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Abstract

The escalating cost of DRAM and the typically high compressibil-
ity of memory content make main memory compression highly
desirable. However, its practical deployment has been hindered
by significant challenges, including its adverse impact on perfor-
mance and, more critically, the substantial integration challenges it
poses to computing infrastructure. The emerging Compute Express
Link (CXL) ecosystem provides a unique opportunity to implement
main memory compression with minimal integration overhead,
shifting the primary adoption barrier towards performance impact.
This paper tackles this challenge by introducing three simple yet
effective design techniques to enhance the design of compression-
capable CXL memory controllers. The first two techniques improve
the trade-off between compression ratio and speed performance
by dynamically adjusting compression configurations in adapta-
tion to runtime data characteristics. The third technique mitigates
compression-induced speed performance degradation by decou-
pling the in-memory placement of compressed data blocks from
their associated error correction code (ECC) redundancy. To evalu-
ate these techniques, we performed RTL-level design and synthesis
to estimate silicon cost overhead and developed a simulation plat-
form to capture the trade-offs between compression ratio and speed
performance. The results demonstrate that the proposed techniques
effectively improve compression ratio vs. performance trade-offs
with negligible silicon cost overhead.
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1 Introduction

The high cost of DRAM has become a critical concern in mod-
ern computing systems, with memory expenses accounting for
a significant portion of the total cost of ownership (TCO). For
instance, Microsoft Azure recently reported [19] that DRAM al-
ready accounts for more than 50% of their server costs. Given the
typically high compressibility of memory-resident content, main

memory compression appears to be a promising solution to this
memory cost crisis. However, despite decades of research efforts
[2, 10, 18, 29, 33, 38], main memory compression has struggled to
transition from academic exploration to real-world deployment.
The two primary obstacles are the performance degradation and
the complexity of integrating memory compression into existing
computing infrastructure.

The advent of Compute Express Link (CXL) offers an unprece-
dented opportunity to overcome the system integration challenges.
By decoupling memory resources from host processors, CXL en-
ables the realization of main memory compression with minimal
disruption to existing infrastructure. This has generated signifi-
cant industry interest. For instance, in 2023 the Open Compute
Project (OCP) released a specification for compression-capable CXL
memory devices, co-authored by Google and Meta [24], and in
2024 Marvell announced the world’s first compression-capable CXL
memory controller chip [15]. Unlike prior research that primarily
focused on per-cacheline compression, intra-CXL compression tar-
gets large block sizes (e.g., 1KB and 4KB as specified by OCP). This
approach generally achieves much higher compression ratios at the
cost of longer data access latency. Such trade-offs can be acceptable
because CXL memory devices are expected to serve as warm/cold
memory tiers beneath DRAM DIMMs directly connected to host
processors. Memory tiering is well justified by the significant mem-
ory access intensity variation, e.g., Microsoft Azure reported [19]
that ~50% of their VMs touch less than half of their rented memory.

Nonetheless, reducing the performance impact of compression
remains highly desirable and determines how widely compression-
capable CXL memory devices will be adopted. Compression affects
the speed performance of CXL memory devices in three ways. First,
a mapping table should be used to track the location and size of
each compressed data block. Before reading or writing a data block,
CXL memory controller must access this table, introducing latency
overhead. Second, the mismatch between the host access granular-
ity (e.g., 64B cacheline) and the compressed block sizes (e.g., 1KB
or 4KB) amplifies DRAM bandwidth usage. Fetching even a sin-
gle cacheline requires reading and decompressing the entire block.
Third, despite the use of customized high-speed (de)compression
hardware engines in CXL memory controller, the decompression
latency during reads can still impose notable performance overhead.



This paper focuses on addressing the latter two challenges: band-
width amplification and decompression overheads. The first chal-
lenge, involving mapping table access latency, can be mitigated by
integrating an on-chip mapping table SRAM cache on CXL mem-
ory controllers, which can leverage extensive prior research on
cache design. To tackle compression-induced bandwidth amplifi-
cation and decompression overhead, this paper introduces three
simple yet effective design techniques. The first two techniques
empower CXL memory controllers to achieve improved trade-offs
between compression ratio and speed performance, motivated by
two key observations. First, while larger compression block sizes
generally improve compression ratios, the specific correlation be-
tween block size and compression ratio varies across data blocks.
Second, entropy coding (e.g., Huffman coding [14]) can augment
LZ search [39] to further improve compression ratios (e.g., zlib [12]
and ZSTD [5]). However, the compression ratio gain brought by
entropy coding can vary significantly between data blocks. Fur-
thermore, entropy decoding, due to its bit-serial processing nature,
suffers from low throughput. Accordingly, this paper proposes adap-
tive compression granularity and adaptive entropy coding bypassing.
These two techniques share the theme of adaptively configuring
compression settings (i.e., compression block size and entropy cod-
ing ON/OFF) to improve trade-offs between compression ratio and
speed performance. Moreover, since straightforward implementa-
tion of adaptive compression granularity is subject to significant
silicon cost overhead, we further propose a fused dual-stream com-
pressor VLSI architecture to reduce the silicon cost.

The third technique addresses DRAM bandwidth amplification
by enhancing the bandwidth utilization efficiency. To ensure data in-
tegrity, CXL memory devices utilize ECC (error correction code) and
deploy ECC DIMM:s (e.g., 8+2 DDR5 DIMMs). In conventional prac-
tice, each ECC codeword is written to and fetched from ECC DIMM
altogether. The ECC-induced DRAM bandwidth usage overhead is
non-negligible (e.g., 20% in the case of 8+2 DDR5 DIMM). This is the
price one must pay to minimize random cacheline access latency.
Compression-capable CXL memory devices, however, operate on
compressed blocks significantly larger than cachelines. Moreover,
due to very low raw error rates of DRAM devices, error correction
is rarely needed during read operations. This motivates the data
and ECC redundancy disaggregation technique, which avoids fetch-
ing ECC redundancy from DRAM unless necessary. By doing so,
CXL memory devices can use nearly 100% of their internal DRAM
bandwidth for transferring user data.

We carried out experiments and simulations to evaluate the pro-
posed design techniques and show the trade-offs. Using Synopsys
Design Compiler, we conducted RTL-level design and synthesis to
demonstrate the effectiveness of the proposed fused dual-stream
compressor VLSI architecture. Leveraging the popular DRAM sim-
ulator DRAMSim3 [20],we built a simulation platform in support
of compression-capable CXL memory devices, and carried out sim-
ulations under a variety of synthetic and real workloads. The simu-
lation results quantitatively show that the proposed techniques can
notably improve the compression ratio vs. speed performance. The
rest of the paper is organized as follows: Section 2 reviews the back-
ground and discusses the realization of compression-capable CXL
memory devices. Section 3 presents the three proposed techniques
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for mitigating compression-induced performance degradation. Sec-
tion 4 and Section 5 discuss the evaluation methodology and present
experimental results. Finally, Section 6 summarizes related prior
work and Section 7 draws the conclusion.

2 Background
2.1 Main Memory Compression

Although main memory compression has been well researched
[2, 10, 18, 29, 33, 38], it has struggled to gain real-world adoption
due to unfavorable benefit vs. cost trade-offs. To minimize per-
formance impact and simplify system integration, prior research
primarily focused on per-cacheline compression [2, 17, 29]. While
this approach helps to lessen system integration challenge and sys-
tem speed performance impact, it delivers much lower compression
ratios compared to coarse-grained, general-purpose compression
algorithms. Before the advent of CXL [8], host processors were
solely responsible for implementing main memory compression,
requiring complex architectural modifications. This added signifi-
cant complexity to already intricate CPU designs and substantially
increased system integration difficulty. To realize the cost-saving
potential of memory compression, additional mapping table is es-
sential to handle the unpredictable, variable lengths of compressed
data. Despite the use of hardware-accelerated (de)compression,
main memory compression faces notable latency overhead from
mapping table access, particularly in the case of fine-grained per-
cacheline compression. Furthermore, with fixed burst length of
DRAM devices, DRAM DIMMs are optimized for fixed-size cache-
line accesses. Variable-length compressed cachelines often misalign
with this fixed-size structure, further exacerbating latency. Collec-
tively, these factors cause the unfavorable benefit-to-cost trade-offs
that have limited the adoption of main memory compression in
real-world systems.

2.2 CXL: Revive Main Memory Compression

Built upon the mature PCle ecosystem, CXL has been supported
by modern server CPUs, enabling coherent data transfer between
CPUs and attached devices [8]. Among various types of CXL devices,
CXL memory devices have attracted most attentions [23, 31, 35],
with all the major DRAM manufacturers already announcing CXL
memory products. One of the advanced features proposed for these
devices is main memory compression, a capability that aligns with
CXL’s goal of providing a cost-effective and scalable memory tier.

In contrast to prior research, this time the focus is on coarse-
grained compression, targeting significant cost savings. In 2023
OCP released a specification for CXL memory devices that support
1KB~4KB compression [24], and in 2024 Marvell announced the
world’s first compression-capable CXL memory controller chip [15]
compliant to the OCP specification. While coarse-grained com-
pression incurs DRAM read/write amplification and performance
degradation, this trade-off can be acceptable since compression-
capable CXL memory devices are intended to function as warm or
cold memory tiers. Despite using larger-than-cacheline compres-
sion block size, such CXL memory devices still can leverage prior
research [11, 21, 28] to manage the storage of variable-length com-
pressed data. Memory compression inherently involves a trade-off
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Figure 1: Overview of the proposed three design techniques as the cornerstone of the ZipCXL solution.

between compression ratio and performance. Regarding the imple-
mentation of (de)compression hardware data path, one may adopt
the following general principles:

o Matching DRAM bandwidth with multiple hardware accelerators:
Let n.j, denote the number of DDR channels inside CXL memory
devices and B, represent the per-channel bandwidth. The total
(de)compression throughput should match the aggregated band-
width n.y, - B.p. For DDR4 and DDR5, the per-channel bandwidth
B,p, can easily exceed 25GB/s. With just four DDR channels, the ag-
gregated bandwidth can surpass 100GB/s, far beyond the maximum
achievable throughput of a single hardware (de)compression ac-
celerator. Hence, CXL memory controllers must integrate multiple
hardware accelerators to match the aggregated DRAM bandwidth.

o Silicon-cost-driven compression: CXL memory controllers should
integrate an on-chip SRAM write buffer to exploit memory write
locality while hiding compression latency from host CPU. Due
to the high cost of implementing LZ search [1], we should mini-
mize the total silicon area of compression accelerators. Let ncom
denote the number of compression accelerators. To match the to-
tal DRAM bandwidth, each compression accelerator must achieve
a throughput of Beom = % Let fA(me) represent the sili-
con area required for a single throughput-Bcom accelerator. The
on-chip write buffer, which hides compression latency from the
host, provides flexibility to optimize the trade-off between the num-
ber of accelerators (n¢om) and per-accelerator throughput (Beom).
This optimization minimizes the total silicon cost of compression
accelerators by solving:

min (ncom fA(M)) (1)

Ncom Ncom

o Latency-driven decompression: Decompression lies on the critical
path of memory reads, directly impacting system performance. Due
to the sequential nature of LZ decompression, one compressed block
can only be decompressed by a single decompressor. Nonetheless,
this sequential nature also enables pipelining, allowing DRAM-to-
controller data transfer and decompression to overlap: As each byte
is transferred from DRAM to CXL memory controller, it is immedi-
ately fed into the decompression accelerator. Let By, denote the
throughput of a decompression accelerator, ms; > 1 represent the
number of DDR channels over which each compressed data block
stripes, and 7pray denote the internal DRAM read latency (e.g.,
including the delay of row activation delay, column access strobe,
and row precharge). For a size-s, compressed block, the pipelined
read path has a latency of

Sc

@

TDRAM + — .
min (Bdec, Mgy - Bch)

Since per-channel bandwidth B.j, can exceed 25GB/s and it is chal-
lenging for B, to surpass 50GB/s, we should set ms; = 1.Hence,
if Bgec > Bcp, decompression operation on its own does not incur
notable additional latency. The achievable throughput of a single
decompression accelerator By,. depends on the compression algo-
rithm. For example, entropy coding relies on bit-serial operations,
which limits hardware implementation parallelism. Consequently,
achieving By > B, is much more feasible with LZ-only compres-
sion (e.g., LZ4) than with LZ+entropy compression (e.g., zlib).

3 Proposed Design Techniques

This section presents three design techniques, as illustrated in Fig. 1,
to enhance (de)compression hardware data path inside CXL mem-
ory controllers. The first two improve trade-offs between com-
pression ratio and speed performance, while the third one reduces
performance impact by increasing effective DRAM bandwidth uti-
lization.

3.1 Adaptive Compression Granularity
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Figure 2: Measured histogram of ryk : rig, the relative com-
pression ratio improvement of 4KB vs. 1KB compression.

The choice of compression block size (e.g., 1KB vs. 4KB) signifi-
cantly influences the trade-off between compression ratio and speed
performance. Larger block sizes generally achieve better compres-
sion ratios by offering a wider window for redundancy elimination.
However, the correlation between block size and compression ratio
varies across data blocks. To demonstrate this variability, we con-
ducted experiments on 4KB blocks randomly extracted from several
open data repositories [3, 9, 16, 30, 37]. For each 4KB data block,
let r4x > 1 denote the compression ratio! when compressed as a
single block, and rix > 1 represent the compression ratio when
split into four 1KB blocks and compressed individually. Fig. 2 shows
the rqx : rig ratio histogram. The results reveal a wide distribution

n this work, the compression ratio is defined as the original data block size divided
by the compressed block size and is therefore always > 1.



of ryk : rik, confirming that the correlation between block size and
compression ratio is highly content-dependent.
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Figure 3: Adaptive compression block size selection.

Motivated by this observation, we propose a technique called
adaptive compression granularity that dynamically configures the
compression block size based on its correlation with compression
ratio. Let Ipj;. denote the compression block size. For this study, we
assume the CXL memory controller supports two configurations:
Iy =4KB and ;. =1KB, as defined by the OCP specification. For
each 4KB memory page, CXL memory controller has two options: (1)
compresses entire 4KB memory page as a single block (I =4KB),
while (2) partitions the 4KB memory page into four 1KB blocks and
compresses each block individually (I =1KB). To simplify data
management, we assume that regardless of the compression block
size, each compressed 4KB memory page is stored contiguously in
DRAM and associates with a single entry in the mapping table. This
assumption ensures that the choice of block size does not add un-
necessary complexity to the mapping mechanism. As illustrated in
Fig. 3, we use the compression advantage factor :‘:—i > 1 to quantify
the relative compression ratio improvement from using l,;. =4KB
over I =1KB. We compare this compression advantage factor
with a predefined threshold ;i to decide the generation of final
compression output. This enables the use of I;,;; =1KB only for data
whose compressibility is lest sensitive to the compression block
size. Therefore, we can favorably trace the trade-off between com-
pression ratio and speed performance by adjusting the threshold
Hblk-

Despite its conceptual simplicity, implementing an efficient dual-
window LZ compression accelerator poses a significant silicon cost
challenge. A straightforward approach would require two separate
compression engines, one for I3 = 4KB and another for [ = 1KB,
leading to a substantial increase in hardware overhead. Given that
compression is already a resource-intensive task, such duplication
would make implementation prohibitively expensive. To address
this issue, we propose a fused dual-stream LZ compressor that
leverages the inherent operational similarity between LZ searches
with different window sizes to enable resource sharing. Our design
builds upon the LZ compression architecture developed by IBM for
its z15 CPU [1], which stores the search window using a hybrid
near/far content-addressable memory (CAM) fabric. Motivated by
the observation that most LZ search matches occur within a short
distance, this design can achieve an improved balance between LZ
search quality (hence compression ratio) and silicon cost. Interested
readers are referred to [1] for further details.

Figure 4(a) illustrates a conventional adaptive compression block
chunking implementation using two separate LZ compressors. The
near CAM, implemented with shift registers, retains the most re-
cent data and enables exhaustive pattern matching for maximum
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LZ search accuracy. Meanwhile, the far CAM, implemented as an
SRAM-based hash table, provides an approximate yet cost-effective
content-addressable search at a modest accuracy loss. In contrast,
Figure 4(b) presents our fused dual-stream LZ compressor, which
performs 1KB and 4KB LZ searches simultaneously while maintain-
ing a single shared search window content. Instead of duplicating
search window content across two separate compressors, our ap-
proach retains one copy within a unified near CAM and far CAM
structure. To support simultaneous LZ searches across both window
sizes, these CAMs are equipped with dual-port access and dual-
port pattern matching capabilities. Additionally, the 1KB window
constraint is enforced at the compression output stage to ensure cor-
rectness. Since CAMs dominate the silicon area of LZ compressors,
our fused design reduces the hardware cost by over 20% compared
to the straightforward dual-compressor implementation. To vali-
date our approach, we implemented an RTL design and performed
synthesis at the 45nm node. The results confirm significant area
savings and preserved compression efficiency, demonstrating the
effectiveness of our design. Further details will be provided in Sec-
tion 5.

3.2 Adaptive Entropy Coding Bypassing

Beyond compression block size, the decision on the usage of en-
tropy coding also significantly influences the trade-off between
compression ratio and speed performance. While appending en-
tropy coding to LZ compression typically improves compression
ratios, the actual compression ratio gains can vary greatly across
data blocks. This work focuses on implementing entropy coding
in the form of Huffman coding. To demonstrate this variability, we
conducted experiments on representative datasets [3, 9, 16, 30, 37].
Let r;z denote the compression ratio achieved with LZ compres-
sion alone and rp 7z, ff represent the compression ratio when
Huffman coding is appended to LZ. Fig. 5 shows the histogram of
rLZ+Huff ° TLz ratio, revealing substantial variation in the effec-
tiveness of Huffman coding on further improving compression ratio.
Meanwhile, Huffman decoding heavily involves bit-level operations,
which inherently limit its achievable throughput under reasonable
silicon cost. Realizing a decoding throughput that matches DDR
channel bandwidth (e.g., 25GB/s and above) is extremely challeng-
ing, if not impossible. As a result, the Huffman decoder will almost
surely be the throughput bottleneck on the memory read data path.
Nevertheless, appending Huffman coding does not always increase
memory read latency. Let By, r¢ denote the Huffman decoding
throughput, and assume B}, the DDR channel bandwidth, is lower
than the LZ decompression throughput. According to Eq. 1, the
extra memory read latency introduced by Huffman coding can be
expressed as

_ Ipik 1 i 1
Text = — '"& " - "&®m_
rLz+Huff BHuff 1Lz Ben
I -B
_ blk ( rLz - Bep 3 1). 3)
rLz - Ben \rLzeHuff - BHuff

Appending Huffman coding reduces read latency (zex; < 0)
when rpz - Bep, < rpzeHuff - BHusf as the improved compression
ratio sufficiently offsets the decoding bottleneck. This suggests a
dynamic approach to bypass Huffman coding based on its runtime
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Figure 4: Realize adaptive compression block chunking using (a) two separate LZ compressors and (b) a low-cost fused dual-

stream LZ compressor.
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Figure 5: Histogram of r; 7,1, ¢ : 7Lz, the relative compres-
sion ratio improvement by switching to r; 7,y f¢ from r 7.

effectiveness. We define ¢ = By, f¢/Bcp, < 1and introduce a design
parameter ppy, ¢ > 1, which allows the CXL memory controller to
configure the final compression output as illustrated in Fig. 6:

o Use the output of LZ + Huffman compression: If we have

rLz . . .
"LZ+Huff 2 gperr T the compression ratio gain enabled

by Huffman coding is sufficient to outweigh its decoding-
induced read latency overhead. In this case, the output of
LZ compression plus Huffman coding is used.

e Use the output of LZ compression: If r 7y < 52

@ HHuff >
the compression ratio gain from Huffman coding does not
sufficiently offset its decoding-induced read latency over-

head. As a result, only the LZ compression output is used.

TLz

Tiz+hurf < pr— ?
| " =z . Huffman
nput —| LZ compression encoding Compressor
output

Figure 6: Illustration of adaptive entropy coding bypassing.

This enables the use of Huffman coding only for data that can
benefit the most from Huffman coding. Therefore, we can favor-
ably trace the optimal trade-off between compression ratio and
speed performance by adjusting the threshold yigy,, . Compared to

always using LZ compression alone, this approach introduces addi-
tional silicon cost due to the need for Huffman codecs. However,
silicon cost of a Huffman encoder is significantly lower than that of
an LZ compressor, as it requires much less SRAM [32]. In contrast,
due to intensive bit-level operations in Huffman decoding, achiev-
ing high Huffman decoding throughput demands aggressive use of
techniques such as look-ahead decoding [26, 27], which can be very
costly. In practice, the CXL memory controller should implement
Huffman decoders with the highest feasible parallelism within the
given silicon cost constraints. This ensures that Huffman coding
can be effectively leveraged when its benefits justify the additional
latency overhead.

3.3 Data-ECC Disaggregation

To ensure reliability, CXL memory devices employ ECC and utilize
ECC DIMMs. Each rank of an ECC DIMM consists of ny, +ne DRAM
devices, where n, and n, denote the number of user data devices
and ECC devices, respectively. In DDR5 ECC DIMMs, n,, =8 and
ne is either 1 or 2, corresponding to different trade-off between
memory cost and reliability. In conventional practice, a single ECC
codeword protects one 64-byte cacheline with m = 64 - n./n,, bytes
of coding redundancy. Each ECC codeword spans n,, + no DRAM
devices at the same address to minimize access latency. As a result,
during read operations, only nunfne of the total DRAM bandwidth
is used for transferring user data, while the remaining - r:fne of
bandwidth is consumed by ECC redundancy. Such ECC-induced
bandwidth usage can be significant, e.g., 20% in 8+2 DDR5 ECC
DIMMs.

Evidently, if we could reduce the ECC-induced bandwidth usage,
the effective DRAM bandwidth for user data will increase, directly
enhancing the speed performance of compression-capable CXL
memory devices. An intuitive approach is to reduce the proportion
of ECC redundancy by increasing the ECC codeword length. It is
motivated by the well-known principle that longer ECC codewords
can achieve the same error correction strength with less redun-
dancy. Specifically, instead of protecting each 64-byte cacheline
individually as in current practice, the entire compressed block
could be protected by a single, long ECC codeword. While this
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Figure 7: Illustration of data and ECC redundancy placement in 8+2 DDR5 DIMMs when using (a) conventional practice, and (b)

proposed disaggregated design approach.

approach seems promising, it faces two problems: (1) Longer ECC
codewords significantly increase the ECC encoder/decoder silicon
implementation cost. (2) The error correction strength advantage
of longer codeword length will diminish or completely disappear
in the presence of long burst errors or catastrophic device failures.

We propose a technique to reduce ECC-induced bandwidth usage
while maintaining the same amount of ECC redundancy (hence the
same data reliability) as conventional practice. The technique lever-
ages a key insight: under normal operating conditions, the raw error
rate of modern DRAM is so low[40] that error correction is rarely
invoked by memory controllers. This reliability is demonstrated by
the widespread use of non-ECC DIMMs in consumer-grade com-
puting systems. Therefore, in most cases, ECC serves only as an
error detection mechanism to verify data integrity, while its error
correction capability remains unused. Building on this observation,
we propose to decouple the storage and retrieval of compressed
data blocks and their associated ECC redundancy. Additionally,
we append a lightweight CRC (Cyclic Redundancy Check) to each
compressed data block to serve as the primary error detection mech-
anism. During a read operation, only the data block and its CRC
are retrieved from DRAM. If the CRC check passes, as it does in
the vast majority of cases due to DRAM’s inherent reliability, the
operation completes without fetching ECC redundancy. If the CRC
check fails, the ECC redundancy is fetched, and error correction
is performed to reconstruct the compressed data block. This can
reduce the ECC-induced bandwidth usage to almost zero, allowing
DRAM bandwidth to be nearly fully dedicated to transferring user
data during normal read operations. Moreover, to enhance error
detection effectiveness, we could partition one compressed block
into multiple segments, each segment being protected by one CRC.

Fig. 7 illustrates the implementation of this scheme for 8+2 x4
DDR5 DIMMs. In x4 DDR5 DRAM, the burst length is 16, making
the basic access unit a 80-byte stripe across the 10 DRAM devices
in 8+2 DIMMs. Each ECC codeword protects 64 bytes of user data
with 16 bytes of ECC redundancy. For a compressed data block
of size I., the conventional approach requires m, = [l./64] 80-
byte ECC codewords to provide protection, with both the data and
ECC redundancy of each ECC codeword stored together across
the same address in DRAM. In the proposed design, n. lcrc-byte
CRCs are embedded into the compressed data block, forming an
expanded data block of size (I + n¢ - [crc) bytes. This expanded
data block is protected by my = [(Ic + n¢ - Icrc)/64] 80-byte ECC

codewords. Following the principle of data and ECC redundancy
disaggregation, the (64 - mp)-byte user data is stored contiguously
across all 10 DRAM devices, spanning [64 - m,/80] 80-byte stripes.
Similarly, the (16 - m;)-byte ECC redundancy is stored contiguously,
spanning [16 - m;, /807 80-byte stripes. The additional storage, in
terms of the number of 80-byte stripes, required by the proposed
design is given by

64~mp"+|'16-mp @

80 80

Since n. can be only 2 or 4 and Icgc is relatively very small (e.g.,
16-byte) compared to the size of a typical compressed block, m,
is equal to either m; or m¢ + 1. As a result, Nex; is typically 0 or
1, indicating that the proposed design induces negligible storage
space overhead in DRAM. Finally, let us quantitatively exam the
CRC check failure probability. Let p, denote the DRAM bit error
rate, the CRC check failure probability can be expressed as

[t 60

Next = " -‘ — Mc.

©)

Accordingly to a recent study [40], DRAM exhibits bit error rates on
the order of 10711, Even assuming DRAM bit error rate as high as 1x
10~°, we have that CRC check failure probability is well below 0.01%
when . is 2KB and Icpc is 16B and n. is 4. By separating data and
ECC redundancy and leveraging DRAM’s high raw reliability, this
proposed technique notably improves DRAM bandwidth utilization
with minimal storage space overhead while maintaining the same
data integrity.

Pcre =1~ (1-pe)

4 Evaluation Methodology

To evaluate our proposed design techniques, we developed a CXL
memory simulation platform based on DRAMsim3 [20]. This plat-
form features a compression-capable controller and an underlying
DRAM subsystem. The controller handles key functions, including
mapping table maintenance, write buffering and caching, compres-
sion and decompression, request scheduling, and efficient storage
management of compressed data blocks in DRAM. To simplify mem-
ory management, we employ slab allocation for compressed data
blocks, eliminating the need for background garbage collection.
The simulator supports all three proposed design techniques with
either 1KB or 4KB compression granularity. Regardless of the cho-
sen granularity, each mapping table entry corresponds to a 4KB
memory page. When a 4KB memory page is compressed using a



ZipCXL: CXL-based Main Memory Compression at Low Performance Penalty

1KB block size, all four compressed 1KB blocks are stored contigu-
ously in DRAM, and the mapping table entry records the size of
each compressed 1KB chunk within the 4KB page.

When a read request arrives from the host, the controller first
checks its mapping table cache. A cache miss triggers a fetch from
the DRAM-resident mapping table. The request is then queued,
translated into DRAM transactions, and dispatched to the DRAM
subsystem. On the read data path, data transfer from DRAM to
the controller and subsequent decompression are fully pipelined to
minimize or eliminate decompression-induced read latency over-
head. As discussed in Section 2.2, each compressed block is stored
within a single DDR channel, which is paired with a dedicated
decompressor. The throughput of an LZ decompressor consistently
exceeds the bandwidth of a DDR channel. However, due to the
serial nature of Huffman decoding, its throughput is lower than
the DDR channel bandwidth. For write requests, the controller
first buffers data in on-chip SRAM and immediately acknowledges
completion to the host, reducing host-perceived write latency. In
the background, data evictions from the write buffer to DRAM
occur through read-modify-write operations, with corresponding
updates to the mapping table entries. The simulator assumes an
implementation with a sufficient number of compressors to match
the aggregated DRAM bandwidth.

When processing each host read request, our simulator records a
detailed latency breakdown, including mapping table access latency,
queuing delays, DRAM operations (such as row activation, clo-
sure, and data transfer), and any additional decompression-induced
latency. The latencies of the DRAM DDR controller IP and the
CXL/PCle interface IP are modeled as 27ns and 40ns, respectively.
To ensure realistic compression workload characterization, we em-
ploy diverse datasets from sources such as the Silesia corpus [9],
Amazon AWS [3], Quandl [30], Kaggle [16], and TPC-H memory
dumps [37]. Our simulation platform is highly configurable, en-
abling a comprehensive range of experimental setups. The granu-
larity of adaptive LZ compression and adaptive Huffman encoding
are controlled by parameters pp and pp, f, respectively. Addi-
tional configurable settings include host queue depth, read/write
ratios, data and ECC disaggregation, Huffman encoding/decoding
throughput, and various DRAM subsystem parameters. For the
experiments presented in this paper, we evaluated our design using
standard DDR4 and DDR5 configurations, as detailed in Table 1.

4 channels, 3200 MT/s
4 channels, 6400 MT/s
tCK: 0.625 ns, tCL: 22, tRCD: 22,

DDR4 organization
DDRS5 organization

DDR 4 timing {RP: 22
- tCK: 0.312 ns, tCL: 52, tRCD: 52,
DDR 5 timing {RP: 52

Table 1: DRAM sub-system parameters in simulations.

5 Evaluation Results

This section presents a series of experiments conducted using the
simulation platform and datasets described in Section 4. We begin
by establishing a baseline with static compression configurations

and conventional ECC data placement. Next, we evaluate each
proposed design technique individually and in combination. The
results demonstrate that our design solutions effectively improve
the trade-off between compression ratio and performance com-
pared to the baseline. Finally, we present and analyze the RTL-level
implementation results of the fused dual-stream LZ compressor.

5.1 Baseline Evaluation

We first evaluate the baseline scenario using static compression
configurations with fixed compression algorithm and block size and
conventional ECC codeword placement. For comparison, we also
include a scenario without compression, where each 64-byte cache-
line can be directly accessed without any read/write amplification.
Fig. 8(a) presents the average latency of random 64-byte reads un-
der different compression configurations and queue depths. Since
random 64-byte reads prevent effective use of the on-chip mapping
table cache, each read request requires the controller to first fetch
the mapping entry from DRAM and then retrieve and decompress
the corresponding compressed data block. For LZ+Huffman com-
pression, we configure each Huffman decoder with a throughput of
10GB/s, approximately 20% of a single DDR5 channel’s bandwidth.

The results show a read latency of approximately 150ns (at a
queue depth of 1) in the absence of compression, aligning with re-
ported measurements from first-generation hardware CXL memory
devices [22]. Under the same queue depth and with DDR4 memory,
the read latency for LZ-only compression is 217ns, 235ns, and 270ns
for block sizes of 1KB, 2KB, and 4KB, respectively. The relatively
small latency variation across different block sizes is due to the fact
that block data DRAM transfer time accounts for only 20% of the
total end-to-end latency on average. Notably, the OCP specification
targets a 250ns read latency for a 4KB compression block size. In
contrast, LZ+Huffman compression results in a significantly higher
read latency of approximately 332ns, primarily due to the lower
throughput of Huffman decoding. As the queue depth increases,
read latency also rises due to queuing effects. Additionally, with
LZ-only compression, the latency difference between DDR4 and
DDR5 becomes more evident at higher queue depths, as the im-
pact of data transfer latency is amplified by queuing. In contrast,
when using LZ+Huffman compression, the read latencies for DDR4
and DDR5 remain similar, since the read latency is dominated by
Huffman decoding rather than DRAM bandwidth.

Fig. 8(b) presents the corresponding average compression ratio
under different configurations. As expected, LZ+Huffman achieves
the highest compression ratio at the cost of longer access latency,
while LZ-only compression with smaller block sizes results in sig-
nificantly lower latency but a substantial compression ratio reduc-
tion. Fig. 9 further illustrates the average read latency under mixed
read/write workloads, with the queue depth set to 8. The results
indicate that, as the workload becomes more write intensive, read la-
tency increases. For instance, with LZ-only compression and a 4KB
block size, the read latency rises from 397ns to 450ns (DDRS5) as the
read/write ratio decreases from 100:0 to 50:50. Moreover, when us-
ing larger block sizes (2KB and 4KB), the latency difference between
DDR4 and DDR5 becomes more evident. The above phenomena are
primarily attributed to compression-induced write amplification,
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Figure 9: Average random 64-byte read latency in baseline
under different read-write ratio mix. The queue depth is 8.

which increases memory bandwidth usage and exacerbates queuing
delays.

5.2 Adaptive Compression Granularity

This section presents the results of applying the proposed adaptive
compression block chunking technique. As discussed in Section 3.1,
this approach aims to optimize the compression ratio vs. speed per-
formance trade-off by selectively reducing the compression block
size (i.e., from 4KB to 1KB in this case) only for data whose com-
pressibility is less sensitive to block size reduction. For comparison,
we also evaluate a baseline approach where the controller randomly
selects data for which the compression block size Iy is reduced
from 4KB to 1KB. Fig. 10 and Fig. 11 show the simulation results un-
der different configurations when using LZ-only and LZ+Huffman
compression, respectively. The parameter 71 7 represents the ratio
of 4KB memory pages compressed with I = 4KB versus those
compressed with I = 1KB. The results indicate that the pro-
posed adaptive compression block chunking notably improves the
compression ratio vs. speed performance trade-off. By examining
sub-figures (a)-(d) and sub-figure (e) in both figures, we observe
that, for a given 7y 7, the proposed technique achieves a higher
compression ratio while reducing read latency compared to the
baseline. For example, under a read/write ratio of 100:0 request
queue depth of 16, 17 of 50:50, and DDR5, the proposed design
improves the compression ratio from 1.825 to 1.873 while reducing
the read latency from 337ns to 318ns.

As shown in Fig. 10 and Fig. 11, when the parameter 7y 7 in-
creases (i.e., more data are compressed with 4KB blocks), read

latency increases due to greater read/write amplification under
random 64B accesses. The queuing effect further amplifies this
trend, making the read latency advantage of the proposed adaptive
compression block chunking more evident at higher request queue
depths, as shown in sub-figures (a) and (b) of Fig. 10 and Fig. 11.
Additionally, as data accesses include more writes, the read latency
benefit of the proposed approach becomes even more significant, as
shown in sub-figures (c) and (d) of Fig. 10 and Fig. 11. This is because
the proposed technique mitigates write amplification by achieving
a better compression ratio, thereby reducing the overall memory
traffic burden. Compared to LZ-only compression, the read latency
of LZ+Huffman compression is less sensitive to the read/write ratio.
This is because Huffman decoding throughput is lower than DDR
channel bandwidth, making write amplification effects relatively
less impactful in LZ+Huffman compression scenarios.

5.3 Adaptive Entropy Coding Bypass

This section evaluates the effectiveness of adaptive entropy coding
bypassing. As discussed in Section 3.1, this approach optimizes the
compression ratio vs. speed performance trade-off by selectively
enabling entropy coding only for data that benefit the most from
complementing LZ search with entropy coding. For comparison, we
also evaluate a baseline approach where the controller randomly
selects data for which Huffman coding is applied alongside LZ
compression.

Fig. 12 and Fig. 13 present the simulated read latency under
different configurations, where the throughput of each Huffman
decoder is 7.5GB/s and 10GB/s, respectively. The compression block
size is fixed at 4KB, and the parameter 7y, ¢ r represents the ratio
of 4KB memory pages compressed with LZ+Huffman versus LZ
alone. At a queue depth of 4, as shown in sub-figures (a) and (b) of
Fig. 12 and Fig. 13, the read latency advantage of adaptive Huffman
coding bypassing is modest. This is because overall read latency is
primarily dominated by DRAM internal operations (tRCD and tRP)
and the limited throughput of the Huffman decoder. However, as
the request queue depth increases to 8, the read latency advantage
of adaptive Huffman coding bypassing becomes more significant
due to the queuing effect amplifying its impact. Furthermore, in
write-heavy workloads (e.g., R/W ratios of 50:50 and 25:75), read
latency can even decrease as n7y,, ¢ ¢ increases (i.e., more 4KB mem-
ory pages are compressed with LZ+Huffman), particularly in DDR4,
as shown in sub-figure (c) of Fig.12 and Fig.13. This effect occurs
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Figure 12: Average read latency and compression ratio under adaptive entropy coding bypass. Huffman decoder bandwidth is
7.5GB/s. np 7 denotes the ratio of 4KB memory pages compressed with LZ+Huffman to those with LZ alone.

because the higher compression ratio enabled by Huffman coding The sub-figure (e) in both figures demonstrates that adaptive
improves DDR bandwidth utilization, which can offset the impact entropy coding bypassing significantly enhances the compression
of the Huffman decoder’s lower throughput within a certain R/W ratio compared to the baseline. This improvement, combined with
ratio range. This trend becomes even more pronounced when the the results from Fig. 12 and Fig. 13, highlights the effectiveness
Huffman decoder throughput increases, as shown in Fig. 13(c) and of the proposed technique in optimizing the trade-off between
(d), where the throughput of the Huffman decoder is 10GB/s. compression ratio and speed performance. For example, for the

10GB/s Huffman decoder and DDR4, under a request queue depth
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of 8, with npp, rf set to 50:50 and an R/W ratio of 50:50, adaptive
entropy coding bypassing increases the compression ratio from
2.32 to 2.47 while simultaneously reducing the read latency from
507ns to 492ns compared to the baseline scenario. These results
indicate that selectively enabling entropy coding based on data
characteristics provides a more efficient balance between compres-
sion efficiency and access latency, ultimately enhancing memory
bandwidth utilization and reducing queuing delays. Moreover, as
workload intensity and queuing effects increase, the benefits of
adaptive entropy coding bypassing become more pronounced. The
approach not only improves read performance but also minimizes
unnecessary processing overhead associated with entropy coding,
making it particularly advantageous in high-throughput, mixed
read/write workloads.

5.4 Data and ECC Disaggregation

We further evaluate the proposed data-ECC disaggregation ap-
proach. As discussed in Section 3.3, the raw DRAM bit error rate is
extremely low, resulting in a very low probability (e.g., well below
0.01%) of requiring ECC redundancy for error correction. However,
in the rare instances where DRAM errors occur, the read latency
will increase due to the additional time required to fetch ECC re-
dundancy. To assess this impact, we examine read latency under
both error-free and error-occurring conditions. Additionally, recall
that n. represents the number of CRCs embedded within a com-
pressed block. A higher n. can reduce the read latency overhead
in the event of DRAM bit errors but comes at the cost of increased

_ DDR4-3200 DDR5-6400
w700
Conventional placement

>, 600 Disagg. placement (w/o DRAM error)
g [EZA Disagg. placement (w/ DRAM error, n=1)
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Figure 14: Latency Impact of dis-aggregating data and ECC
placement in DIMMs for (a) DDR 4 and (b) DDR 5.
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CRC-induced memory capacity overhead. To explore this trade-off,
we evaluate scenarios with n, = 1 and n, = 2.

Fig. 14 presents the read latency across four different scenarios
under varying request queue depths. For this evaluation, we use LZ-
only compression with a 4KB compression block size. As expected,
compared to conventional data-ECC placement, the proposed data-
ECC disaggregation reduces read latency in the absence of DRAM
errors, with its latency advantage further amplified by queuing
effects. For example, in DDR5 DRAM, data-ECC disaggregation
reduces read latency by 3.2% at a queue depth of 1 and by 9.5%
at a queue depth of 16. In the rare event of a DRAM error, the
controller detects CRC failures and fetches ECC redundancy from
DRAM to perform ECC decoding, leading to an increase in read
latency, as shown in Fig. 14. For DDR4, The additional read latency
is approximately 104 ns for n. = 1 and 55ns for n, = 2. Under DDR4
DRAM with a queue depth of 8, this corresponds to a read latency
overhead of 27% for n, = 1 and 17% for n, = 2.

DDR4-3200 DDR5-6400

2 550 % Cache hit-rate
& % Cache hit-rate
z 450 % Cache hit-rate
8 721 100% Cache hit-rate|
= 350 -
<
B
= 250
L
&
5 150
2

50 1

Queue depth

Figure 15: Read latency under different mapping table cache
hit rates.

Although the overhead from conditional ECC redundancy fetches
is non-negligible, data-ECC disaggregation remains beneficial in
most cases due to its ability to reduce latency in error-free con-
ditions, which occur the vast majority of the time. Moreover, in-
creasing n. provides a trade-off between minimizing error-handling
overhead and memory capacity usage, allowing system designers
to fine-tune configurations based on workload requirements.
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Figure 16: Normalized IPC of ZipCXL under SPEC and Ligra benchmarks.

5.5 Effect of Mapping Table Cache

All the previous simulations were conducted under fully random
64B accesses, rendering the on-chip mapping table cache ineffec-
tive. To further investigate its impact, we evaluated scenarios with
notable temporal locality in 4KB page accesses, leading to higher
mapping table cache hit rates. Fig. 15 presents the read latency
across different request queue depths while varying the mapping
table cache hit rate. For this evaluation, we use LZ-only compres-
sion with a 4KB compression block size. The results indicate that
for a fixed cache hit rate, the magnitude of read latency reduction
remains consistent across different queue depths. Compared to the
zero cache hit rate scenario, mapping table caching significantly
reduces read latency. In DDR4, the read latency reduction is ap-
proximately 12ns, 37ns, and 50ns for cache hit rates of 25%, 75%,
and 100%, respectively. These findings highlight the non-negligible
role of mapping table caching in mitigating compression-induced
metadata access overhead. By reducing frequent lookups in DRAM-
resident mapping tables, caching enhances overall system efficiency,
particularly in workloads with strong temporal locality.

5.6 System-level Evaluation

In order to evaluate the performance impact of our proposed tech-
niques operating within a full system, we integrate our ZipCXL
simulator with Champsim [13] and measure instructions-per-cycle
(IPC) for Ligra [34] and the SPEC CPU 2006 [6] benchmark. As a
baseline, we simulate a 12-core CPU system with 8-channel DDR4
and no CXL based memory expansion. For ZipCXL, we set the pa-
rameter 1z to 50:50 so that half of memory pages are compressed
with I =4KB, and configure roughly 10% of DRAM access hit
CXL memory. To highlight the impact of the adaptive compression
granularity technique, we compare it with a non-adaptive CXL-
based compressed memory configuration in which all pages are
compressed with a fixed ;. =4KB granularity.

Fig. 16 shows the IPC results normalized against the baseline. The
results indicate a modest to negligible IPC degradation across all
benchmarks, with the adaptive ZipCXL solution exhibiting a lower
relative IPC degradation. The IPC reduction is primarily due to
the increased latency associated with accessing compressed pages
on the ZipCXL device. This degradation is most pronounced in
memory-intensive benchmarks, which typically have lower raw
IPC values; for example, the SPEC CPU 2006 gcc benchmark and the
Ligra Triangle benchmark experience normalized IPC degradations
of 11% and 9.5%, respectively, when using fixed 4KB LZ compres-
sion compared to the adaptive ZipCXL configuration. Overall, the
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geometric mean of the normalized IPC across a diverse set of work-
loads demonstrates that incorporating the adaptive ZipCXL system
results in a 7.5% decrease in normalized IPC relative to the refer-
ence configuration. In contrast, using a fixed 4KB LZ compression
scheme yields an additional 3.2% degradation in normalized IPC. It
is important to note that higher performance for a given workload
can be attained by appropriately tuning the  parameters. Thus, the
adaptive ZipCXL approach provides a dynamically tunable trade-off
between performance and storage efficiency, enabling compressed
main memory expansion with improved adaptability.

5.7 Fused Dual-Stream LZ Compressor

Beyond functional simulation, we evaluated our fused dual-stream
LZ compressor (presented in Section 3.1) through RTL-level im-
plementation to assess its hardware efficiency in terms of area
and power consumption. For comparison, we implemented both a
straightforward design—which utilizes separate 1KB and 4KB LZ
compressors—and our fused dual-stream LZ compressor, as illus-
trated in Fig. 4(a) and (b). Both designs were synthesized using the
Cadence Synopsys Design Compiler [36] and the open-source 45nm
FreePDK [4]. We extracted area and power consumption estimates
to quantify the resource savings enabled by our optimized resource-
sharing architecture. The synthesis and power estimation results
reveal that, compared to the straightforward implementation, the
fused dual-stream design achieves a silicon area reduction of 22%
and a power consumption reduction of 36%. These improvements
stem from hardware reuse across different compression granular-
ities, eliminating the need for duplicated memory and logic re-
sources. The results show the effectiveness of our architectural
optimizations in enabling a more compact and energy-efficient
hardware implementation.

6 Related Work

Main Memory Compression: Main memory compression has
been extensively studied as a means to increase effective capac-
ity or reduce bandwidth usage, often at the cost of access latency.
Many prior works have focused on cacheline granularity compres-
sion to minimize latency. Techniques like FPC (Frequent Pattern
Compression) [2] and BDI (Base-Delta-Immediate) [29] achieve
low-latency compression by exploiting redundancy in small data
patterns. These methods have been widely adopted in conjunction
with other techniques to improve compression efficiency while
preserving performance.



More advanced methods like BPC (Bit-Plane Compression) [17]

and zero-aware compression [10] offer better compression ratios
for specific data types, but often incur higher decompression la-
tency or require additional architectural modifications, such as
extra address translation layers. Similarly, solutions like LCP (Lin-
early Compressed Pages)[28] and MemZip [33] focus on reducing
post-compression address translation overhead or using compres-
sion for error correction and energy efficiency rather than capacity
gains. Other works, like Transparent Dual Compression [18] and
IBM MXT [38], explore larger compression granularities (e.g., 1KB)
to balance compression ratio and access latency, particularly in
tiered memory systems.
Hardware (De)compressors: Hardware accelerators for lossless
compression, such as X-MatchPRO [25] and ALDC [7], have demon-
strated the potential for high-speed compression. These accelera-
tors often rely on dictionary-based methods, such as LZ algorithms,
combined with techniques like Huffman encoding for efficiency.
IBM’s NXU compression accelerator [1] further refines LZ compres-
sion by using split search windows to balance resource utilization
and search quality, achieving compression ratios comparable to
GZIP.

7 Conclusion

This paper presents three techniques to enhance compression-
capable CXL memory controllers. The first two, adaptive com-
pression block chunking and adaptive entropy coding bypassing,
optimize the compression ratio vs. speed performance by dynami-
cally adjusting compression configurations. The third, data-ECC
disaggregation, improves effective DRAM bandwidth utilization,
mitigating compression-induced read/write amplification. To eval-
uate these techniques, we developed a simulation platform to ana-
lyze compression-performance trade-offs and conducted RTL-level
design and synthesis to assess silicon cost overhead. The results
demonstrate that the proposed techniques significantly improve the
trade-off between compression ratio and speed performance with
minimal hardware overhead, making them well-suited for scalable,
low-latency CXL memory expansion.
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