
ECC Replay: A Practical and Efficient Scheme To Tolerate High
Stuck Bit Rate in Emerging Memories

Lunkai Zhang
lunkai.zhang@wdc.com

Western Digital
San Jose, California, USA

Nate Franklin
Nate.Franklin@wdc.com

Western Digital
San Jose, California, USA

ABSTRACT
While emergingmemories are considered promising technologies to
replace DRAM, it has been proven difficult to penetrate the mature
DRAM market and achieve profitability. Therefore, it is crucial to
reduce the cost of the emerging memory media. One important way
to reduce the cost is to make the memory systemmore fault tolerant,
thus the production process can be simplified andmedia yield can be
improved. This paper focuses on stuck failures, which are dominant
in endurance failures and manufacturing failures. We present ECC
Replay, an efficient and practical scheme which handles the stuck
failures by utilizing existing ECC techniques in a typical emerging
memory system. When a codeword read results in an uncorrectable,
ECC Replay detects the stuck bits of the codeword by writing all-
0/all-1 data into themedia and then reading it back. ECC Replay then
tries to get a correctable result by reperforming ECC correctionwith
all the possible data combinations of the stuck bits. We also propose
special techniques tominimize theMiscorrection Rate, which is often
the reliability bottleneck of memory systems, and read tail latency.
With minimal change in the memory controller architecture and no
change to the emerging memory media, ECC Replay achieves 30×
improvement of stuck-bit tolerance in a typical emerging memory
system with negligible impact on memory bandwidth and read
latency.

1 INTRODUCTION
In recent years, Large Scale Language Models (LLM) has been
proven to be a transformative technology to reshape computing
[3]. Companies, big and small, are all racing to implement and
utilize their own LLMs. The inherent memory capacity require-
ment of LLMs fuels the growth of the memory component market,
which is dominated by DRAM [1]. The hunger for memory capac-
ity, however, is hampered by another trend–the scaling of DRAM
technology is slowing and may reach its limit [32]. Which means it
is getting increasingly harder to reduce the per-GB cost of DRAM.

As a result, the market is calling for a cheaper DRAM replace-
ment technology with better scalability. Candidates for such a re-
placement, sometimes called Emerging Memories or Storage Class
Memories, include PCM [7][19], ReRAM [34][5] andMRAM [10][15],
etc. and they are often combined with the crossbar array technology
[18] to reduce the cell size. However, it takes great efforts, both
in time and capital spending, to develop and market a memory
technology to replace DRAM. Unfortunately, the only commercial-
ized emerging memory technology, Optane, has been discontinued
partially due to its inability to turn a profit [2] in years. The sunset
of Optane serves as a cautionary tale for its potential sucessors that
it is crucial to manage the cost of emerging memories in order to
compete with DRAM and achieve commercial success.

One important way to reduce cost of emerging memories is to
use error correction code (ECC) to tolerate bit errors and thus re-
duce media manufacturing complexity as well as improve yield. We
will show that, a reasonable baseline BCH-based ECC setup can
tolerate up-to 1E-5 scale bit error rate (BER). For comparison, MLC
(including TLC and QLC) 3-D NAND Flash, the only mature mem-
ory technology scaling better and cheaper than DRAM, can tolerate
a BER of up to 1E-2 scale [4]. However, the high BER tolerance of
MLC 3-D NAND Flash is achieved by using large codewords and
complex ECC mechanism such as LDPC, both of which incur long
ECC latency and thus are not suitable for latency sensitive DRAM
replacement technologies.

To achieve high error tolerance in emerging memories without
exccessive latency or high system complexity, it is crucial to under-
stand the system implications of different types of media failures.
Among many failures of emerging memories, we are especially
interested in stuck failures in which the value of stored bit is stuck
at 0 or 1, because they are the major failure types of endurance and
manufacturing failures [27][36][9][26]. There have been a number
of proposals targeting stuck failures in emerging memories. How-
ever, to our best knowledge, none of these proposals is effective
in a practical product setting. Especially, none of them discussed
their impact on Miscorrection Rate, which is often the reliability
bottleneck of the emerging memory systems.

This paper presents ECC Replay, an efficient and practical scheme
which handles the stuck failures by utilizing existing ECC mech-
anisms in a typical emerging memory system. When a codeword
read results in an uncorrectable, ECC Replay first detects the stuck
bits of the codeword by writing all-0/all-1 data into the same media
codeword and then reading it back. ECC Replay then tries to achieve
a correctable result by reperforming ECC correction with all the
possible data combinations of the stuck bits. We also introduce
measures to minimize Miscorrection Rate as well as avoid extra tail
latency. Our evaluation shows that, by utilizing a typical ECCmech-
anism (BCH-6) with only 1E-5 scale Bit Error Rate (BER) capability,
ECC Replay achieves enterprise-scale UBER (Uncorrectable Bit Error
Rate) and Miscorrection Rate requirements on an emerging mem-
ory media with a much higher 3E-4 Stuck Bit Rate, which is a 30×
improvement over the BCH-6 baseline. Furthermore, ECC Replay
achieves such aggressive tolerance of stuck bits with negligible
performance degradation and no extra storage overhead.

The rest of the paper is presented as follows. We first introduce
the background of emerging memory in Section 2. Then Section
3 models the reliability of our baseline systems and provides the
problem statement. Section 4 presents the schemes of our ECC Re-
play proposal and models their impact on system reliability. Section

Lunkai Zhang and Nate Franklin

Bank 0

Bank 1

Bank (N-1)

Emerging
Memory Die

Emerging
Memory Bank

Emerging
Memory Array

Figure 1: The Structure of a Typical Emerging Memory Die
[11]. The die consists of multiple banks and each bank has
many crossbar arrays. For a single codeword access, each bit
is contributed by different crossbar arrays. Such bit access
isolation indicates that it is unlikely to have clustered bit
fails. As a result, it is fair tomodel the bit fails using binomial
distribution.

5 evaluates the performance impact of ECC Replay with a cycle-
accurate simulator. Section 6 discusses the effectiveness of ECC
Replay under different error correction capabilities. Finally, Section
7 discusses the related work and Section 8 draws the conclusion.

2 BACKGROUND OF EMERGING MEMORY
SYSTEMS

This section first discusses a typical emerging memory die structure
and its implication on bit fail characteristics. We then discuss the
soft and stuck failures of emerging memories, and introduce two
types of reliability failures: uncorrectables andmiscorrections. Finally
we introduce the fundanmentals of emerging system reliability
including Bit Error Rate (BER), Uncorrectable Bit Error Rate (UBER)
and Miscorrection Rate (MISC Rate).

2.1 Emerging Memory Die Structure and Its
Implication on Non-Clustering Bit Fails

Figure 1 shows the structure of a typical emerging memory die[11],
which has multiple banks, similar with DRAM. The structure of
an emerging memory bank, however, is fundanmentally different
from that of a DRAM:

• A DRAM Bank contains a single data array. Each code-
word/memory line access reads/writes the same row of the
array. In case of the row failure, all the bits retrieved by
a DRAM die during the codeword read are subject to er-
rors. As a result, clustering bit fails are serious concerns in
DRAM and thus countermeasures like chipkill are required
for high reliability use cases.

• An emerging memory bank [11] contains many indepen-
dent crossbar arrays (sometimes referred as tiles). In a code-
word access, each codeword bit is contributed by different
crossbar arrays. Such bit access isolation indicates that it is
unlikely to have clustered bit fails. Thus it is fair to assume
all bit failures are independent and thus the bit failure is
following binomial distribution.

2.2 Stuck Bit Errors and Soft Bit Errors
We can categorize all the failure mechanisms in emerging memories
into two groups:

• Soft Bit Errors, which refer to the failures that can be
resolved by reread or rewrite the media codeword. The
failure mechanisms of soft errors include retention failure,
read disturb, write disturb, etc.

• Stuck Bit Errors, which refer to the failures in which
the value of stored bit is stuck at value 0 or 1. The failure
mechanisms of stuck bit errors include endurance failures
and manufactural failures.

In this paper we focus on Stuck Bit Errors because: (1) endurance
failure is usually the major failuretype in end-of-life media; (2)
endurance failure bits can provide extra information for recovering,
which provides opportunities for more efficient failure recovery
schemes such as ECC Replay.

2.3 Uncorrectables and Miscorrections
Any practical ECC scheme has its capability limit and is subject to
two types of ECC failures:

• Uncorrectables. If the decoder cannot provide a valid ECC
outcome, there is an uncorrectable.

• Miscorrections. If the decoder provides a valid ECC out-
come but it is different from the original data, there is a
miscorrection.Miscorrections are also referred as silent data
corruption (SDC) [16].

Both uncorrectables and miscorrections are serious reliability issues
for the memory/storage systems. As is shown in Section 3, there
are established metrics (UBER and MISC Rate) to measure their
impact on system reliability.

3 FAILURE MODELING AND PROBLEM
STATEMENT

In this section, we will model in detail of the reliability metrics of
memory system with both hard errors and soft errors, and then
present the problem statement.

3.1 Reliability Metrics of Memory System
In memory industry, There are three established reliability metrics:

• Bit Error Rate (BER), which is the total bit errors divided
by the total number of bits read. BER is the direct metric of
how erroneous the media is.

• Uncorrectable Bit Error Rate (UBER), which is the total
uncorrectable codewords divided by the total number of bits
read (not the total number of codewords). UBER shows how
vulnerable the memory system is to uncorrectables.

• Miscorrection Rate (MISC Rate) [24], which is the total mis-
corrected codewords divided by the total number of code-
words read. MISC Rate shows how vulnerable the memory
system is to miscorrections.

3.2 BCH ECC for Emerging Memories
Since emerging memory media has higher BER, it is logical to
protect it through strong ECC mechanism such as LDPC [29], Reed-
Solomon [35] or BCH [13]. Among them, BCH code has received
additional attention because of its storage effectiveness on short
codewords and potential to construct low latency decoding scheme
[12]. Table 1 summarizes the capabilities and overheads of different

ECC Replay: A Practical and Efficient Scheme To Tolerate High Stuck Bit Rate in Emerging Memories

Table 1: ECC Capacity Overhead and Correctable Bits of Dif-
ferent BCH Schemes for 64B Codewords

ECC
Schemes

[n, k, d] Repre-
sentation

User Data
Bits

ECC
Bits

ECC Over-
head

Correctable
Bits

BCH-4 [552,512,9] 512 40 7.8% 4
BCH-6 [572,512,13] 512 60 11.7% 6
BCH-8 [592,512,17] 512 80 15.6% 8
BCH-10 [612,512,21] 512 100 19.5% 10
BCH-12 [632,512,25] 512 120 23.4% 12
BCH-14 [652,512,29] 512 140 27.3% 14
BCH-16 [672,512,33] 512 160 31.3% 16

Correctable Miscorrec�on Uncorrectable

EC
C

Lim
it o

f

N
 B

its

Ham
Distan
(2N+1

Figure 2: Correctables, Uncorrectables and Miscorrections in
BCH
BCH schemes [33]. This table also includes the [n, k, d] representa-
tions of each BCH scheme, in which:

• n is the full length of a codeword;
• k is the number of data/information bits of a codeword;
• d is the minimum Hamming distance between any two

valid codewords.
Without loss of generality, we assume our baseline system uses a
BCH-6 ECC which can corrects up to 6 bits and has an overhead of
11.7%.

3.3 Basic BCH Failure Modeling with a Unified
BER

The first step is to model the BCH scheme with a unified BER fol-
lowing binomial distribution. Figure 2 shows where correctables,
uncorrectables and miscorrections are located in BCH code space:
assume we have a BCH code with ECC Limit of N, the nearest dif-
ferent codeword has a hamming distance of (2N+1). If the number
of bit errors is within N, the codeword is always correctable; oth-
erwise the codeword is mostly uncorrectable with a small chance
of falling into the correctable space of another codeword, which
causes miscorrection. In BCH code with long enough codeword size
and large enough ECC Limit, the miscorrection probability in uncor-
rectable scenarios can be roughly considered as a constant [24](i.e.,
BCH_Misc_Prob). Section 9.1 provides the details of how to estimate
BCH_Misc_Prob. The detailed formula of UNC Rate (uncorrectable
rate), UBER and MISC Rate of BCH are shown in Equations 1–3.

𝑈𝑁𝐶_𝑅𝑎𝑡𝑒 =

𝑐𝑤_𝑠𝑖𝑧𝑒∑︁
𝑒𝑟𝑟𝑜𝑟𝑠=𝑒𝑐𝑐_𝑙𝑖𝑚𝑖𝑡+1

𝑏𝑖𝑛𝑜𝑚.𝑝𝑚𝑓 (𝑒𝑟𝑟𝑜𝑟𝑠, 𝑐𝑤_𝑠𝑖𝑧𝑒, 𝐵𝐸𝑅) (1)

𝑈𝐵𝐸𝑅 =
𝑈𝑁𝐶_𝑅𝑎𝑡𝑒
𝑐𝑤_𝑠𝑖𝑧𝑒

(2)

𝑀𝑖𝑠𝑐_𝑅𝑎𝑡𝑒 = 𝑈𝑁𝐶_𝑅𝑎𝑡𝑒 × 𝐵𝐶𝐻_𝑀𝑖𝑠𝑐_𝑃𝑟𝑜𝑏 (𝑒𝑐𝑐_𝑙𝑖𝑚𝑖𝑡, 𝑐𝑤_𝑠𝑖𝑧𝑒) (3)

10−6 10−5 10−4 10−3

Bit Error Rate (BER)

10−67

10−59

10−51

10−43

10−35

10−27

10−19

10−11

Un
co

rre
ct

ab
le

 B
it

Er
ro

r R
at

e
(U

BE
R)

1E-18 UBER Target
1E-5 Baseline Total BER
BCH-4
BCH-6 (Baseline)
BCH-8

BCH-10
BCH-12
BCH-14
BCH-16

Figure 3: UBERs of Different BCHCodes with Different BERs

10−6 10−5 10−4 10−3

Bit E o Rate (BER)

10−79

10−69

10−59

10−49

10−39

10−29

10−19

10−9

M
isc

o
 e

ct
io

n
Ra

te
 (M

IS
C

Ra
te

)

1E-22 MISC Rate Target
1E-5 Baseline Total BER
BCH-4
BCH-6 (Baseline)
BCH-8

BCH-10
BCH-12
BCH-14
BCH-16

Figure 4: MISC Rates of Different BCH Codes with Different
BERs

Figures 3 and 4 show UBERs and MISC Rates of different BCH
codes with different Unified BERs. Without loss of generality, we
assume a baseline system using BCH-6 and with a UBER target
of 1E-18 and a MISC Rate Target of 1E-22. We can see that, BCH-
6 can meet the UBER target with up to 3E-5 Unified BER; at the
same time, it misses the MISC Rate target with 2E-5 Unified BER.
This indicates MISC Rate is in many cases the reliability
bottleneck of a memory system, not UBER. Therefore, for bit
error tolerance related proposals, it is of great importance to
investigate their impact onMISC Rate.

3.4 Failure Modeling with BCH Schemes with
Separate Considerations of Soft Bit Errors
and Stuck Bits

We now do a more detailed modeling with separate considerations
of soft bit errors and stuck bits. Figure 5 summaries our approach:

• We assume the stuck bits are randomly distributed in the
whole memory and the addresses of accesses are random.
Under such assumptions, the number of stuck bits in a read
codeword is following binomial distribution with Stuck Bit
Rate.

• A stuck bit error happens only when a stuck bit is written
with the opposite data (e.g., Stuck-At-1 bit written with 0).
We define such probability as S2E Rate (Stuck-to-Error Rate).
As a result, the number of stuck errors of a given number
of stuck bits is also following the binomial distribution.
Without loss of generality, we assume a 50% S2E Rate for
the rest of the paper.

Lunkai Zhang and Nate Franklin

Codeword_Size Bits

X Stuck Bits (Codeword_Size – X) Func�onal Bits

Z Stuck Errors Y Stuck Errors

Stuck Bit Rate

Binomial Dist.

So� BER

Binomial Dist.

S2E Rate

Binomial Dist.

Figure 5: Failure Modeling of Stuck Bit Errors and Soft Bit
Errors

10−6 10−5 10−4 10−3
Stuck Bit Rate

10−23

10−21

10−19

10−17

10−15

10−13

10−11

M
et
ric

 V
al
ue

 (U
BE

R
 r
 M
IS
C
Ra

te
)

1E-18 UBER Target
1E-22 MISC Rate Target
UBER
MISC Rate

Figure 6: UBER and MISC Rate of Baseline BCH-6 with 1E-5
Soft BER and Different Stuck Bit Rate

• For the functional (not stuck) bits, they can have soft errors
following binomial distribution with Soft BER.

Figure 6 shows UBER and MISC Rate of the baseline BCH-6 with
1E-5 Soft BER and different Stuck Bit Rate. For more modeling details,
please refer to Section 9.2. The MISC Rate becomes out-of-target
when Stuck Bit Rate reaches 2E-5; while UBER becomes out-of-
target when Stuck Bit Rate reaches 6E-5.

3.5 Problem Statement
We can see that the baseline BCH-6 provides insufficient stuck bit
tolerance. A straightforward solution would be increase the ECC
capability, which is costly in terms of both media storage overhead
and ECC latency/complexity. Therefore, a more efficient approach
is desired to tackle high Stuck Bit Rate.

4 ECC REPLAY
In this Section, we first propose the ECC hierarchy and discuss the
requirements for each ECC layer in Section 4.1. In Section 4.2, we
then discuss how to address the missedMISC Rate target for Normal
Read ECC layer. Afterwards, we present the detailed architecture,
scheme and modeling of ECC Replay layer in Section 4.3. Section 4.4
shows ECC Replay can be further enhanced by caching the many-
stuck codewords. Finally, Section 4.5 summarizes the reliability
capability of ECC Replay.

4.1 Proposed ECC Hierarchy and Requirements
Figure 4.1 shows the overview of our proposed Normal Read—ECC
Replay hierarchy. For each read request, ECC Replay gets triggered
only when the initial media read (i.e., Normal Read) fails. To meet
the system UBER and MISC Rate targets, such a hierarchy has
different requirements for each layer:

• Normal Read Layer. ForNormal Read Layer, UBER doesn’t
matter anymore because it will be resolved in the next layer

As small as

possible
N/A

Must Meet

Target

Must Meet

Target

Must Meet

Target
N/A

Normal

Read

ECC

Replay

Every codeword

read starts with a

Normal Read

ECC Replay gets

triggered only

when the Normal

Read fails.

UNC Rate

Requirements

UBER

Requirements

MISC Rate

Requirements

Figure 7: Our Hierarchical Proposal and Its Requirements on
UNC Rate, UBER and MISC Rate.

(i.e., ECC Replay). However, it must meet the MISC Rate
target to ensure we meet the system-wise MISC Rate target.
Also theUNC Rate (i.e., ECC Replay trigger rate) of this layer
should be as small as possible to minimize the performance
impact of ECC Replay.

• ECC Replay Layer. As the last resort in ECC hierarchy,
ECC Replay must meet both UBER and MISC Rate targets.

4.2 Undercorrecting Normal Reads to Reduce
MISC Rate

Correctable Miscorrec�on Uncorrectable

ng

(2
N

No Miscorrec�on

Zone

Figure 8: Undercorrection Helps Reduce the Probability of
Miscorrection.

10−6 10−5 10−4 10−3

Stuck Bit Rate

10−37

10−32

10−27

10−22

10−17

10−12

10−7

10−2

M
et

ric
 V

a
ue

 (U
BE

R
or

 M
IS

C
Ra

te
)

MISC Rate with 6-Bit Correction (Baseline)
MISC Rate with 5-Bit Undercorrection
MISC Rate with 4-Bit Undercorrection
MISC Rate with 3-Bit Undercorrection
1E-22 MISC Rate Target

UNC Rate with 6-Bit Correction (Baseline)
UNC Rate with 5-Bit Undercorrection
UNC Rate with 4-Bit Undercorrection
UNC Rate with 3-Bit Undercorrection

Figure 9: Undercorrection Helps Meet the Miscorrection Rate
Target.

ECC Replay: A Practical and Efficient Scheme To Tolerate High Stuck Bit Rate in Emerging Memories

As is shown in Figure 6, baseline Normal Read doesn’t meet the
MISC Rate target with 1E-5 Soft BER and a Stuck Bit Rate equal or
higher than 2E-5. To tolerate a higher Stuck Bit Rates, we need to
first bring down theMISC Rate ofNormal Read layer. To achieve this,
we propose simple Undercorrection scheme–it has a Correct Limit
which is smaller than the full BCH ECC Limit. UsingUndercorrection,
we consider a codeword uncorrectable if its error bits are more than
Correct Limit, even if it is correctable by the full ECC Limit.

Figure 8 explains two effects of Undercorrection helps reduce the
MISC Rate (see Section 9.3 for details):

• Smaller Miscorrectable Probability for Uncorrecta-
bles. This is because Undercorrection reduces the size of
correctable space of each codeword. As a result, the proba-
bility of falling into correctable space of other codewords is
reduced.

• Expansion of No-MISC Space. As we recall, the minimal
Hamming distance between two codewords is 2N+1, where
N is the ECC Limit of corresponding BCH code. For baseline
BCH scheme, the No-MISC limit is N bits, same with the
limit of correctables. With Undercorrection, however, the
No-MISC limit becomes (2N-M), where M is the Correct
Limit.

Figure 9 shows the effectiveness of Undercorrection for our base-
line BCH-6 ECC scheme. We can see that, when we undercorrect,
theMISC Rate is significantly reduced at the expense of higher UNC
Rate. Even with an aggressive Stuck Bit Rate target of 1E-3, the
1E-22 MISC Rate can still be met when we undercorrecting to 3 bits.
Meanwhile, the UNC Rate of this scenario is 2E-4, which is still very
low.

4.3 The Architecture and Scheme of ECC Replay
Figure 10 shows the architecture of ECC Replayer, the main module
to perform ECC Replay and its position inside a typical memory
controller. ECC Replayer is a standalone module which talks to the
Processing Queue(s) of the memory controller. It has the following
components:

• A Raw UNC Data register to record the raw uncorrectable
data of Normal Read;

• A Stuck Bit Mask register to record the stuck bit positions
inside the uncorrectable codeword;

• A Replay Combination Generator to generate Stuck Bit Com-
binations based on Stuck Bit Mask;

• A Current Stuck Bit Replay Combination register to record
the current Stuck Bit Combination.

• ACurrent ECC Replay Data to record the current ECC replay
data to go through the in-module ECC;

• A dedicated ECC Decoder to perform ECC decoding of the
ECC Replay Data;

• A Correctable Result Buffer to interpret the results of ECC
Replay.

Figure 11 shows the workflow of ECC Replay.

(1) When a Normal Read returns uncorrectable, ECC Replayer
first records the raw uncorrectable data in Raw UNC Data
register.

(2) Stuck Bits Detection. For a given emerging memory me-
dia, the endurance failures are manifested as either open or
short, as a result the stuck bits are overwhelming biased in
either 1 or 0.Without loss of generality, we assume the stuck
bits are stuck-at-1. ECC Replayer writes the all-0 pattern to
the media codeword and reads it back, bypassing main ECC
Decoder. The value-1 bits indicate the locations of the stuck
bits. Such information is stored into the Stuck Bit Mask
register. To reduce the overall ECC Replay latency, these
stuck detection write and read commands have the highest
priority. In case there are both stuck-at-1 and stuck-at-0
bits, separate Stuck Bit Detect Read and Write are needed
for each type of the stuck bits.

(3) Stuck Combination Replay. Replay Combination Genera-
tor takes the value of Stuck Bit Mask register, and generates
all the possible data combinations of the stuck bits. For
each Replay Combination, ECC Replayer replaces the stuck
bits with the value of the Replay Combination to form the
current ECC Replay Data and decode with the dedicated
ECC Decoder.

(4) Result Interpretation. As is shown in Figure 12, after all
the Replay Combinations get processed through ECC, ECC
Replayer summarizes and reports the results:
• Case #1: One or multiple ECC Replay Data are cor-

rectable, and the ECC outcomes are the same. In this
case, ECC Replayer trusts the result and report the ECC
outcome as correctable.

• Case #2: Multiple ECC Replay Data are correctable,
and there are more than one ECC outcomes. In this
case, ECC Replayer doesn’t know which ECC outcome
is correct. To avoid miscorrection, it reports this case
as uncorrectable.

• Case #3: If none of the ECC Replay Data are cor-
rectable, ECC Replayer returns uncorrectable.

Table 2: Best ECC Replayed Stuck Combination is correctable
if the ECC decoder can correct the soft bit errors.

Stuck Bits Soft Bit Errors
Observed Uncorrectable Data 111..11 010...01
Best ECC Replayed Stuck Comb 010..01 010...01
With No Error In Stuck Bits (no error)

Table 2 explains why ECC Replay manages to lower both Un-
correctable Rate/UBER and MISC Rate—out all the stuck bit com-
binations replayed, there must be a best combination which has
no errors in the stuck bits. For this best combination, we can get
a correctable if the number of soft bit errors is within ECC Limit.
As a result, in cases where number of soft bit errors is within ECC
Limit (refer to more details in Section 9.4):

• ECC Replay removes all the uncorrectables of ECC Replay
Data since we already have a correctable result;

• ECC Replay captures all the miscorrections of ECC Replay
Data and translates them into uncorrectables.

As is shown in Figure 13, with the help of enforced uncorrectable
(Case #2), ECC Replay keeps the MISC Rate at the same level when
we sweep Stuck Bit Rate from 1E-5 to 1E-3. Due to the limit of 1E-18

Lunkai Zhang and Nate Franklin

Replay

Combina�on

Generator

Raw UNC Data

Stuck Bit Mask

Current Stuck Bit
Replay Combina�on

01101001000011101010...1101

00100001000000100010...0100

00000000000000000010...0000

Current ECC Replay Data
Dedicated

ECC Decoder

Correctable Result Bu�er

#Corrected Outcomes

Corrected Data XXXXXXXXXXXXXXXXXXXX...XXXX

000000000000000000010...0000

ECC
Replayer

ECC Replayer

Processing Queue(s) Main
ECC Decoder

Memory

Media

Memory
Controller

Many-
Stuck
Cache

Figure 10: The Architecture of ECC Replay.

Record uncorrectable codeword

(Bypass ECC Encoding) Write All-0

pa�ern to media codeword

(Bypass ECC Decoding) Read the media

codeword to iden�fy Stuck-At-1 Bits

Get all the bit-�ip combina�ons of the

Stuck-At-1 bits

For each combina�on, replace the stuck-

at-1 bits with the current combina�on

and go through ECC again.

0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1UNC Data

0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
Loca�on of

 Stuck-At-1 Bits

1 Stuck-at-1 bits

All Possible Combina�ons

of Stuck-At-1 Bits
[0,0,0,0,0], [0,0,0,0,1], [0,0,0,1,0], … [1,1,1,1,0], [1,1,1,1,1]

0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1

0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1

0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1

0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0 0 1

0 1 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1

[0,0,0,0,0]

[0,0,0,0,1]

[0,0,0,1,0]

[1,1,1,1,0]

[1,1,1,1,1]

ECC Replay Result Interpreta�on

Case #1: One or mul�ple combina�ons are correctable, and

the ECC outcomes of these combina�ons are the same.

Case #2: Mul�ple combina�ons are correctable, and there

are more than one ECC outcomes.

Case #3: No combina�on is correctable.

Return shared ECC outcome as

the Correctable result.

Return Uncorrectable result to

avoid miscorrec�on.

Return Uncorrectable result.

Correctable

Correctable

Uncorrectable

Uncorrectable

Uncorrectable

A Normal Read returns uncorrectable.

Stuck
Detect

Write &
Read

Stuck
Combina�on

Replay

Result
Interpreta�on

Figure 11: The Scheme of ECC Replay. Without loss of generality, we assume stuck bits are all stuck-at-1.

Case #1(a) Correctable Case #1(b) Miscorrec�on
Case #2 Enforced Uncorrectable

to Avoid Miscorrec�on
Case #3 Uncorrectable

Correctable
Space

Miscorrec�on
Space

Uncorrectable
Space

Individual ECC-Replay
Bit-Flip Combina�on

Figure 12: The Result Interpretation of ECC Replay.

UBER target, ECC Replay can support up to 3E-4 Stuck Bit Rate, a
30x improvement of the baseline BCH-6 scheme.

4.4 Capping ECC Replay Tail Latency By
Caching Many-Stuck Codewords

One potential issue of ECC Replay is it might take too much time
replaying all the Stuck Combinations when there are many stuck
bits. Figure 14 shows the number of codewords with a given number
of stuck bits in a 256GB emerging memory under different Stuck Bit

ECC Replay: A Practical and Efficient Scheme To Tolerate High Stuck Bit Rate in Emerging Memories

10−6 10−5 10−4 10−3

Stuck Bit Rate

10−23

10−21

10−19

10−17

10−15

10−13

10−11

M
et

ric
 V

al
ue

 (U
BE

R
or

 M
IS

C
Ra

te
)

1E-18 UBER Target
1E-22 MISC Rate Target
Baseline UBER
Baseline MISC Rate
ECC Replay UBER
ECC Replay MISC Rate

Figure 13: UBER and Miscorrection Rate of ECC Replay with
BCH-6 and 1E-5 Soft BER.

1 2 3 4 5 6 7 8
Stuck Bits in A Codeword

100

102

104

106

108

Nu
m
be
r o

f C
od
ew

or
ds

1E-4 Stuck Bit Rate
2E-4 Stuck Bit Rate
3E-4 Stuck Bit Rate

Figure 14: Number of Codewords with A Given Number of
Stuck Bits in a 256GB emerging memory following binomial
distribution.We can see that, there are less than 10 codewords
with more than 6 stuck bits in an aggressive 3E-4 Stuck Bit
Rate.

Rates. We can see that, even with an aggressive 3E-4 Stuck Bit Rate,
there are only less than 10 codewords with more than 6 stuck bits.
To efficiently handle these few codewords with many stuck bits,
we can have a simple Many-Stuck Cache in front of the memory
controller to cache these codewords with many stuck bits to cap the
tail latency of ECC Replay. To fill the Many-Stuck Cache, we could
periodically (e.g., once a day) scrub through the entire memory
using the same stuck detection write and read commands in ECC
Replay.

4.5 Reliability Summary
Figure 15 summaries the achievable reliability of ECC Replay with
BCH-6 ECC and Soft BER of 1E-5. We can see that, ECC Replay
hierarchy meet the 1E-18 UBER and 1E-22 MISC Rate targets with
up to a 3E-4 Stuck Bit Rate, representing a 30× improvement over
1E-5 tolerable Stuck Bit Rate of baseline Normal Read Only scheme.
Meanwhile, the trigger rate of ECC Replay is only 2.7E-6. The next
section will show that such low trigger rate has negligible impact
on the performance of memory system.

2.7E-6 N/A 2.6E-28

6.9E-19 1.6E-24N/A

Normal

Read

ECC

Replay

Every codeword read

starts with a Normal

Read under the

Correct_Limit of 3

ECC Replay gets

triggered only when the

Normal Read fails.

It has an ECC_Limit of 6

Achieved

Fail Rate

Achieved

UBER

Achieved

MISC Rate

Media Capability: 1E-5 So� BER, 3E-4 Stuck Bit Rate Reliability Requirement: 1E-18 UBER, 1E-22 MISC Rate

Figure 15: ECCReplayAchievable Reliability Summary.With
BCH-6 ECC and Soft BER of 1E-5, ECC Replay can tolerate
up-to 3E-4 Stuck Bit Rate. This represents a over 30× improve-
ment over the baseline Normal Read Only, which can only
tolerate 1E-5 Stuck Bit Rate.

Table 3: Simulation Parameters

Emerging Memory Media
Memory Frequency 1.6GHz (DDR3200)
IO Interface DDR-like IO organization:

– Shared Command IO Bus by all dies;
– Bidirectional Data IO Bus per die.

Banks 16, Codeword Interleave
Bank Cycle Time 40ns
Read Latency 35ns
Write Latency 10ns
Burst Length 16 (5ns for each codeword data transfer)
Soft Bit Error Rate 1E-5 following binomial distribution
Stuck Bit Rate 3E-4 following binomial distribution

Baseline Memory Controller Configuration
Codeword Size 572 bits (512 user bits and 60 ecc bits)
ECC Decoder Correcting up-to 6 bits

10ns decoding latency
Pipelined, getting result every 5ns

Max Read Requests 32
Max Write Requests 8
Processing Queue Design Separate Read and Write Queues per Bank
Read Queue Depth 16
Write Queue Depth 16
Write Drain Watermarks 10 (high) & 8 (low)

ECC Replayer Configuration
Trigger Threshold 3 (When more than 3 bit errors in a Normal Read, ECC

Replay is triggered)
ECC Decoder Same configuration with the ECC decoder in baseline

system

5 PERFORMANCE EVALUATION
5.1 Methodology
Without loss of generality, we simulate ECC Replay using a cycle-
accurate in-house simulator following framework of DRAMSim3
[20]. Table 3 summarizes the simulation parameters.

On media side, our target emerging memory is similar with a
commercial DDR4/5 system, with shared command bus by all dies,
and bidirectional Data bus. Each die has 16 banks and operating
at 1.6Ghz (DDR3200). The media read and write latencies are 35ns
and 10ns, respectively. The cycle time of a bank is 40ns, meaning
it can issue another read or write command at least 40ns after
issuing the first one. The burst length of the data IO is 16, as a result
it takes 5ns to transfer each codeword. To improve performance
in sequential workloads, the banks are low-level interleaved. For
failure modeling, we simulate a Soft BER of 1E-5 and Stuck Bit Rate
of 3E-4, both of which following binomial distribution.

On memory controller side, it uses BCH-6 ECC with each code-
word has 64B (512bit) user bits and 60 ECC bits. The ECC can correct
up to 6 bits. The ECC decoder works in a pipeline fashion with each
decoding taking 10ns and it can produce one ECC result every 5ns

Lunkai Zhang and Nate Franklin

(same with the data burst time of the media). The controller has
separate read and write queues per bank, with each queue taking 16
commands. The write drain watermarks are 10 (high) and 8 (low).
The write draining starts when any bank has more than 10 write
commands, and stops when all banks have less than or equal to 8
write commands.

For ECC Replayer, we set its trigger threshold as 3. The separate
ECC decoder in ECC Replayer has the same capability of the main
ECC Decoder in the baseline system. The memory controller has a
Many-Stuck Cache to bypass the codewords with more than 6 stuck
bits, so ECC Replayer replays at most 6 stuck bits.

For workloads, we use five synthetic stress workloads which are
typically used in Reliability Demonstrate Test (RDT) [8] flow:

• Rand All-Rd, which is an all-read workload with random
generated address.

• Rand 2R1W, in which uses the access pattern of 2 reads
followed by 1 writes with randomly generated addresses.

• Seq All-Rd and Seq 2R1W , which are the same with
Rand All-Rd and Rand 2R1W except for using sequential
addresses instead of random ones.

• JEDEC-like [17], which loosely follows JESD219 endurance
test spec:
– 60/40 read-write ratio;
– 50% accesses to 5% of the memory space;
– 30% accesses to 15% of the memory space;
– 20% accesses to remainder of the memory space.

5.2 Results

Table 4: Performance Impact of ECC Replay

Workload ECC Re-
play Trig-
ger Rate

Avg.
Read Req.
Lat. (ns)

Max Read
Req. Lat.
(ns)

Avg. ECC-
Replayed
Read Req.
Lat. (ns)

Max ECC-
Replayed
Read Req.
Lat. (ns)

Rand All-Rd 3.63E-06 123.16 1199.38 371.36 798.13
Rand 2R1W 4.76E-06 177.51 1781.25 711.00 1167.50
Seq All-Rd 1.30E-06 120.93 781.25 351.56 631.88
Seq 2R1W 4.13E-06 171.40 1180.63 475.83 901.25
Jedec-like 4.71E-06 195.11 1918.13 437.71 849.38

Rand All-Rd Rand 2R1W Seq All-Rd Seq 2R1W JEDEC-like
0

100

200

300

400

500

600

700
Latency Breakdown of ECC Replayed Read Requests in Nanoseconds

Normal Read
Stuck Detect Wr&Rd
Stuck Comb Replay

Figure 16: Latency Breakdown of ECC Replayed Read Re-
quests.

The overall performance impact of ECC Replay is negligible–
both average latency and bandwidth loss are within 0.2% in all five
workloads. This is because ECC Replay has a really low trigger

Table 5: ECC Replay Effectiveness On Different Target Sys-
tems

Target System Error Tol- Error Tolerance of ECC Replay
ECC Con-
fig

UBER
Target

MISC
Rate
Target

erance of
Baseline
(Max BER)

Max Soft
BER

Max
Stuck Bit
Rate

Stuck
Toler-
ance
Ratio

BCH-4 1E-15 1E-17 5E-6 5E-6 2E-5 4×
BCH-6 1E-18 1E-22 1E-5 1E-5 3E-4 30×
BCH-8 1E-21 1E-25 5E-5 5E-5 6E-4 12×
BCH-10 1E-22 1E-29 1E-4 1E-4 1E-3 10×
BCH-12 1E-22 1E-32 2E-4 2E-4 4E-3 20×
BCH-14 1E-22 1E-33 5E-4 5E-4 9E-3 18×
BCH-16 1E-20 1E-34 1E-3 1E-3 3E-2 30×

rate in 1E-6 range, as shown in Table 4. Table 4 also shows that,
though the average latency of ECC Replayed read requests is longer
than the average read request latency, the max ECC Replayed read
request latency is within 1000ns and always smaller than the max
read request latency. This indicates ECC Replay doesn’t introduce
extra tail latency for read requests.

Figure 16 shows that the breakdown of average ECC Replayed
read request latency.We can see that:

• Expensive as it may sound, replaying stuck combinations
actually represents a small fraction (less than 100ns in all
workloads) of the overall latency of ECC Replayed read
requests.

• The stuck detection read and write commands are respon-
sible for a larger but still very affordable fraction of overall
ECC Replay latency.

6 DISCUSSION: EFFECTIVENESS OF ECC
REPLAY ON OTHER ECC CONFIGURATIONS

We believe ECC Replay is a general scheme which can be used in a
wide variety of ECC schemes and target systems. To verify this, we
apply ECC Replay to wide range of target systems with different
BCH algorithms and reliability targets. For each configuration:

• We first calculate the max tolerable BER for the baseline
system only using Normal Read. Note that, here the bit
errors contain both soft errors and stuck bit errors.

• We then calculate the error tolerance of ECC Replay, which
contains the Max Soft BER and Max Stuck Bit Rate.

• We then calculate the Stuck Tolerance Ratio of ECC Replay,
which the ratio ofMax Stuck Bit Rate of ECC Replay toMax
BER of baseline.

As is shown in Table 5, the max soft BER of ECC Replay is same
with the max BER of the baeline, indicating that ECC Replay doesn’t
degrade the soft error correction capability of the ememory system.
At the same time, ECC Replay manages to achieve high Stuck Toler-
ance Ratio (4–30 ×), indicating that ECC Replay effectively tolerates
high stuck bit rate in all the configurations.

7 RELATEDWORK
The concept of replaying stuck bit combinations has actually been
covered in a 1980s patent [6]. Our paper, based on detailed modeling
and simulation, shows that it is an ideal foundation to solve the stuck
bit problem of emerging memories. Our paper also proposed crucial
enhancements (i.e., Undercorrection, Replay Result Interpretation) to

ECC Replay: A Practical and Efficient Scheme To Tolerate High Stuck Bit Rate in Emerging Memories

achieve the required MISC Rate target and avoid creating a large
tail latency.

Using undercorrection of BCH code to reduce miscorrection rate
has been proposed in patent [14]. This patent targets a layered read
scheme for emerging memories, where:

• A fast but more errornous read is performed first;
• If the fast read returns an error, the memory controller

issues a slow but more accurate read.
The issue of this layered read scheme is that the fast read layer
has an unacceptable high miscorrection rate because of fast read’s
high BER (bit error rate). The patent [14] proposes to undercorrect
BCH decoding of the fast reads, therefore the Miscorrection Rate is
dramatically reduced at the expense of higher fast read fail rate.

Flexible stuck correction approaches, including ECP [30], SAFER
[31], Free-P [37], PAYG [28], etc., are based on the same observation
that not all the codewords have many stuck bits. Same with ECC
Replay, these schemes typically have a default read scheme with
relatively limited error correction capability, and if the default read
scheme fails, a fallback read mechanism is triggered to handle the
stuck bits. Different from ECC Replay, the recovery schemes of
these prior approaches usually involve pointer chasing to read addi-
tional codewords containing the stuck bits information, which adds
substantial complexity to the system. Also, the storage efficiency
of these approaches are not necessarily better than state-of-the-art
ECC approach like BCH—for example, ECP6 [30] has an overhead
of 11.9% and can correct up to 6 stuck-only bits; FREE-p [37] has
an overhead of 12.5% and can correct up to 4 error bits. Both ECP6
[30] and FREE-p [37] are actually inferior than our baseline BCH-6
ECC, which has an overhead of 11.7% and can correct up to 6 error
bits of any kind. Compared to these prior approaches, ECC Replay,
which achieves aggressive 30x tolerance to Stuck Bit Rate with
low complexity, negligible performance degradation and no storage
overhead, is more advanced and practical.

Another class of solutions to stuck bit issue is stuck bit encoding
[21–23, 25]. Based on the observation that a stuck bit only manifests
as a bit error when encoded the opposite data, stuck bit encoding
tries to encode the codeword so the stuck bits do not show as bit
errors. Though well-intentioned, stuck bit encoding faces some
practical difficulties: first, the controller needs to know the location
of stuck bits in write encoding, so for each write it needs to perform
an additional read to the codeword to get the stuck bit location
information, which is costly in terms of write performance; second,
such multi-encoding schemes likely increase the probability of
miscorrection. However to our best knowledge, none of such prior
proposals has studied their impact on MISC Rate.

8 CONCLUSION
Stuck bits of emerging memories are typically caused by media
endurance and manufacturing failures, which are dominant failures
of emerging memories. As a result, tolerating more stuck bits can
greatly help simplify the manufacturing process and improve yield,
and thus reduce the cost. In this paper, we first quantify UBER,
MISC Rate requirements of a practical emerging memory system
with both soft errors and stuck bits. The modeling results show
that MISC Rate is often the system reliability bottleneck and has
to handled properly. With this in mind, we present a layered ECC

framework which triggers a recovery scheme (i.e., ECC Replay) if
the initial read is an uncorrectable. ECC Replay detects the stuck bits
by writing specific data and then reading back, then exhausts all the
data combinations of the stuck bits and decodes them again through
a separate ECC decoder. We also propose crucial schemes, including
Undercorrection and conservative ECC Replay results interpretation,
to minimize MISC Rate. Our modeling and simulation results show
that ECC Replay achieves 30× improvement of stuck-bit tolerance
with negligible impact on overall system performance in terms of
memory bandwidth and read latency distribution. Moreover, our
scheme achieves this aggressive goal with minimal change in the
memory controller architecture and no change to the emerging
memory media, making it an ideal solution to practical emerging
memory products.

ACKNOWLEDGMENTS
We would like to thank Dr. Martin Hassner for his generous help
in the initial phase of this project.

REFERENCES
[1] “DRAM Market to Reach USD 272.5 Billion,” https://finance.yahoo.com/news/

dram-market-reach-usd-272-010000616.html.
[2] “Intel’s Optane Business Haemorrhaged Over Half a Billion Dollars in 2020,”

https://www.tomshardware.com/news/intel-optane-massive-losses.
[3] “Large language model,” https://en.wikipedia.org/wiki/Large_language_model.
[4] “Soft-Decoding in LDPC based SSD Controllers,” https://www.eetimes.com/soft-

decoding-in-ldpc-based-ssd-controllers/.
[5] H. Akinaga and H. Shima, “Resistive random access memory (reram) based on

metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2237–2251, 2010.
[6] D. L. Arlington, C.-L. Chen, and E. K. Evans, “Extended error correction for

package error correction codes,” Apr. 28 1987, uS Patent 4,661,955.
[7] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro, F. Pellizzer, F. Ot-

togalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi, and G. Casagrande, “An 8mb
demonstrator for high-density 1.8v phase-change memories,” in 2004 Symposium
on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525), 2004, pp.
442–445.

[8] N. Bidokhti, “Ssd next gen rdt,” in 2016 Annual Reliability and Maintainability
Symposium (RAMS), 2016, pp. 1–4.

[9] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu, and F. T.
Chen, “Rram defect modeling and failure analysis based on march test and a
novel squeeze-search scheme,” IEEE Transactions on Computers, vol. 64, no. 1, pp.
180–190, 2014.

[10] T. Endoh, H. Honjo, K. Nishioka, and S. Ikeda, “Recent progresses in stt-mram and
sot-mram for next generation mram,” in 2020 IEEE Symposium on VLSI Technology,
2020, pp. 1–2.

[11] A. Fazio, “Advanced technology and systems of cross point memory,” in 2020
IEEE International Electron Devices Meeting (IEDM). IEEE, 2020, pp. 24–1.

[12] M. Ferrari, P. Amato, C. Laurent, M. Sforzin, L. Barletta, and S. Bellini, “Ultra-fast
error correction and detection for low-latency storage applicationswith emerging
memories,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
2018, pp. 1–5.

[13] G. Forney, “On decoding bch codes,” IEEE Transactions on information theory,
vol. 11, no. 4, pp. 549–557, 1965.

[14] M. Hassner, M. N. A. Tran, W. Parkinson, M. Grobis, N. Franklin, and R. Ramanu-
jan, “Programmable ecc for mram mixed-read scheme,” Apr. 30 2024, uS Patent
11,972,822.

[15] S. Ikegawa, F. B. Mancoff, and S. Aggarwal, “Commercialization of mram–
historical and future perspective,” in 2021 IEEE International Interconnect Tech-
nology Conference (IITC). IEEE, 2021, pp. 1–3.

[16] S. Jaffer, S. Maneas, A. Hwang, and B. Schroeder, “The reliability of modern file
systems in the face of ssd errors,” ACM Transactions on Storage (TOS), vol. 16,
no. 1, pp. 1–28, 2020.

[17] JESD219, “Solid-state drive (ssd) endurance workloads,” 2010.
[18] S. H. Jo, T. Kumar, S. Narayanan, W. D. Lu, and H. Nazarian, “3d-stackable

crossbar resistive memory based on field assisted superlinear threshold (fast)
selector,” in 2014 IEEE International Electron Devices Meeting, 2014, pp. 6.7.1–6.7.4.

[19] D. Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. Diaz, N. Le-
ung, J. Wu, S. Lee, T. Langtry, K. wei Chang, C. Papagianni, J. Lee, J. Hirst, S. Erra,
E. Flores, N. Righos, H. Castro, and G. Spadini, “A stackable cross point phase

https://finance.yahoo.com/news/dram-market-reach-usd-272-010000616.html
https://finance.yahoo.com/news/dram-market-reach-usd-272-010000616.html
https://www.tomshardware.com/news/intel-optane-massive-losses
https://en.wikipedia.org/wiki/Large_language_model
https://www.eetimes.com/soft-decoding-in-ldpc-based-ssd-controllers/
https://www.eetimes.com/soft-decoding-in-ldpc-based-ssd-controllers/

Lunkai Zhang and Nate Franklin

change memory,” in 2009 IEEE International Electron Devices Meeting (IEDM),
2009, pp. 1–4.

[20] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3: A cycle-accurate,
thermal-capable dram simulator,” IEEE Computer Architecture Letters, vol. 19,
no. 2, pp. 106–109, 2020.

[21] R. Maddah, S. Cho, and R. Melhem, “Power of one bit: Increasing error correc-
tion capability with data inversion,” in 2013 IEEE 19th Pacific Rim International
Symposium on Dependable Computing, 2013, pp. 216–225.

[22] R. Maddah, S. Cho, and R. Melhem, “Symbol shifting: Tolerating more faults in
pcm blocks,” IEEE Transactions on Computers, vol. 65, no. 7, pp. 2270–2283, 2016.

[23] R. Maddah, R. Melhem, and S. Cho, “Rdis: Tolerating many stuck-at faults in
resistive memory,” IEEE Transactions on Computers, vol. 64, no. 3, pp. 847–861,
2015.

[24] A. Marelli and R. Micheloni, “False decoding probability (detection) of bch and
ldpc codes,” Flash Memory Summit, vol. 11, 2016.

[25] R. Melhem, R. Maddah, and S. Cho, “Rdis: A recursively defined invertible set
scheme to tolerate multiple stuck-at faults in resistive memory,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012), 2012,
pp. 1–12.

[26] G. Panagopoulos, C. Augustine, and K. Roy, “Modeling of dielectric breakdown-
induced time-dependent stt-mram performance degradation,” in 69th Device
Research Conference. IEEE, 2011, pp. 125–126.

[27] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. L. La-
caita, and R. Bez, “Reliability study of phase-change nonvolatile memories,” IEEE
Transactions on Device and Materials Reliability, vol. 4, no. 3, pp. 422–427, 2004.

[28] M. K. Qureshi, “Pay-as-you-go: Low-overhead hard-error correction for phase
change memories,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011, pp. 318–328.

[29] W. E. Ryan et al., “An introduction to ldpc codes,” CRC Handbook for Coding and
Signal Processing for Recording Systems, vol. 5, no. 2, pp. 1–23, 2004.

[30] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ecp, not ecc, for hard
failures in resistive memories,” ACM SIGARCH Computer Architecture News,
vol. 38, no. 3, pp. 141–152, 2010.

[31] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee, “Safer:
Stuck-at-fault error recovery for memories,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2010, pp. 115–124.

[32] S. Shiratake, “Scaling and performance challenges of future dram,” in 2020 IEEE
international memory workshop (IMW). IEEE, 2020, pp. 1–3.

[33] D. Strukov, “The area and latency tradeoffs of binary bit-parallel bch decoders
for prospective nanoelectronic memories,” in 2006 Fortieth Asilomar Conference
on Signals, Systems and Computers, 2006, pp. 1183–1187.

[34] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi,
A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, “Low power and high
speed switching of ti-doped nio reram under the unipolar voltage source of less
than 3 v,” in 2007 IEEE International Electron Devices Meeting, 2007, pp. 767–770.

[35] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their applications. John
Wiley & Sons, 1999.

[36] J. Yang-Scharlotta, M. Fazio, M. Amrbar, M. White, and D. Sheldon, “Reliability
characterization of a commercial tao x-based reram,” in 2014 IEEE International
Integrated Reliability Workshop Final Report (IIRW). IEEE, 2014, pp. 131–134.

[37] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi, and
M. Erez, “Free-p: Protecting non-volatile memory against both hard and soft
errors,” in 2011 IEEE 17th International Symposium on High Performance Computer
Architecture. IEEE, 2011, pp. 466–477.

9 APPENDIX
We use the target media capability of 1E-5 Soft BER, 3E-4 Stuck Bit
Rate and 50% S2E Rate, and BCH-6 error correction code.

9.1 Getting Miscorrection Probability of BCH
(BCH_Misc_Prob)

𝑇𝑜𝑡𝑎𝑙_𝐶𝑤_𝐶𝑜𝑚𝑏 = 2𝑐𝑤_𝑠𝑖𝑧𝑒 (4)

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒_𝐶𝑜𝑚𝑏 =

𝑒𝑐𝑐_𝑙𝑖𝑚𝑖𝑡∑︁
𝑒𝑟𝑟𝑜𝑟𝑠=0

𝐶 (𝑐𝑤_𝑠𝑖𝑧𝑒, 𝑒𝑟𝑟𝑜𝑟𝑠) (5)

𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒_𝐶𝑜𝑚𝑏 = 𝑇𝑜𝑡𝑎𝑙_𝐶𝑤_𝐶𝑜𝑚𝑏 − 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒_𝐶𝑜𝑚𝑏 (6)

𝑀𝑖𝑠𝑐_𝐶𝑜𝑚𝑏 = (2𝑢𝑠𝑒𝑟_𝑏𝑖𝑡𝑠 − 1) × 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒_𝐶𝑜𝑚𝑏 (7)

𝐵𝐶𝐻_𝑀𝑖𝑠𝑐_𝑃𝑟𝑜𝑏 =
𝑀𝑖𝑠𝑐_𝐶𝑜𝑚𝑏

𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑏𝑙𝑒_𝐶𝑜𝑚𝑏
(8)

This subsection shows how to approximate BCH_Misc_Prob of
baseline BCH code:

• Equation 4 calculates the total combinations of the code-
word space.

• Equation 5 provides the correctable combinations of the
target codeword, which is the sum of the combinations with
number of bit errors within its ECC Limit.

• Equation 6 provides the uncorrectable combinations (in-
cluding miscorrections), which is the total combinations
of the codeword space except for the correctable combina-
tions.

• Equation 7 provides the miscorrection combinations of the
target codeword, which is the sum of correctable combina-
tions of all other codewords.

• Equation 8 provides the probability of miscorrection when
the number of bit errors is larger than ECC Limit. Since
this probability can be estimated as a constant, it can be
approximated as the combinations of all correctables in all
codewords divided by the total combinations of the code-
word space. In our baseline BCH-6 ([572, 512, 13]) ECC
configuration, this value is 4.2E-5.

ECC Replay: A Practical and Efficient Scheme To Tolerate High Stuck Bit Rate in Emerging Memories

Algo. 1: Computing the probability of having X stuck bits
and Y soft bit errors given the Stuck Bit Rate and Soft BER.
Stuck_Bit_Rate = 3E-4; Soft_BER = 1E-5; ECC_Limit = 6;

def computeMediaFailureProb(Total_Bits , Stuck_Bit_Rate , Soft_BER):

Media_Fail_Prob_Array = [][];

for Stuck_Bits in range(0, Total_CW_Bits):

Stuck_Bits_Prob = binom.pmf(Stuck_Bits ,Total_Bits ,

Stuck_Bit_Rate);

Func_Bits = Total_CW_Bits -Stuck_Bits;

for Soft_Errors in range(0, Total_Bits -Stuck_Bits):

Soft_Error_Prob = binom.pmf(Soft_Errors ,Func_Bits ,Soft_BER

);

Combined_Prob = Stuck_Bits_Prob * Soft_Error_Prob;

Media_Fail_Prob_Array[Stuck_Bits][Soft_Errors] =

Combined_Prob;

return Media_Fail_Prob_Array;

Soft Bit Errors
0 1 2 3 4 5 6 7

St
uc
k
Bi
ts

0 0.8375 0.0048 1.4E-05 2.6E-08 3.7E-11 4.2E-14 4.0E-17 3.2E-20
1 0.1438 8.2E-04 2.3E-06 4.4E-09 6.3E-12 7.1E-15 6.7E-18 5.4E-21
2 0.0123 7.0E-05 2.0E-07 3.8E-10 5.4E-13 6.1E-16 5.7E-19 4.6E-22
3 7.0E-04 4.0E-06 1.1E-08 2.1E-11 3.0E-14 3.4E-17 3.2E-20 2.6E-23
4 3.0E-05 1.7E-07 4.8E-10 9.1E-13 1.3E-15 1.5E-18 1.4E-21 1.1E-24
5 1.0E-06 5.8E-09 1.6E-11 3.1E-14 4.4E-17 4.9E-20 4.6E-23 3.7E-26
6 2.9E-08 1.6E-10 4.6E-13 8.7E-16 1.2E-18 1.4E-21 1.3E-24 1.0E-27
7 7.0E-10 4.0E-12 1.1E-14 2.1E-17 3.0E-20 3.3E-23 3.1E-26 2.5E-29

Algo. 2: Computing the probability of X stuck bits resulting
in Y stuck errors.
S2E_Rate = 0.5; #The rate of a stuck bit becoming a stuck error.

def computeStuck2ErrorProb(Total_CW_Bits , S2E_Rate):

Stuck2Error_Prob_Array = [][];

for Stuck_Bits in range(0, Total_CW_Bits):

for Stuck_Errors in range(0, Stuck_Bits +1):

S2E_Prob = binom.pmf(Stuck_Errors ,Stuck_Bits ,

S2E_Rate);

Stuck2Error_Prob_Array[Stuck_Bits][Stuck_Errors] =

S2E_Prob;

return Stuck2Error_Prob_Array;

Stuck Errors
0 1 2 3 4 5 6 7

St
uc
k
Bi
ts

0 1.000
1 0.500 0.500
2 0.250 0.500 0.250
3 0.125 0.375 0.375 0.125
4 0.063 0.250 0.375 0.250 0.063
5 0.031 0.156 0.312 0.312 0.156 0.031
6 0.016 0.094 0.234 0.312 0.234 0.094 0.016
7 0.008 0.055 0.164 0.273 0.273 0.164 0.055 0.008

9.2 Failure Modeling of Stuck Bits and Soft Bit
Errors

In this subsection, we present the details of failure modeling BCH
code with given Soft BER, Stuck Bit Rate and S2E Rate. We first
calculate the UNC Rate:

• Following Section 3.4, Algorithm 1 calculates a 2D proba-
bility array of having X stuck bits and Y soft bit errors, and
the following table shows the result.

• Algorithm 2 calculates the probability of having Y stuck
errors out of X stuck bits, and the following table shows the
result.

• With the results of Algorithms 2, Algorithm 3 calculates
a probability 2D array of having an Uncorrectable with X
stuck bits and Y soft bit errors, and the following table
shows the result.

• Combining the result of Algorithms 1 and 3, Algorithm 4
calculates the UNC Rate with the given media capability.

We now calculate the MISC Rate:

• With the results of Algorithm 2, Algorithm 5 calculates a
2D array of the probability of having a Miscorrection with
X stuck bits and Y soft bit errors, and the following table
shows the result.

• Combining the result of Algorithms 1 and 5, Algorithm 6
calculates the MISC Rate.

Algo. 3: Computing the probability of having an uncor-
rectable when a codeword has X stuck bits and Y soft bit
errors
Total_CW_Bits =572; ECC_Limit = 6; S2E_Rate = 0.5;

def computeMediaFail2UncProb(Total_CW_Bits ,S2E_Rate ,ECC_Limit):

MediaFail2Unc_Prob_Array = [][];

S2E_Prob_Array=computeStuck2ErrProb(Total_CW_Bits ,S2E_Rate);

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

MediaFail2Unc_Prob = 0;

for Stuck_Errs in range(0, Stuck_Bits +1):

if Stuck_Errs + Soft_Errs > ECC_Limit:

MediaFail2Unc_Prob += S2E_Prob_Array[Stuck_Bits][

Soft_Errs];

MediaFail2Unc_Prob_Array[Stuck_Bits][Soft_Errors] =

MediaFail2Unc_Prob;

return MediaFail2Unc_Prob_Array;

Soft Bit Errors
0 1 2 3 4 5 6 7

St
uc
k
Bi
ts

0 0 0 0 0 0 0 0 100%
1 0 0 0 0 0 0 50.0% 100%
2 0 0 0 0 0 25.0% 75.0% 100%
3 0 0 0 0 12.5% 50.0% 87.5% 100%
4 0 0 0 6.25% 31.3% 68.8% 93.8% 100%
5 0 0 3.13% 18.8% 50.0% 81.2% 96.9% 100%
6 0 1.56% 10.9% 34.4% 65.6% 89.1% 98.4% 100%
7 0.78% 6.25% 22.7% 50.0% 77.3% 93.7% 99.2% 100%

9.3 Failure Modeling with Undercorrected BCH
Code

In this subsection, we present the details of failure modeling base-
line BCH code with Undercorrection. We first approximate MISC
Rate of BCH code with Undercorrection:

• Equation 9 provides the correctable combinations of a single
codeword with Undercorrection, which is the sum of com-
binations of flipping the number of bits within the chosen
Correct Limit (instead of ECC Limit).

• Equation 10 provides the correctable combinations with
Undercorrection of all codewords.

• Equation 11 calculates the max number of errors to be
miscorrection-free (i.e., NO MISC Distance) with the chosen
Correct Limit.

• Equation 12 estimates the probability ofmiscorrectionwhen
the number of bit errors is larger than NO MISC Distance.

Table 6 shows the probability of miscorrection of BCH-6 code with
different Correct Limits. We can see that, reducing Correct Limit
can effectively reduce the miscorrection probability of BCH-6 code–
Compared with no Undercorrection, a Correct Limit of 3 reduces the
miscorrection probability by more than 6 decades.

Lunkai Zhang and Nate Franklin

𝑆𝑖𝑛𝑔𝑙𝑒_𝐶𝑊 _𝑈𝑛𝑑𝑒𝑟𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝐶𝑜𝑚𝑏

=

𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝐿𝑖𝑚𝑖𝑡∑︁
𝐸𝑟𝑟𝑜𝑟_𝐵𝑖𝑡𝑠=0

𝐶 (𝑇𝑜𝑡𝑎𝑙_𝐵𝑖𝑡𝑠, 𝐸𝑟𝑟𝑜𝑟_𝐵𝑖𝑡𝑠) (9)

𝐴𝑙𝑙_𝐶𝑊𝑠_𝑈𝑛𝑑𝑒𝑟𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝐶𝑜𝑚𝑏

= 2𝑈𝑠𝑒𝑟_𝐵𝑖𝑡𝑠 × 𝑆𝑖𝑛𝑔𝑙𝑒_𝐶𝑊 _𝑈𝑛𝑑𝑒𝑟𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝐶𝑜𝑚𝑏 (10)

𝑁𝑜_𝑀𝐼𝑆𝐶_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2 × 𝐸𝐶𝐶_𝐿𝑖𝑚𝑖𝑡 −𝑈𝑛𝑑𝑒𝑟_𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝐿𝑖𝑚𝑖𝑡 (11)

𝐵𝐶𝐻_𝑀𝐼𝑆𝐶_𝑃𝑟𝑜𝑏 ≈ 𝐴𝑙𝑙_𝐶𝑊𝑠_𝑈𝑛𝑑𝑒𝑟𝐶𝑜𝑟𝑟𝑒𝑐𝑡_𝐶𝑜𝑚𝑏

𝑇𝑜𝑡𝑎𝑙_𝐶𝑊 _𝐶𝑜𝑚𝑏
(12)

Algo. 4: Computing Uncorrectable Rate based on Algothrims
1–3
Total_CW_Bits =572; Stuck_Bit_Rate = 3E-4;

Soft_BER = 1E-5; ECC_Limit = 6; S2E_Rate = 0.5;

def computeUncRate(Total_CW_Bits ,ECC_Limit ,Stuck_Bit_Rate ,Soft_BER

,S2E_Rate):

Media_Fail_Prob_Array = computeMediaFailureProb(Total_CW_Bits ,

Stuck_Bit_Rate , Soft_BER);

MediaFail2Unc_Prob_Array = computeMediaFail2UncProb(

Total_CW_Bits ,S2E_Rate ,ECC_Limit);

UNC_Rate = 0;

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

UNC_Rate = UNC_Rate + Media_Fail_Prob_Array[Stuck_Bits][

Soft_Errors] * MediaFail2Unc_Prob_Array[Stuck_Bits][

Soft_Errors];

return UNC_Rate;

Algorithms 7 and 8 calculate UNC Rate and MISC Rate with
Undercorrection. The red texts highlight the key differences from
their no-undercorrection counterparts, which are:

• Using Correct Limit instead of ECC Limit as the uncor-
rectable boundary.

• Using No MISC Diantance instead of ECC Limit as the mis-
correction boundary.

• Having different BCH_MISC_Prob for differentCorrect Limit.

Figure 9 shows UNC Rates andMISC Rates of BCH-6 under different
Correct Limits.

9.4 Failure Modeling of ECC Replay
Compared with the modeling baseline BCH ECC (Section 9.2), the
only difference of modeling ECC Replay is having different UNC
and MISC Probability Arrays. Following Section 4.3 and Table 2,
Figure 17 shows how to derive these arrays from the UNC and MISC
Probability Arrays of baseline BCH ECC.

Table 6: BCH_MISC_Prob of BCH-6 ECC Code with Different
Correct_Limit

Correct Limit 3 4 5 6 (No Undercorrec-
tion)

BCH_MISC_Prob 2.7E-11 3.9E-09 4.4E-07 4.2E-05

Algo. 5: Computing the probability of having a miscorrection
when a codeword has X stuck bits and Y soft bit errors
Total_CW_Bits =572; ECC_Limit = 6; S2E_Rate = 0.5;

def computeMediaFail2MiscProb(Total_CW_Bits ,S2E_Rate ,ECC_Limit):

Media_Fail2Misc_Prob_Array = [][];

S2E_Prob_Array=computeStuck2ErrProb(Total_CW_Bits ,S2E_Rate);

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

Media_Fail2Misc_Prob = 0;

for Stuck_Errs in range(0, Stuck_Bits +1):

if Stuck_Errs + Soft_Errs > ECC_Limit:

Media_Fail2Misc_Prob += (S2E_Prob_Array[Stuck_Bits][

Soft_Errs] * BCH_MISC_Prob);

Media_Fail2Misc_Prob_Array[Stuck_Bits][Soft_Errors]=

Media_Fail2Misc_Prob;

return Media_Fail2Misc_Prob_Array;

Soft Bit Errors
0 1 2 3 4 5 6 7

St
uc
k
Bi
ts

0 0 0 0 0 0 0 0 4.2E-05
1 0 0 0 0 0 0 2.1E-05 4.2E-05
2 0 0 0 0 0 1.0E-05 3.1E-05 4.2E-05
3 0 0 0 0 5.2E-06 2.1E-05 3.6E-05 4.2E-05
4 0 0 0 2.6E-06 1.3E-05 2.9E-05 3.9E-05 4.2E-05
5 0 0 1.3E-06 7.8E-06 2.1E-05 3.4E-05 4.0E-05 4.2E-05
6 0 6.5E-07 4.5E-06 1.4E-05 2.7E-05 3.7E-05 4.1E-05 4.2E-05
7 3.2E-07 2.6E-06 9.4E-06 2.1E-05 3.2E-05 3.9E-05 4.1E-05 4.2E-05

Algo. 6: ComputingMISC Rate based on Algothrims 1, 2&5
Total_CW_Bits =572; Stuck_Bit_Rate = 3E-4;

Soft_BER = 1E-5; ECC_Limit = 6; S2E_Rate = 0.5;

def computeMiscRate(Total_CW_Bits ,ECC_Limit ,Stuck_Bit_Rate ,

Soft_BER ,S2E_Rate):

Media_Fail_Prob_Array = computeMediaFailureProb(Total_CW_Bits ,

Stuck_Bit_Rate , Soft_BER);

Media_Fail2Misc_Prob_Array = computeMediaFail2MiscProb(

Total_CW_Bits ,S2E_Rate ,ECC_Limit);

MISC_Rate = 0;

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

MISC_Rate += (Media_Fail_Prob_Array[Stuck_Bits][Soft_Errors

]* Media_Fail2Misc_Prob_Array[Stuck_Bits][Soft_Errors]);

return MISC_Rate;

Algo. 7: Computing Uncorrectable Rate with Undercorrection.
The differences from full strength case are marked in red.
Total_CW_Bits =572; Stuck_Bit_Rate = 3E-4;

Soft_BER = 1E-5; ECC_Limit = 6; S2E_Rate = 0.5;

Correct_Limit = a value in range from 3 to 6;

def computeUncRate(Total_CW_Bits ,Correct_Limit ,Stuck_Bit_Rate ,

Soft_BER ,S2E_Rate):

Media_Fail_Prob_Array = computeMediaFailureProb(Total_CW_Bits ,

Stuck_Bit_Rate , Soft_BER);

MediaFail2Unc_Prob_Array = computeMediaFail2UncProb(

Total_CW_Bits ,S2E_Rate ,Correct_Limit);

UNC_Rate = 0;

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

UNC_Rate = UNC_Rate + Media_Fail_Prob_Array[Stuck_Bits][

Soft_Errors] * MediaFail2Unc_Prob_Array[Stuck_Bits][

Soft_Errors];

return UNC_Rate;

ECC Replay: A Practical and Efficient Scheme To Tolerate High Stuck Bit Rate in Emerging Memories

So� Bit Errors

0 1 2 3 4 5 6 7 8

S
t
u

c
k

 B
it

s

0 0 0 0 0 0 0 0 100.00% 100.00%

1 0 0 0 0 0 0 50.00% 100.00% 100.00%

2 0 0 0 0 0 25.00% 75.00% 100.00% 100.00%

3 0 0 0 0 12.50% 50.00% 87.50% 100.00% 100.00%

4 0 0 0 6.25% 31.25% 68.75% 93.75% 100.00% 100.00%

5 0 0 3.13% 18.75% 50.00% 81.25% 96.87% 100.00% 100.00%

6 0.00% 1.56% 10.94% 34.38% 65.63% 89.06% 98.44% 100.00% 100.00%

7 0.78% 6.25% 22.66% 50.00% 77.34% 93.75% 99.22% 100.00% 100.00%

8 3.52% 14.45% 36.33% 63.67% 85.55% 96.48% 99.61% 100.00% 100.00%

So� Bit Errors

0 1 2 3 4 5 6 7 8

S
t
u

c
k

 B
it

s

0 0 0 0 0 0 0 0 4.15E-05 4.15E-05

1 0 0 0 0 0 0 2.08E-05 4.15E-05 4.15E-05

2 0 0 0 0 0 1.04E-05 3.12E-05 4.15E-05 4.15E-05

3 0 0 0 0 5.19E-06 2.08E-05 3.63E-05 4.15E-05 4.15E-05

4 0 0 0 2.60E-06 1.30E-05 2.86E-05 3.89E-05 4.15E-05 4.15E-05

5 0 0 1.30E-06 7.79E-06 2.08E-05 3.37E-05 4.02E-05 4.15E-05 4.15E-05

6 0 6.49E-07 4.54E-06 1.43E-05 2.73E-05 3.70E-05 4.09E-05 4.15E-05 4.15E-05

7 3.25E-07 2.60E-06 9.41E-06 2.08E-05 3.21E-05 3.89E-05 4.12E-05 4.15E-05 4.15E-05

8 1.46E-06 6.00E-06 1.51E-05 2.64E-05 3.55E-05 4.01E-05 4.14E-05 4.15E-05 4.15E-05

So� Bit Errors

0 1 2 3 4 5 6 7 8

S
t
u

c
k

 B
it

s

0 0 0 0 0 0 0 0 100.00% 100.00%

1 0 0 0 0 0 0 2.08E-05 100.00% 100.00%

2 0 0 0 0 0 1.04E-05 3.12E-05 100.00% 100.00%

3 0 0 0 0 5.19E-06 2.08E-05 3.63E-05 100.00% 100.00%

4 0 0 0 2.60E-06 1.30E-05 2.86E-05 3.89E-05 100.00% 100.00%

5 0 0 1.30E-06 7.79E-06 2.08E-05 3.37E-05 4.02E-05 100.00% 100.00%

6 0 6.49E-07 4.54E-06 1.43E-05 2.73E-05 3.70E-05 4.09E-05 100.00% 100.00%

7 3.25E-07 2.60E-06 9.41E-06 2.08E-05 3.21E-05 3.89E-05 4.12E-05 100.00% 100.00%

8 1.46E-06 6.00E-06 1.51E-05 2.64E-05 3.55E-05 4.01E-05 4.14E-05 100.00% 100.00%

So� Bit Errors

0 1 2 3 4 5 6 7 8

S
t
u

c
k

 B
it

s

0 0 0 0 0 0 0 0 4.15E-05 4.15E-05

1 0 0 0 0 0 0 0 4.15E-05 4.15E-05

2 0 0 0 0 0 0 0 4.15E-05 4.15E-05

3 0 0 0 0 0 0 0 4.15E-05 4.15E-05

4 0 0 0 0 0 0 0 4.15E-05 4.15E-05

5 0 0 0 0 0 0 0 4.15E-05 4.15E-05

6 0 0 0 0 0 0 0 4.15E-05 4.15E-05

7 0 0 0 0 0 0 0 4.15E-05 4.15E-05

8 0 0 0 0 0 0 0 4.15E-05 4.15E-05

Media Fail to Uncorrectable Probability Array of Baseline ECC (BCH-6)

Media Fail to Miscorrec�on Probability Array of Baseline ECC (BCH-6)

Media Fail to Uncorrectable Probability Array of ECC Replay with BCH-6

Media Fail to Miscorrec�on Probability Array of ECC Replay with BCH-6

Figure 17: Quantifying UNC Rate and MISC Rate of ECC Replay. As is mentioned in Section 4.3, if the number of Soft Bit
Errors is within ECC Limit (6 for BCH-6), ECC Replay (1) removes all the baseline Uncorrectables; (2) transfers all the baseline
Miscorrections to Uncorrectables.

Algo. 8: Computing Miscorrection Rate with Undercorrection.
The differences from full strength case are marked in red.
Total_CW_Bits =572; Stuck_Bit_Rate = 3E-4;

Soft_BER = 1E-5; ECC_Limit = 6; S2E_Rate = 0.5;

Correct_Limit = a value in range from 3 to 6;

#Returns A 2D array of probability of having an uncorrectable

when a codeword

#has X stuck bits and Y soft bit errors

Total_CW_Bits =572; ECC_Limit = 6; S2E_Rate = 0.5;

def computeMediaFail2MiscProb(Total_CW_Bits ,S2E_Rate ,ECC_Limit ,

Correct_Limit):

Media_Fail2Misc_Prob_Array = [][];

No_Misc_Diantance = ECC_Limit * 2 - Correct_Limit;

S2E_Prob_Array=computeStuck2ErrProb(Total_CW_Bits ,S2E_Rate);

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

Media_Fail2Misc_Prob = 0;

for Stuck_Errs in range(0, Stuck_Bits +1):

Total_Errs = Stuck_Errs + Soft_Errs;

if Total_Errs > No_Misc_Diantance:

Media_Fail2Misc_Prob += (S2E_Prob_Array[Stuck_Bits][

Soft_Errs] * BCH_MISC_Prob[Total_Errs]);

Media_Fail2Misc_Prob_Array[Stuck_Bits][Soft_Errors]=

Media_Fail2Misc_Prob;

return Media_Fail2Misc_Prob_Array;

def computeMiscRate(Total_CW_Bits ,ECC_Limit ,Correct_Limit ,

Stuck_Bit_Rate ,Soft_BER ,S2E_Rate):

Media_Fail_Prob_Array = computeMediaFailureProb(Total_CW_Bits ,

Stuck_Bit_Rate , Soft_BER);

Media_Fail2Misc_Prob_Array = computeMediaFail2MiscProb(

Total_CW_Bits ,S2E_Rate ,ECC_Limit ,Correct_Limit);

MISC_Rate = 0;

for Stuck_Bits in range(0, Total_CW_Bits +1):

for Soft_Errors in range(0, Total_CW_Bits -Stuck_Bits +1):

MISC_Rate += (Media_Fail_Prob_Array[Stuck_Bits][Soft_Errors

]* Media_Fail2Misc_Prob_Array[Stuck_Bits][Soft_Errors]);

return MISC_Rate;

	Abstract
	1 Introduction
	2 Background of Emerging Memory Systems
	2.1 Emerging Memory Die Structure and Its Implication on Non-Clustering Bit Fails
	2.2 Stuck Bit Errors and Soft Bit Errors
	2.3 Uncorrectables and Miscorrections

	3 Failure Modeling and Problem Statement
	3.1 Reliability Metrics of Memory System
	3.2 BCH ECC for Emerging Memories
	3.3 Basic BCH Failure Modeling with a Unified BER
	3.4 Failure Modeling with BCH Schemes with Separate Considerations of Soft Bit Errors and Stuck Bits
	3.5 Problem Statement

	4 ECC Replay
	4.1 Proposed ECC Hierarchy and Requirements
	4.2 Undercorrecting Normal Reads to Reduce MISC Rate
	4.3 The Architecture and Scheme of ECC Replay
	4.4 Capping ECC Replay Tail Latency By Caching Many-Stuck Codewords
	4.5 Reliability Summary

	5 Performance Evaluation
	5.1 Methodology
	5.2 Results

	6 Discussion: Effectiveness of ECC Replay on Other ECC Configurations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	9 Appendix
	9.1 Getting Miscorrection Probability of BCH (BCH_Misc_Prob)
	9.2 Failure Modeling of Stuck Bits and Soft Bit Errors
	9.3 Failure Modeling with Undercorrected BCH Code
	9.4 Failure Modeling of ECC Replay

