the evaluated workloads (excluding
607.cactuBSSN_s, dedup, facesim, bfs, sssp, and XSBench), have
seen larger IPC gain with multi-level prefetching for longer latency
configuration, emphasizing the importance of additional layers of
cache prefetching for CXL memory pools. Fig. 9b shows the corre-
sponding relative LLC hit fraction analysis for evaluated workloads.
LLC hit fraction has consistently improved by about 14% with our
multi-level prefetching across different CXL fabric latencies.
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Figure 7

by 13%. Moreover, multi-level prefetching resulted in 16-20% more

5 Conclusion

despite increase in LLC miss latency suggests that prefetching from
multiple cache levels can be a viable architectural approach to

prefetch requests to be issued to memory, resulting in LLC miss
latency to be increased by 5-10%. Overall performance improvement

In this paper, we explored the design of a multi-level cache prefetcher
design that issues prefetch requests from both L2 cache and LLC.

Additional layer of prefetching in our design is aimed at reducing

extract more performance from a memory system that consists of

FAM.

Our evaluation of multi-level cache prefetcher with different

the sensitivity of application to long access latency of CXL enabled
workloads and system configurations suggest that it can result in,

FAM pools.

IPC improvement upto 6.9%, and LLC hit fraction improvement
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Figure 8: Workload mixes evaluation in a 4 node system con-
figuration, with different FAM/DRAM allocation fractions

Likewise, our work in this paper motivates future research into
LLC prefetchers with intricate design to track and predict main
mMemory accesses.

References

(1]

(2]

[n.d.]. CXL AND GEN-Z iron out a coherent interconnerct stratergy.
https://nextplatform.com/2020/04/03/cxl-and- gen-z-iron-out-a-coherent-
interconnect-strategy. Accessed May 2024.

[n.d.]. WHAT DO WE DO WHEN COMPUTE AND MEMORY STOP GETTING
CHEAPER? https://www.nextplatform.com/2023/01/18/what-do-we-do-when-
compute-and-memory-stop- getting-cheaper/. Accessed May 2024.

2025. Compute Express Link protocol specification. https://computeexpresslink.
org/cxl-specification/ Accessed April-2025.

2025. CXL driver in linux kernel. https://www.kernel.org/doc/html/v6.1/driver-
api/cxl/memory-devices.html Accessed June-2025.

David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo,
and Maurice Yarrow. 1995. The NAS parallel benchmarks 2.0. Technical Report.
Technical Report NAS-95-020, NASA Ames Research Center.

Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad.
2018. Domino Temporal Data Prefetcher. In 2018 IEEE International Symposium

on High Performance Computer Architecture (HPCA). 131-142. doi:10.1109/HPCA.

IPC gain with
multi-level prefetcher

o o -

0 © - -
628.p0p2_S e —
654.roms_s =

———

dedup ————
canneal E—
=

Relative LLC hit fraction with

=
[N)

a D
a 3
o

XSBench S

HW70ns ®W140ns m210ns

wn w w v " E w o o =T 2} f=
1 | S =
m\ | c < o §| £ 5 ©° <. ]
R Q : 3 £
T v = = ~ o g
- = a9 i @
3 = ~ S 50}
By I3 = H70ns M140ns MW210ns
© d (o2}
2
'é © (a)
1.8
316
o1
2
D14
[
L
ol12 B
S
< M IEIA (T
T
=
08
£ % 7" n v a = w LU Y a D v c o
mIIE\NIIw\N\jg,EBU_D%JE S g
v Q E X Q@ £ 9 o v £
= 2 o s~ © £ © m
5 Q = un ° © »n 9
2 2 % < © e < &%
B © N n
8 © ©
©

607.cactuBSSN_s
649.fotonik3d_s

(b)

Figure 9: Performance analysis of multi-level prefetcher
across different CXL fabric latencies

[7]

(8]

[9]

(10]

(1]

(12]

[13]

(14]

[15]

[16]

(17]

2018.00021

Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Bingo Spatial Data Prefetcher. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 399-411.
doi:10.1109/HPCA.2019.00053

Scott Beamer, Krste Asanovi¢, and David Patterson. 2017. The GAP Benchmark
Suite. arXiv:1508.03619 [cs.DC]

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreeni-
vas Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable Hardware
Prefetching Framework Using Online Reinforcement Learning. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO °21). Association for Computing Machinery, New York,
NY, USA, 1121-1137. doi:10.1145/3466752.3480114

Rahul Bera, Anant V. Nori, Onur Mutlu, and Sreenivas Subramoney. 2019.
DSPatch: Dual Spatial Pattern Prefetcher. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO-52). Association for Computing Machinery, New York, NY, USA, 531-544.
doi:10.1145/3352460.3358325

Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and
Daniel A. Jiménez. 2019. Perceptron-based prefetch filtering. In Proceedings
of the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA °19). Association for Computing Machinery, New York, NY, USA, 1-13.
doi:10.1145/3307650.3322207

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: characterization and architectural implications. In
PACT °08. ACM, Toronto, Ontario, Canada, 72-81.

James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. 2018. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (Berlin, Germany) (ICPE
’18). Association for Computing Machinery, New York, NY, USA, 41-42. doi:10.
1145/3185768.3185771

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL] https://arxiv.org/abs/1810.04805

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney,
and Kurt Keutzer. 2024. AT and Memory Wall. https://arxiv.org/abs/2403.14123.
arXiv:2403.14123 [cs.LG]

Wentao Huang, Mo Sha, Mian Lu, Yuqgiang Chen, Bingsheng He, and Kian-Lee
Tan. [n.d.]. Bandwidth Expansion via CXL: A Pathway to Accelerating In-
Memory Analytical Processing. Proceedings of the VLDB Endowment. ISSN 2150
([n.d.]), 8097.

Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
HeteroOS — OS design for heterogeneous memory management in datacenter. In
2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture


https://nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy
https://nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy
https://www.nextplatform.com/2023/01/18/what-do-we-do-when-compute-and-memory-stop-getting-cheaper/
https://www.nextplatform.com/2023/01/18/what-do-we-do-when-compute-and-memory-stop-getting-cheaper/
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://www.kernel.org/doc/html/v6.1/driver-api/cxl/memory-devices.html
https://www.kernel.org/doc/html/v6.1/driver-api/cxl/memory-devices.html
https://doi.org/10.1109/HPCA.2018.00021
https://doi.org/10.1109/HPCA.2018.00021
https://doi.org/10.1109/HPCA.2019.00053
https://arxiv.org/abs/1508.03619
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3352460.3358325
https://doi.org/10.1145/3307650.3322207
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2403.14123
https://arxiv.org/abs/2403.14123

(18]

[19]

[20]

[21]

[22

[23]

[24]

[25]

[26

[27]

[28

[29]

[30]

[31]

[32]

(ISCA). 521-534. doi:10.1145/3079856.3080245

Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A.L. Narasimha Reddy, Chris Wilk-
erson, and Zeshan Chishti. 2016. Path confidence based lookahead prefetching.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1-12. doi:10.1109/MICRO.2016.7783763

Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters 15, 1 (2016),
45-49. doi:10.1109/LCA.2015.2414456

Vamsee Kommareddy, Clayton Hughes, Simon David Hammond, and Amro
Awad. 2018. Opal: A Centralized Memory Manager for Investigating Disaggre-
gated Memory Systems. (8 2018). doi:10.2172/1467164

Vamsee Reddy Kommareddy, Jagadish Kotra, Clayton Hughes, Simon David
Hammond, and Amro Awad. 2021. PreFAM: Understanding the Impact of
Prefetching in Fabric-Attached Memory Architectures. In Proceedings of the
International Symposium on Memory Systems (Washington, DC, USA) (MEM-
SYS °20). Association for Computing Machinery, New York, NY, USA, 323-334.
doi:10.1145/3422575.3422804

Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 317-330.
doi:10.1145/3297858.3304053

Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Com-
puting Machinery, New York, NY, USA, 574-587. doi:10.1145/3575693.3578835
Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S. Berger, Marie Nguyen, Xun
Jian, Sam H. Noh, and Huaicheng Li. 2025. Systematic CXL Memory Char-
acterization and Performance Analysis at Scale. In Proceedings of the 30th
ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2 (Rotterdam, Netherlands) (ASPLOS
’25). Association for Computing Machinery, New York, NY, USA, 1203-1217.
doi:10.1145/3676641.3715987

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing
Machinery, New York, NY, USA, 742-755. doi:10.1145/3582016.3582063
Agustin Navarro-Torres, Biswabandan Panda, Jestus Alastruey-Benedé, Pablo
Ibanez, Victor Vifials Yufera, and Alberto Ros. 2023. Berti: An Accurate Local-
Delta Data Prefetcher. In Proceedings of the 55th Annual IEEE/ACM International
Symposium on Microarchitecture (Chicago, lllinois, USA) (MICRO °22). IEEE Press,
975-991. doi:10.1109/MICRO56248.2022.00072

A.F.Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston, R.
Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis, and B. Jacob. 2011. The Structural
Simulation Toolkit. SIGMETRICS Perform. Eval. Rev. 38, 4 (mar 2011), 37-42.
doi:10.1145/1964218.1964225

Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. 2016.
Splash-3: A properly synchronized benchmark suite for contemporary research.
In 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 101-111. doi:10.1109/ISPASS.2016.7482078

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: a dis-
seminated, distributed OS for hardware resource disaggregation. In Proceedings
of the 13th USENIX Conference on Operating Systems Design and Implementation
(Carlsbad, CA, USA) (OSDI'18). USENIX Association, USA, 69-87.

Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-
ganathan, and Calvin Lin. 2021. A hierarchical neural model of data prefetch-
ing. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS °21). Association for Computing Machinery, New York, NY, USA, 861-873.
doi:10.1145/3445814.3446752

Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho
Ahn, Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with
Genuine CXL-Ready Systems and Devices (MICRO ’23). Association for Comput-
ing Machinery, New York, NY, USA, 105-121. doi:10.1145/3613424.3614256
Chandrahas Tirumalasetty and Narasimha Reddy Annapareddy. 2024. Con-
tention aware DRAM caching for CXL-enabled pooled memory. In Proceedings
of the International Symposium on Memory Systems (MEMSYS °24). Association
for Computing Machinery, New York, NY, USA, 157-171. do0i:10.1145/3695794.

[33

[34

[35

[36

]

]

Chandrahas Tirumalasetty and Narasimha Reddy

3695808

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-
laume Lample. 2023. LLaMA: Open and Efficient Foundation Language Models.
arXiv:2302.13971 (2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Midhul Vuppalapati and Rachit Agarwal. 2024. Tiered Memory Management:
Access Latency is the Key!. In Proceedings of the ACM SIGOPS 30th Symposium
on Operating Systems Principles (Austin, TX, USA) (SOSP ’24). Association for
Computing Machinery, New York, NY, USA, 79-94. doi:10.1145/3694715.3695968
Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar Agarwal,
Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill, Mosharaf Chowdhury,
and Asaf Cidon. 2024. Managing memory tiers with CXL in virtualized environ-
ments. In Proceedings of the 18th USENIX Conference on Operating Systems Design
and Implementation (Santa Clara, CA, USA) (OSDI'24). USENIX Association, USA,
Article 3, 20 pages.


https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.2172/1467164
https://doi.org/10.1145/3422575.3422804
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3676641.3715987
https://doi.org/10.1145/3582016.3582063
https://doi.org/10.1109/MICRO56248.2022.00072
https://doi.org/10.1145/1964218.1964225
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1145/3445814.3446752
https://doi.org/10.1145/3613424.3614256
https://doi.org/10.1145/3695794.3695808
https://doi.org/10.1145/3695794.3695808
https://doi.org/10.1145/3694715.3695968

	Abstract
	1 Introduction
	2 Background
	2.1 CXL enabled memory pooling
	2.2 Prefetching & Signature Path Prefetcher (SPP)
	2.3 Related work

	3 Multi-level cache prefetching
	4 Evaluation
	4.1 Methodology
	4.2 Evaluation

	5 Conclusion
	References

