
UpDown: A Novel Architecture for Unlimited Memory Parallelism
Andronicus Rajasukumar∗

andronicus@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Tianchi Zhang∗
tonyztc@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Ruiqi Xu
ruiqix@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Andrew A. Chien
aachien@uchicago.edu
University of Chicago

Argonne National Laboratory
Chicago, Illinois, USA

ABSTRACT
The emergence of HBM as a high-volume memory product has
made memory bandwidths of 1.2TB/s (1 stack) to 4.8TB/s (4 stacks)
feasible. Exploiting such bandwidths requires high memory level
parallelism, but the memory access mechanisms in today’s CPUs
are ill-suited. We define the Memory Parallelism Abstract Machine
(MPAM) that characterizes limits of a variety of various commercial
and research designs.

We propose the UpDown architecture that generates unlimited,
cost-efficient memory parallelism using split-transaction accesses
and a large compute-namespace to synchronize memory responses.
Using MPAM, we show that UpDown can generate unlimited mem-
ory parallelism constrained only by the memory technology servic-
ing the system and memory reference issue rate.

Our evaluation shows that the smallest compute element of
UpDown , a single lane can generate up to 3.5x more memory
parallelism compared to a modern out-of-order CPU core, despite
its much smaller area (<1%). We also show that 64 lanes of the
UpDown architecture can sustain 1,673 outstanding memory ref-
erences to nearly saturate the full bandwidth of 1 HBM3e stack
(1.2TB/s). Finally, we also show that UpDown is much more energy
and power efficient.

CCS CONCEPTS
• Computer systems organization→Multicore architectures;
Parallel architectures.

KEYWORDS
Memory Level Parallelism, High Bandwidth Memory, Accelerator,
Parallel Architecture

1 INTRODUCTION
For decades, CPU-based computer systems have been designed to
minimize their memory bandwidth needs because it was expensive
and accessing memory was a long latency operation. Over time,
as CPU clock rates increased, we saw the rise of deep memory
hierarchies that filter programs’ memory traffic, producing low
amortizedmemory access time (AMAT) andminimizing the number
of program memory requests that need to go all the way to DRAM.
Directly, they minimized the need to access memory (memory
bandwidth).
∗Both authors contributed equally to this research

One reason for this is that DRAM memories have historically
used inexpensive packages with low-pin-count interfaces (e.g.,
DDR1-5, LPDDR, etc.). This packaging meant that increasing mem-
ory bandwidth required many memory packages, and in recent
times, many DDR interfaces to reach a few hundred GB/s of mem-
ory bandwidth [12, 61].

Recently, the emergence of wide memory interfaces with 1024
IO’s [30, 50] has changed the situation. With wide interfaces, a
small number of DRAM chips can provide bandwidths as high as
1,200GB/s, exposing the bank-level/rank-level parallelism of the
DRAM chips. In today’s commercial products, a small number of
stacks (6) can deliver > 7 TB/s in a single package [62]. Directly,
with these stacked DRAM technologies, memory bandwidth has
become plentiful and inexpensive.

Because of the long latency of DRAM, exploiting the high mem-
ory bandwidth requires compute elements to generate highmemory-
level parallelism in the form of large numbers of outstanding mem-
ory requests. This is a radically different objective than traditional
memory hierarchy design [26, 51] which focuses on latency avoid-
ance and bandwidth reduction. For this new world of plentiful
memory bandwidth, we describe and evaluate a range of approaches
for generating memory parallelism.

To structure evaluation, we first define the Memory Parallelism
Abstract Machine (MPAM) model that captures the fundamental
limits and resources used by conventional architectures to gener-
ate memory parallelism. We use MPAM to study four commercial
systems. Next, we propose the UpDown accelerator, describing its
novel memory access mechanisms of split-transaction and flex-
ible software-defined synchronization. Using the MPAM model,
we compare UpDown to conventional approaches. Finally, we use
varied applications to compare both memory parallelism achieved
(performance) and power/area (cost) for a range of approaches.

Specific contributions of the paper include:

• Definition and description of the memory parallelism ab-
stract machine (MPAM) to model the limits of memory par-
allelism in computer architectures

• Application of MPAM to four commercial CPUs, using it to
accurately characterize their design and performance

• Design of UpDown, a novel architecture that achieves un-
limited memory parallelism using software-managed split-
transaction memory access and compute-name synchro-
nization to achieve efficient memory parallelism scaling

Andronicus, Tianchi, Ruiqi and Andrew

• Evaluation that shows UpDown saturates full HBM3e stack
bandwidth (1.2TB/s) by sustaining 1,673 outstanding mem-
ory references. The smallest UpDown element, a single
lane can generate 3.5x the memory parallelism of an out-
of-order (OOO) core. UpDown is also much more energy
and power efficient.

In Section 2 and Section 3, we describe the background and moti-
vation for our work. We present the Memory Parallelism Abstract
Machine (MPAM) model in Section 4, showing how various archi-
tectures map to the model. In Section 5, we present the design of
the UpDown architecture. In Section 6, we describe the methodol-
ogy used for the evaluation in Section 7. Related work is discussed
in Section 8. Finally, in Section 9, we summarize the results and
discuss future research directions.

2 BACKGROUND
We briefly present techniques that have been adopted in various
architectures to extract higher Memory Level Parallelism (MLP).

2.1 Out-of-Order Execution
Traditional CPUs use aggressive out-of-order (OOO) techniques
to issue a high number of outstanding memory requests. Multiple-
issue superscalar cores support out-of-order execution using wide
instruction windows to perform static or dynamic scheduling [23],
supported with large Reorder-Buffers [59] to hold the state of out-
of-order uncommitted instructions. Register-renaming is used to
avoid anti-dependencies between instructions and is implemented
with separate reservation stations or reuses the reorder buffer
[63, 68]. Deep load/store queues are additionally used to book-keep
and track outstanding memory references. These queues imple-
ment store-forwarding and memory ordering checks to maintain
an architecture-specific consistency model [22, 55]. While these
schemes enable high single-threaded performance on compute-
bound applications, the number of in-flight memory accesses is
limited by internal namespaces imposed by these structures on the
architecture. Further, book-keeping is usually done using Content
Addressable Memories that are very expensive to scale for higher
memory parallelism as required by new high bandwidth memories.

2.2 Mechanisms for Memory Parallelism in
Caches

Caches are designed to avoid long-latency DRAM accesses. But
on applications with low data reuse, caches are ineffective with
high miss rates. Miss Handling Architectures (MHA) in lock-up
free/non-blocking caches [18, 32] support multiple outstanding
misses using specialized structures - Miss Status Holding Registers
(MSHR) for book-keeping. These registers create another multi-
level namespace for memory parallelism, controlling the number
of outstanding memory requests.

Hardware Prefetching in caches is a popular technique to lower
cache miss rates. A number of sophisticated prefetchers have been
proposed and implemented [11, 27, 69]. However, prefetchers com-
pete for the same resources as demand misses - cachelines and
MSHRs (memory bandwidth). Increasing prefetch to increase mem-
ory parallelism can have a negative impact on performance due to

this [39]. Additionally, effective prefetching for irregular applica-
tions is challenging and is an area of active research [46, 54, 73].

2.3 High Bandwidth Memories
Data-intensive workloads like AI, large-scale graph processing, etc.,
fueled the development and rapid adoption of Stacked DRAMs like
HBMs. These memories have increased DRAM bandwidths many-
fold by increasing the interface width to 1024 bits and beyond. Table
1 captures the current and future HBM memories and their band-
widths, with a projected 2+ TB/s of bandwidth per stack of HBM.
Saturating these high bandwidths requires generating and sustain-
ing ∼ 3200 outstanding memory requests. Current architectures
are incapable of achieving this or require prohibitively expensive
scaling of existing mechanisms to do so.

Table 1: High bandwidth DRAM technologies [13, 56, 57]

DRAM
technology

Max Bandwidth
per pin

Max Bandwidth
per stack Max Capacity

HBM2e 3.6 GT/s 460 GB/s 16GB

HBM3 6.4 GT/s 819.2 GB/s 24GB

HBM3e 9.6 GT/s 1.28 TB/s 48GB

HBMNext > 10 GT/s > 2 TB/s 36-64GB

2.4 The UpDown System and Project
The novel memory access mechanisms for UpDown, described in
this paper, are part of a larger system design project funded as part
of IARPA’s Advanced Graphic Intelligence Logical Computing Envi-
ronment (AGILE) program [2]. The objective of the overall program
is to create breakthrough performance on irregular applications
and graphs with extreme skew and low data reuse.

The UpDown system is an ambitious design under study and
development as part of the AGILE program, driven by a team of
researchers from the University of Chicago, Purdue University,
and Tactical Computing Laboratories. The UpDown system is a
collection of UpDown accelerators, each with 64 lanes, employing
the memory access mechanisms for unlimited parallelism described
in this paper. A full description of the UpDown instruction set
architecture can be found here [14].

Each UpDown node consists of 32 UpDown accelerators and
8 HBM DRAM stacks, connected to a CPU as illustrated in Fig-
ure 1a [52]. The DRAM is shared amongst all of the accelerators
and the CPU on the node, and can be globally addressed by all of
the nodes in the system. The Updown system is 16,384 Updown
nodes with 512GB DRAM each connected by a high-bandwidth,
low-diameter network [33], with latency of 0.5 microseconds and
> 50 petabytes/second bisection – 50x greater than today’s largest
supercomputers. The overall system is depicted in Figure 1b.

The innovative memory access interface discussed in this paper
is one novel element in the UpDown architecture. This feature gives
UpDown the ability to exploit high memory bandwidth, a key for
irregular graph applications.

The UpDown architecture builds on previous research architec-
tures namely the Unified Automata Processor (UAP) [16] and the
Unstructured Data Processor (UDP) [17]. UpDown extends the fast

UpDown for unlimited memory parallelism

(a) An UpDown node

(b) The UpDown System

Figure 1: The UpDown node and system

symbol processing and multi-way dispatch capabilities in UAP and
UDP to generic event-driven execution.

3 MOTIVATION
Irregular applications with structures like graphs, hash-maps, and
trees have low data reuse and therefore become memory latency
bound. High memory level parallelism is required to achieve high
performance on these applications. Current architectures require

0 20 40 60 80 100
#cores

0

100

200

300

400

500

600

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

74% Dram Limit

49% Dram Limit

76% Dram Limit

44% Dram Limit

Intel Xeon Platinum 8488C ST-C-forward
Intel Xeon Platinum 8488C ST-C-reverse-shuffle

AMD EPYC 9R14 ST-C-forward
AMD EPYC 9R14 ST-C-reverse-shuffle

Figure 2: Memory Parallelism achieved on commercial multi-
core CPUs using STREAM-Copy[42]

expensive memory access mechanisms and hardware scaling to
generate high enough memory parallelism for good performance.
We present the results of the STREAM benchmark [42] on various
commercial systems. We modified the STREAM benchmark to also
do a reverse-shuffle scan of addresses (Figure 2) to minimize the
effect of prefetch. Figure 2 shows the achieved memory bandwidth
with increasing hardware thread count. It shows that > 20 sophisti-
cated OOO cores are required to saturate > 70% of the system’s 300
GB/s memory bandwidth on Intel Xeon Platinum 8488C. On AMD
EPYC 9R14, nearly 60 cores are required to reach 90% of system’s

412.5 GB/s bandwidth. The results further show that when prefetch-
ing is ineffective, even lower memory parallelism and bandwidth
is achieved. From a scaling point of view, fewer GB/s are achieved
per core.

These experiments highlight the inherent limits to memory
parallelism in modern CPU architectures. Today’s architectures
(and micro-architectures) create local namespaces for book-keeping
and synchronization and to support memory ordering and coher-
ence protocols. These namespaces are further bound to physical
resources, making generating and scaling memory parallelism ex-
pensive.

We define the Memory Parallelism Abstract Machine (MPAM)
that models these fundamental limits to memory parallelism. Build-
ing on this model, we propose UpDown: a novel architecture that
enables very high memory parallelism. The UpDown approach
involves a key set of memory access mechanisms - software-
managed split transaction DRAM access, compute-name syn-
chronization coupled with efficient memory parallelism scal-
ing that seek to overcome the limits imposed by these local names-
paces.

4 MEMORY PARALLELISM ABSTRACT
MACHINE (MPAM)

4.1 Memory Parallelism Limits
Memory parallelism in current architectures is fundamentally lim-
ited by three internal namespaces used for book-keeping and syn-
chronizing in-flight memory requests. These namespaces are bound
to architectural resources (renamed registers, load/store buffers,
MSHRs, shared queues, etc.) that either limit or make them prohib-
itively expensive to scale. We describe these limiting namespaces
below and use them to define the Memory Parallelism Abstract
Machine (MPAM) to capture the limits to memory parallelism in
any given architecture.

4.1.1 Synchronization Namespace (𝑁sync): Processor archi-
tectures create names to allow memory responses to be synchro-
nized into thread execution. Traditional CPU architectures typi-
cally map the architecture ISA register names to a larger physical
register namespace to facilitate renaming and retain true dependen-
cies between instructions. They further bind this physical register
namespace to either a large physical register file, reorder buffers,
reservation stations, etc., depending on specific implementations.
Execution of load/store instructions allocates one of these names
to be used for synchronization with memory responses (store com-
mits or load data). Thus, a finite, resource-bound Synchronization
Namespace 𝑁sync exists that imposes a fundamental limit on the
number of memory references that the architecture can issue.

4.1.2 OutstandingRequestNamespace (𝑁out): Processor back-
ends create a second local namespace to book-keep and track in-
flight memory requests. This namespace is shared by two types of
in-flight memory requests.

(1) Synchronous Request namespace (𝑁out_sync): Synchronous
memory requests are those generated by load/store instruc-
tions. These memory responses are synchronized back into
the thread execution.

Andronicus, Tianchi, Ruiqi and Andrew

(2) Asynchronous Request namespace (𝑁out_async): Asynchro-
nous memory requests are memory requests generated in-
dependent of instruction execution by mechanisms like
prefetch / direct memory access (DMA). These memory
responses are not synchronized into thread execution but
fill up caches / scratchpads in an effort to increase hit rates
and hide memory latencies.

The total Outstanding request namespace is the sum of these
two sets of names, so that

𝑁out = 𝑁out_sync + 𝑁out_async (1)

The outstanding request namespace is often bound to content
addressable memories like MSHRs in caches, where the names are
used to perform an associative search over all the entries. Just like
the Synchronization namespace, the Outstanding Request names-
pace also imposes a fundamental limit on the number of memory
references the architecture can generate and sustain.

4.1.3 Shared Request Namespace (𝑁sh): Finally, architectures
with multiple cores typically share resources in the memory path
(L3 / LLC / System Level Caches / Shared FIFO queues), adding
a further limit to the total outstanding requests. 𝑁sh imposes a
restrictive limit on 𝑁synch and 𝑁out. In the absence of these shared
resources, 𝑁sh falls back to the entire address space.

4.2 Model Description
Figure 3 depicts an Abstract Machine that captures the names-
paces described above. The machine has 𝐿 FrontEnds (AMFE) which
contribute 𝐿 copies of the Synchronization namespace 𝑁sync. 𝐾
backends AMBE track the references generated by AMFE (𝑁out_sync)
in addition to generating their own memory requests (𝑁out_async).
Finally, 𝐽 shared resources AMSH impose an overarching limit on
all requests generated cumulatively from AMFE and AMBE. With
this description of the Abstract Machine AM, we present the total
limit to the memory level parallelism of this machine (MLP), as

MLP =(1/cl)min(min(𝐿 · 𝑁sync · 𝑠𝑠 , 𝐾 · 𝑁out_sync · 𝑠𝑜)
+ 𝐾 · 𝑁out_async · 𝑠𝑜 , 𝐽 · 𝑁sh · 𝑠sh) (2)

where 𝑠𝑠 , 𝑠𝑜 , 𝑠sh are the request sizes (in words) of the three
namespaces 𝑁sync, 𝑁out and 𝑁sh respectively and cl is the cache-
line size (in words). Therefore, the MLP generated by MPAM gives
the limit on the total number of outstanding cachelines possible in
a given architecture.

The exact values of 𝑁sync, 𝑁out_sync and 𝑁out_async depend on
the implementation of AMFE and AMBE in specific architectures.

MPAM provides a model to reason about the memory level par-
allelism capabilities of an architecture being designed. It allows
architects to reason about the size of the namespaces and the num-
ber and type of resources to be used in order to achieve a desired
MLP capability. A number of important ideas are immediately ap-
parent from the model as stated below.

(1) Varying 𝐿,𝐾 and 𝐽 leads to various configurations of single-
core/multi-core architectures. For example, When 𝐿 is a
multiple of 𝐾 , we get an SMT/Hyperthreaded AMFE with
(𝐿/𝐾) threads per core. As another example, 𝐿 = 𝐾 = 𝑛𝑐
(number of cores) leads to a multi-core architecture where

Figure 3: Memory Parallelism Abstract Machine captures the
fundamental limits to memory parallelism in three separate
resource bound namespaces - Synchronization Namespace
(𝑁sync), Outstanding Request Namespace(𝑁out) and Shared
Request Namespace(𝑁sh)

each AMBE is private to an AMFE as in the case of private
𝑙1 and 𝑙2 caches.

(2) 𝑁sync and 𝑁out_sync are closely co-ordinated namespaces.
Thus increase in 𝑁out_sync will be limited by 𝑁sync and fur-
ther increase will require both to be increased.

(3) 𝑁out_async, as the name suggests, can be increased inde-
pendently of program execution and is only limited by the
resources the namespace is bound to.

(4) The 𝑁sh namespace, as mentioned earlier, is an overarching
limit on the total outstanding requests. Architectures that
use, for example, a shared inclusive LLC / System Level
Cache will be limited by the MSHRs in this cache. Other ar-
chitectures like Intel’s coremicroarch (post-Skylake), where
the LLC is a non-inclusive victim cache, are not limited by
this namespace.

In the next section, we show how MPAM can be used to model the
memory parallelism in specific implementations of AM - a trivial
in-order machine and a complex realistic out-of-order machine.
Subsequently, we validate this model with measurements on 2
commercial systems whose architectural parameters / resources are
available. Finally, we present an application of MPAM in deriving
some of these architectural parameters that limit memory level
parallelism on 2 commercial systems.

4.3 Modeling Microarchitectures with MPAM
We start with a trivial single in-order core implementation (without
prefetch) and proceed to a more complex out-of-order core with
prefetch example.

4.3.1 In-order Load/Store Architectures. For a single In-order load/
store architecture, 𝐿 = 𝐾 = 1. 𝑁sync = 𝑅, the ISA register names-
pace; 𝑁out_sync = 1, 𝑁out_async = 0, since an in-order core can only
sustain 1 outstanding request and there is no prefetch. Additionally,
𝑠𝑠 = 1, 𝑠𝑜 = 1, Using Eqn:2, we get,

MLP = (1/cl)min(𝑅, 1) (3)

4.3.2 Out-of-Order Load/Store Architectures. For a single out-of-
order core, 𝐿 = 𝐾 = 1. AMFE is implemented using a number
of sophisticated mechanisms like speculative execution, dynamic
scheduling, etc. These mechanisms are supported using a large
number of physical registers 𝑅phy > 𝑅, using register renaming and

UpDown for unlimited memory parallelism

reorder buffers. OOO cores use 𝑅phy to synchronize outstanding
requests. This gives 𝑁sync = 𝑅phy/𝑐𝑙 , 𝑠𝑠 = 1.

The AMBE uses multiple levels of caches and implements book-
keeping using MSHRs at each level. MSHRs track outstanding refer-
ences at the cache-line granularity. Hardware Prefetching adds an
asynchronous component 𝑁𝑜𝑢𝑡_𝑎𝑠𝑦𝑛𝑐 and can increase the number
of outstanding requests to memory. If we assume prefetch is imple-
mented in 𝑙2 (as in most Intel architectures), and use 𝛼 to indicate
the effectiveness of prefetching we get

𝑁out_sync = MSHR𝑙1 (4)
𝑁out_async = 𝛼 (MSHR𝑙2 −MSHR𝑙1) (5)

So the MLP for a single OOO core is given by

MLP =min(𝑅phy/cl,MSHR𝑙1)
+ 𝛼 · (MSHR𝑙2 −MSHR𝑙1) (6)

4.3.3 Multi-core Out-of-Order Load/Store Architectures. With mul-
tiple cores (𝑛𝑐) of the type in 4.3.2 sharing a single 𝑙3 cache, we
have 𝐿 = 𝐾 = 𝑛𝑐 , 𝐽 = 1. 𝑁sync is replicated 𝐿 = 𝑛𝑐 times and so are
𝑁out_sync and 𝑁out_async, by 𝐾 = 𝑛𝑐 times. 𝑁sh in this multi-core
architectures is 𝑁sh = MSHR𝑙3. Then we have

𝑁sync =𝑛𝑐 · (1/𝑐𝑙) (𝑅phy) (7)
𝑁𝑜𝑢𝑡_𝑠𝑦𝑛𝑐 =𝑛𝑐 ·𝑀𝑆𝐻𝑅𝑙1
𝑁out_async =𝑛𝑐 · 𝛼 (MSHR𝑙2 −MSHR𝑙1)

𝑁sh =MSHR𝑙3 (8)
MLP =min(𝑛𝑐 ·min(𝑅phy/cl,MSHR𝑙1)

+ 𝑛𝑐 · 𝛼 (MSHR𝑙2 −MSHR𝑙1),MSHR𝑙3) (9)

It is easy to verify that when 𝑛𝑐 = 1 and MSHR𝑙3 is set to a large
value, Eqn:9 reduces to Eqn:6 for a single OOO core (with no 𝑙3).

Appendix A contains an extensive set of commercial and re-
search architectures with mapping to MPAM to show the robust-
ness and flexibility of MPAM in understanding the limits of memory
parallelism in the system. Next, we corroborate this model with
measurements taken on 2 commercial platforms.

4.4 Validating MPAM’s ability to Model
Commercial Systems

4.4.1 Intel Platinum 8375C. : We first corroborate MPAM on Intel
Platinum 8375c, based on the Icelake architecture. For this and
other commercial designs we summarize the published parameters
in Table 2). For this architecture, MSHR𝑙1 = 12, MSHR𝑙2 = 48,
𝑅phy = 224 and cl = 8 based on [35]. [4] suggests that the 𝑙3 cache
is a non-inclusive victim cache and 𝑁𝑠ℎ for the 𝑙3 cache falls back
to the entire memory address space (we do not show this below).

Figure 4 plots the various namespaces with increasing number of
cores (up to 32 cores). We plot the following limits based on Eqn:9
to show the interaction of the various limits in the architecture.

𝑁sync =28𝑛𝑐 (10)
𝑁out_sync =12𝑛𝑐
𝑁out_async =36𝛼𝑛𝑐

𝑀𝐿𝑃 =12𝑛𝑐 + 36𝛼𝑛𝑐 for 0 ≤ 𝛼 ≤ 1 (11)

0 5 10 15 20 25 30
#cores

0

50

100

150

200

250

300

350

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM Limit

System Limit

N sy
nc

Nout_sy
nc

ST-C-shuffle ST-C-forward MLP_alpha_0 MLP_alpha_1

Figure 4: MPAM Corroboration with Intel Platinum 8375C
Platform using published numbers

We also plot STREAM [42] results for forward (ST-C-forward)
and shuffled (ST-C-shuffle). As can be seen, MLP_alpha_0 provides
a lower bound for when the hardware prefetching is ineffective
(𝑁out_async = 0), and MLP_alpha_1 provides an upper bound for
effective prefetching (𝑁out_async = 36𝑛𝑐). Finally, we plot the DRAM
limit of the platform (4-channels, DDR4-3200).

Table 2: Systems for MPAM demonstration and validation
[12, 21, 34, 35]

Systems # Cores Cache Memory

Intel Platinum 8375C 32
L1d: 48KB per core, 1.4ns;
L2: 1.25MB per core, 4.0ns;
L3: 54MB on chip, 27.9ns

8 Channel
DDR4-3200
103.3ns

AMD EPYC 9R14 96

L1d: 32KB per core, 0.7ns;
L2: 1MB per core, 2.4ns;
L3: 32MB per CCD, 10.9ns;
386MB on chip, 191.0ns

12 Channel
DDR5-4400
129.4ns

Intel Platinum 8488C 48
L1d: 48KB per core, 1.3ns;
L2: 2MB per core, 4.2ns;
L3: 105MB on chip, 33.0ns

8 Channel
DDR5-4800
127.9ns

AWS Graviton 3 64
L1d: 64KB per core, 1.6ns;
L2: 1MB per core, 4.3ns;
L3: 32 MB on chip, 30.6ns

8 Channel
DDR5-4400
102.2ns

4.4.2 AMD EPYC 9R14. : We repeat similar experiments on AMD
EPYC 9R14 (based on Zen4 architecture). Using publicly available
parameters [53] (MSHR𝑙1 = 24, MSHR𝑙2 = 64, MSHR𝑙3 = 192,
𝑅phy = 320, and cl = 8), we plot MPAM limits alongside STREAM
results as before in Figure 5a. This EPYC platform has an 𝑙3 per
CCD (8 cores) which adds an 𝑁𝑠ℎ = 192⌈𝑛𝑐/8⌉ namespace as below,

MLP = min(24𝑛𝑐 + 64𝛼𝑛𝑐 , 192⌈𝑛𝑐/8⌉) for 0 ≤ 𝛼 ≤ 1 (12)

We show the first 16 cores in Figure 5b to highlight the effect of
𝑁𝑠ℎ and how MPAM predicts the effect of shared namespaces at

Andronicus, Tianchi, Ruiqi and Andrew

0 20 40 60 80
#cores

0

100

200

300

400

500

600

700

800

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM Limit

System Limit

Nsh

N ou
t_s

yn
c

N sy
nc

ST-C-shuffle ST-C-forward MLP_alpha_0 MLP_alpha_1

(a) MPAM with all 96 cores on AMD EPYC 9R14

0 2 4 6 8 10 12 14 16
#cores

0

100

200

300

400

500

600

700

800

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM Limit

System Limit

Nsh

Nout_sync

Nsync

ST-C-shuffle ST-C-forward MLP_alpha_0 MLP_alpha_1

(b) Expanded graph for 16 cores to highlight effect of 𝑁sh due to
per-CCD L3

Figure 5: MPAM Corroboration with AMD EPYC 9R14 Plat-
form

various hierarchies. While we used 192 asMSHR𝑙3, the results show
that the actual limit is probably lower ∼ 100, which needs further
investigation to see if it is a limit by design or an inefficiency.

Thus, MPAM effectively predicts the memory parallelism limits
for a given architecture. Designers can use this model to predict the
effectiveness of their architectures, the memory parallelism scaling
trends with increasing cores, and the cost of achieving a given level
of memory parallelism required by applications.

4.5 Using MPAM to derive architectural
parameters

In this section, we demonstrate MPAM’s applicability in deriv-
ing architectural parameters in two commercial systems. We run
STREAM [42] on each system with increasing numbers of hard-
ware cores (without hyper-threading) and measure the memory
parallelism achieved in each system. Using a least squares estimate
from the measurements of the first few (up to three cores), we
predict the architectural parameters usingMPAM. We also run a
modified STREAM version with a reverse shuffled scan of addresses
to reduce the effect of prefetching. We show the detailed parameter
extraction for the first system as an example and summarize the
remaining two in Table 3.

4.5.1 Intel Platinum 8488C. : Intel Platinum 8488C is based on
the Sapphire Rapids architecture. The forward and shuffle scan
STREAM[42] results are shown in Figure 6 (top) and Figure 6 (bot-
tom) respectively. The least squares fit (3 cores) for these measure-
ments are shown in Eqn 13, 14. We set the y-intercept of the fit to 0
to ensure there is no residual parallelism for 0 cores. The STREAM
benchmark flattens at ∼ 70% of the maximum parallelism of the
DRAM system (8 channels, DDR5-4800).

MLP𝑓 = 44𝑛𝑐 (13)
MLP𝑠 = 16𝑛𝑐 (14)

0 10 20 30 40
0

100

200

300

400

500

600

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM Limit

System Limit

M
LP

=
44

n c

0 10 20 30 40
#cores

0

100

200

300

400

500

600

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM Limit

System Limit

MLP = 16nc

ST-C-forward ST-C-shuffle

Figure 6: Memory Parallelism in Intel(R) Xeon(R) Platinum
8488C with - Forward Scan (top), Shuffle Scan (bottom)

We set 𝑛𝑐 = 1, 𝛼 = 0 in Eqn:14 (no prefetch), and comparing
with Eqn:9 (removing MSHR𝑙3 as in Section 4.4) we get

min(𝑅phy/8,MSHR𝑙1) = 16 (15)

Given prior Intel microarchitectures have always had 𝑅phy > 128
and assuming the same here, we get

MSHR𝑙1 = 16 (16)

Again setting 𝑛𝑐 = 1 in Eqn:13 (with prefetch), using the com-
puted MSHR𝑙1 and comparing with Eqn:9 we get

16 + 𝛼 (MSHR𝑙2 − 16) = 44 (17)

Solving for this and using 𝛼 = 1, we get

MSHR𝑙2 = 44 (18)

Comparing this with published numbers for these parameters
[34], 𝑅phy = 152,MSHR𝑙1 = 16,MSHR𝑙2 = 48, we see that MPAM

UpDown for unlimited memory parallelism

predicts MSHR𝑙1 with good accuracy. The gap between the pub-
lished MSHR𝑙2 and the derived MSHR𝑙2 is the actual effectiveness
of the hardware prefetchers on STREAM giving 𝛼 = 28/32 = 0.88.

4.5.2 AWS Graviton 3. : We use a similar process as for Intel 8488C
on the AWS Graviton 3 platform, which is based on the ARM Neo-
verse V1 architecture. The STREAM[42] results for forward and
shuffle scan are shown in Figure 7. We list the least square fit equa-
tions and the extracted parameters below. The STREAM benchmark
flattens at ∼ 85% of the maximum parallelism of the DRAM system
(8 channels, DDR5-4400).

MLP𝑓 = 70𝑛𝑐 (19)
MLP𝑠 = 27𝑛𝑐 (20)

The derived parameters are,

MSHR𝑙1 = 27 (21)
MSHR𝑙2 = 70 (22)

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

400

450

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM limit
System limit

M
LP

=
70

n c

0 10 20 30 40 50 60
#cores

0

50

100

150

200

250

300

350

400

450

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

DRAM limit
System limit

M
LP

=
27

n c

ST-C-forward ST-C-shuffle

Figure 7: Memory Parallelism in AWS Graviton 3

The exact values of these parameters are not public information
since these are cores customized for AWS. However, MPAM is able
to provide a model for how to estimate these parameters to decide
which platforms might be best suited for the memory parallelism
needs of the target applications.

5 UPDOWN ARCHITECTURE
Next, we present UpDown: a novel architecture for unlimited mem-
ory parallelism. Unlimited Memory Parallelism refers to UpDown’s

Table 3: MPAM derived architectural parameters for com-
mercial systems [21, 34]

Platform
MPAM derived parameters Published parameters

MSHR𝑙1 MSHR𝑙2 𝑅phy MSHR𝑙1 MSHR𝑙2

Intel Xeon
Platinum 8848C

16 44 512 16 48

AWS Graviton 3 27 70 256 - -

ability to generate very high (virtually unlimited) outstanding mem-
ory requests, constrained only by the memory system that ser-
vices these requests. The UpDown architecture implements the Up-
Down Instruction Set Architecture (UpDown-ISA [14]) in a single
UpDown lane. Multiple lanes (up to 64) are combined to create the
UpDown accelerator. Each UpDown lane in the UpDown accelerator
enables a high memory parallelism with a set of key architectural
memory access mechanisms - Split-transaction DRAMmemory
requests and Compute-Name Synchronization of memory
responses ensure that a single thread is able to exploit memory
level parallelism using the large namespaces described in Section
5.3. Efficient memory parallelism scaling is achieved within a
single UpDown lane using multiple light-weight thread contexts
and scale-out across UpDown lanes using hardware parallelism. We
describe these mechanisms in detail in Section 5.2 and use MPAM
to showcase UpDown’s memory performance.

5.1 UpDown Design
The UpDown accelerator connects directly to the DRAM, without
going through a deep cache hierarchy as in traditional CPUs, en-
abling UpDown to access the DRAM as shown in Figure 8. Multiple
accelerators can be integrated per HBM stack / DRAM system as
illustrated in Figure 8b. A simple controller core is used to schedule
and offload work on UpDown .

Figure 8: Varying memory access paths between a) Tradi-
tional Multicore CPU and b) UpDown System

Each UpDown accelerator contains 64 UpDown lanes (Figure
9). Each UpDown lane is an event-driven programmable accelera-
tor that generates unlimited memory parallelism under software
control. Events are first-class primitives in the UpDown ISA. It com-
bines traditional hardware events like memory_return, write_acks,

Andronicus, Tianchi, Ruiqi and Andrew

and custom software events with a unified programmable event
framework.

Figure 9:MultipleUpDown lanes are integrated into themem-
ory path controlled by a simple controller core that offloads
work on UpDown lanes

Execution in the UpDown lane proceeds through the invocation
of events, scheduled using event words in an Event Queue (see
Figure 10). Each event will 1) create / activate a thread context,
2) integrate data payload (up to 8 words) using Operand Buffer
into the thread context (source of payload could be another lane or
CPU core or memory read returns) and 3) execute the instructions
corresponding to the event until a yield, yieldt instruction is
executed. For a full discussion of the instruction set architecture
and related event mechanisms, we refer the reader to the the Up-
Down ISA manual [14].

5.2 Key Mechanisms for Memory Parallelism in
UpDown

UpDown enables unlimited memory parallelism through the fol-
lowing key mechanisms:

• Split Transaction DRAM memory requests: Unlim-
ited outstanding memory request namespace supported
by novel send instructions

• Explicit Compute-Name Synchronization of memory
responses: Unlimited memory response synchronization
namespace supported by event-driven execution

• Efficient Memory Parallelism Scaling: Scale-up paral-
lelism with many light-weight thread contexts per lane and
scale-out parallelism with multiple lanes per accelerator
and multiple accelerators per DRAM

These mechanisms build on a number of previous research ma-
chine designs [9, 15–17, 47, 66] and are described in detail below.

5.2.1 Split Transaction DRAM memory requests: The UpDown ISA
includes a novel set of messaging instructions for split-transaction
DRAM memory accesses. The instructions sendm, sendmr, and
sendmops (See Table 4) format messages using data from one of
three sources 1. registers, 2. scratchpad, or 3. operand buffer to
create the payload (1-8 words). Each message also carries a contin-
uation word (see Figure 11) that holds synchronization information
for memory responses, described in detail below in Section 5.2.2.

Figure 10: UpDown Lane Architecture

These messages are pushed out through the network interface (see
Figure 10) asynchronously, and instruction execution can proceed
beyond the sendm, sendmr, or sendmops instruction.

Table 4: Novel instructions in UpDown

Instruction(s) Description

sendm Asynchronous Memory access instruction using buffer in scratchpad

sendmops Asynchronous Memory access instruction using operand buffer

sendmr Asynchronous Memory access instructions using register values

ev, evi, evr Continuation creation instructions

yield, yieldt Thread Management Instructions

As explained in Section 2, traditional architectures require ex-
pensive book-keeping of outstanding memory requests. This book-
keeping typically limits the outstanding request namespace to a
narrow local namespace (e.g., MSHR entry IDs in cache-based archi-
tectures, FIFO entry IDs in decoupled access execute architectures,
etc.). In contrast, in UpDown, the inclusion of the continuation-
word in the message obviates the need for any book-keeping of
outstanding memory requests within the lane, resulting in an un-
limited outstanding request namespace. Memory ordering and data
coherence are handled in software, allowing custom implementa-
tions based on individual applications.

Finally, the software control over memory access allows appli-
cations to implement custom data movement efficiently. Whereas
traditional cache-based architectures rely on hardwired cache poli-
cies and prefetchmechanisms to manage locality, these mechanisms
prove ineffective for applications with low data reuse. UpDown can
manage the locality of data between registers, scratchpad, and
DRAM effectively in software.

5.2.2 Explicit Compute-Name Synchronization ofmemory responses:
Event-driven execution in UpDown enables explicit software syn-
chronization of memory responses. UpDown unifies hardware
events like memory_response, cache_invalidate, etc. with custom
software events and are represented in software using an event
word as shown in Figure 11. The event word carries the following
information

(1) eventLabel: The target instruction offset for the thread
invocation.

(2) threadID: Name of the thread context to be used for exe-
cution.

UpDown for unlimited memory parallelism

(3) numOperands: Number of words in the current event’s
data payload in the operand buffer

(4) networkID: Destination target’s (UpDown lane) name,
where the event should be sent and executed.

Figure 11: Event / Continuation Word Fields

While this encoding of events allows a number of powerful
thread invocation and synchronization possibilities, we focus on
the memory response synchronization. Figure 12 shows the steps
to synchronize a memory response. 1○Memory response continua-
tion words are enqueued in the EventQ of a lane specified by the
networkID. 2○eventLabel is used to compute the next instruc-
tion address for execution as an offset from the thread program’s
base instruction address (Progbase). This multi-way dispatch builds
on mechanisms developed and illustrated in [16, 17] 3○threadID
integrates the corresponding register state from the physical regis-
ters into the datapath and finally, 4○numOperands integrates the
top numOperands words in the Operand Buffer into the datapath.
Following this, execution proceeds until a yield, yieldt instruc-
tion is executed, at which point the next scheduled event_word is
processed.

As shown in Section 2, traditional architectures synchronize
memory responses with physical registers in ROB, Reservation
Stations, FIFO registers, etc. In contrast, UpDown synchronizes
memory responses to a compute name (threadID, eventLabel), al-
lowing an unlimited synchronization namespace. However, explicit
software synchronization must be added to programs wherever
ordering is needed for correctness. Fortunately, UpDown’s synchro-
nization operations are very inexpensive (1 cycle), and in many
fine-grained parallel programs there are many unordered memory
references.

Figure 12: Synchronization using Compute-name
(continuation-word) in UpDown .

5.2.3 Efficient Memory Parallelism Scaling: UpDown supports mul-
tiple lightweight thread contexts (16 general purpose registers + 8
special registers per thread and up to 128 threads) per lane. These
threads are explicitly managed by software control through yield
and yieldt instructions. A yield instruction suspends the execu-
tion of the current thread context while persisting its register state.
A yieldt instruction, on the other hand, terminates the execution
of the thread and frees up its register state. A new thread con-
text is created when an event_word with special threadID 0xFF is
processed. While split-transaction memory accesses with compute
name synchronization allow unlimited memory parallelism to be
generated from a single thread, multiple-thread contexts provide
further potential to scale up memory parallelism in applications
that have higher data-dependent control flows.

Further scale-out parallelism is provided by hardware parallelism,
as shown in Figure 9. At ∼ 0.06𝑚𝑚2 per lane, 64 lanes per accelera-
tor and multiple accelerators per DRAM are still only a fraction of
the area (∼ 4%) of a large OOO multi-core CPU[45] enabling low-
cost scale-out memory level parallelism in a system. This scale-out
parallelism, as shown in the following section, enables UpDown to
achieve memory level parallelism sufficient to saturate an HBM3e
stack’s bandwidth of 1.2TB/s.

5.3 Memory Level Parallelism analysis on
UpDown using MPAM

Using MPAM, we describe how we modify the traditional limits
on memory level parallelism by using Compute-Names for the Syn-
chronization Namespace (𝑁𝑠𝑦𝑛𝑐), removing the conventional archi-
tectural limits on the Outstanding Namespace 𝑁𝑜𝑢𝑡 and getting rid
of any shared namespaces 𝑁𝑠ℎ . We also present the effectiveness of
these mechanisms using a simple scan read-only micro-benchmark.

5.3.1 Synchronization Namespace (𝑁𝑠𝑦𝑛𝑐): Traditional architec-
tures synchronize memory responses with register names (architec-
tural or physical). Some researchmachines allocate FIFO names [60],
scratchpad locations [71] to synchronizememory responses. By con-
trast, UpDown uses Compute Names represented by event_words
as described in Section 5.2.2. Figure 11 shows the representation
of the compute name that allows synchronization into a specific
instruction address (eventLabel), thread (threadID), and compute
resource (networkID). This gives us 𝑁𝑠𝑦𝑛𝑐 as follows

𝑁sync = 2𝑏tid+𝑏nwid+𝑏elabel (23)

where 𝑏tid, 𝑏nwid and 𝑏elabel are the number of bits used to rep-
resent the threadID, networkID, and eventLabel respectively. Addi-
tionally, since there can be any number of invocations of a compute
structure (events in UpDown), repetitions of these names are possi-
ble in the in-flight memory requests, leading to the possibility of a
very large synchronization namespace.

5.3.2 Outstanding Request Namespace (𝑁out_sync, 𝑁out_async): In
UpDown, all outstanding requests are software controlled and
hence 𝑁out_async = 0. In traditional architectures, book-keeping for
in-flight memory requests is done using structures like load/store
buffers, MSHRs in caches, etc. However, using split-transaction

Andronicus, Tianchi, Ruiqi and Andrew

memory accesses (described in Section 5.2.1) and allowing software-
controlled consistency, UpDown avoids the need to bind resources
to outstanding requests for book-keeping. This allows the entire
memory address space to be used as the outstanding request names-
pace.

𝑁out_sync = 2𝑏mem (24)

where 𝑏mem represents the number of bits used to represent the
address space. Additionally, as with 𝑁sync there can be any number
of in-flight requests to the same address leading to the possibility
of a very large outstanding namespace.

5.3.3 Shared Request Namespace (𝑁sh): Finally, in UpDown the
memory path from each compute resource (UpDown lane) does not
include any shared namespace restrictions.

Using Eqns:24, 23, and substituting in Eqn:2, we get

MLP = (1/𝑐𝑙) · 𝐿 · 𝑛rep · 𝑠op (min(2𝑏tid+𝑏nwid+𝑏elabel , 2𝑏mem)) (25)

where 𝐿 is the number of UpDown lanes, 𝑛𝑟𝑒𝑝 is the average
number of repetitions to the same address, 𝑠𝑜𝑝 is the average size of
a memory request. As can be seen, Eqn:25 can be virtually unlimited.
When connected to a specific DRAM system, the queues in the
DRAM system and the issue rate of memory references per lane
will determine the total memory parallelism that the whole system
can support.

We evaluate the impact of the UpDown’s memory access mech-
anisms using a simple read-only microbenchmark that does a scan
read of a contiguous block of memory in DRAM.

1 2 4 8 16 32 64 128 256
#lanes

102

103

Ou
ts

ta
nd

in
g

M
em

or
y

Re
qu

es
ts

DDR3-1866 (1 channel)

DDR4-3200 (1 channel)
DDR5-4800 (1 channel)

HBM2e (1 stack)

HBM3e (1 stack)

Figure 13: Memory Parallelism with scan read microbench-
mark running on multiple UpDown lanes. Horizontal lines
show memory parallelism required for various memory sys-
tems assuming 100ns latency

We perform this experiment with the setup mentioned in Section
6 running each lane at 2GHz. We also plot the memory parallelism
required (see Figure 13) to saturate the bandwidth available on
various DDR and HBM memory systems using a uniform 100ns
memory latency (using [38]). As can be seen, 1 lane can saturate a
single DDR3-1866 channel (14.9GB/s), and 64 lanes (1 UpDown ac-
celerator) can saturate a HBM3e stack (1.2TB/s / 1,673 requests). In

contrast, a Sapphire Rapids system with 56 cores achieves about
240GB/s or 590GB/s with a DDR5-4800 or HBM2e memory system
[43].

6 METHODOLOGY
6.1 Workloads and Datasets
For evaluation of the UpDown’s mechanisms, we use a number of
memory-intensive workloads, as shown in Table 5.

Table 5: Workloads

Workloads Dataset

STREAM microbenchmark [42]
(ST-C)
(ST-S)
(ST-A)
(ST-T)

Three arrays with 16Mi 64-bit floating-point entries
STREAM-Copy
STREAM-Scale
STREAM-Add
STREAM-Triad

Top-k (TK) One array with 16Mi 128-bit (64-bit unsigned integer, 64-bit
floating point) key-value pairs; 𝑘 = 8

Dot Product (DP) Two arrays with 16Mi 64-bit floating point entries each

Image Processing (HIST) One array with 32Mi 64-bit unsigned integer entries

Sparse Matrix Vector Product
(SpMV)

Square matrix of dimension 12,288 and 4% uniformly
distributed nonzeros in CSR format (64-bit unsigned integer,
64-bit floating point)

Fast Fourier Transform (FFT) One array with 16Mi 128-bit (64-bit floating point, 64-bit
floating point) complex numbers

Image Filtering (CNN) One 3074×3074 2-D array with 9.45Mi 64-bit floating points;
One 3×3 convolution filter with nine 64-bit floating points

6.2 Simulation Model and Configurations
We use gem5 [40] and DRAMsim3 [37] for cycle-level simulations to
evaluate UpDown’s performance and memory level parallelism. We
developed a cycle-accurate model of UpDown and integrated it into
the gem5 infrastructure. To compare UpDown against traditional
cores, we use the In-Order and Out-of-Order implementations avail-
able in gem5 with the key configurations of the cores listed in Table
6. The OOO-core settings are tuned to match STREAM measure-
ments on Sapphire Rapids GoldenCove cores. The configurations
of the caches used and the MSHR entries are also listed in Table
6. For configurations with prefetch enabled, the prefetcher is en-
abled in the L2 [28]. These latencies were measured on commercial
platforms using [58, 70].

Table 6: System Components

Component Specification

In-Order Core Simple InOrder core (gem5 MinorCPU) @2GHz

OOO Core

x86 OOO core (GoldenCove configuration using gem5 O3CPU)
@2GHz
280 Physical Registers, 512 ROB entries
192 LoadBuff entries, 114 StoreBuff entries

Caches

L1: 32KB ICache, 64KB DCache per core (16 MSHR entries, 8 slots per
entry),
L2: 1MB unified per core (private) (32 MSHR entries, 8 slots per entry)
L3: 2MB per core (shared) (32 MSHR entries, 8 slots per entry)

UpDown Accelerator 64 UpDown Lanes + 4MB scratchpad (64KB per lane) @2GHz

DRAM Memory HBM2e @460GB/s (1 stack, 8x channels), 100ns latency

UpDown for unlimited memory parallelism

Figure 14: a) SpeedUp of OOO-MSHR+PF, UpDown-256 over In, b) MeasuredMemory BWof In, OOO-MSHR+PF andUpDown-256

Table 7: Experiment Configurations and Metrics

Configurations Description

IN In-Order Load/Store Core, No Caches, Word-Sized Memory Accesses

OOO OOO Load/Store Core, No Caches, Word-Sized Memory Accesses

OOO-MSHR OOO + L1/L2 Caches, Cache-Block sized Memory Accesses

OOO-MSHR + PF OOO-MSHR + Prefetch enabled

OOO-MSHR + PF-32 32 OOO-MSHR + PF cores, private L1/L2 caches, shared L3 cache

UpDown-1 UpDown lane - CPU (Core+caches) + 1 UpDown Lane

UpDown-64 UpDown accelerator - CPU (Core+caches) + 64 UpDown Lanes

UpDown-256 Scale-out UpDown - CPU (Core+caches) + 256 UpDown Lanes

Metric Definition

Runtime (seconds) Execution time

SpeedUp Relative Performance

Memory Bandwidth
(GB/s) Memory Traffic (GB) / Runtime (s)

Memory Parallelism No of outstanding memory requests
(Memory Bandwidth (GB/s) / access_size (B) * latency (ns))

7 EVALUATION
We evaluate the memory access mechanisms presenting the overall
performance of the workloads in Table 5 on the various configura-
tions in Table 7. We relate this performance to the memory level
parallelism in each system and the resultant memory bandwidth
utilization, showing how UpDown is able to achieve extremely high
memory parallelism at low costs.

We use data from [31] and [45] for area costs of the In-Order
and OOO cores. For UpDown, synthesis using Synopsys [1] tools
on 28nm libraries and projecting it to 7nm using [10, 64, 65], gives
0.06𝑚𝑚2 per UpDown lane. Given this, UpDown-1 is comparable
in area to a single In-Order core, and UpDown-256 is comparable
to a single Out-of-order core.

7.1 Performance relative to In-Order core
We first present the overall runtime speedup over an In-Order Core
and the correspondingmemory bandwidths in Figure 14a and Figure
14b respectively. UpDown-256 achieves 4,804x geomean speedup
over a single In-Order core. In contrast, the OOO-core with 𝑙1, 𝑙2,
and 𝑙3 caches and prefetch enabled achieves 55x geomean speedup

over the In-Order core (with a maximum of 98x). UpDown’s novel
memory access mechanisms enable it to achieve high speedups,
demonstrating that UpDown-1 is 18x more efficient, on average, in
memory parallelism than the In-Order core.

Figure 14b reveals the close relationship between performance
and achieved memory bandwidths. On applications like TK andDP,
UpDown-256 nearly saturates the HBM2e bandwidth at ∼ 428 GB/s.
On average, UpDown-256 achieves 322 GB/s across all applications.

7.2 Performance relative to OOO cores and
cache mechanisms

Next, we compare the performance of UpDown-1 and UpDown-256
to OOO, OOO-MSHR, and OOO-MSHR + PF configurations. Figure
15a shows that a single UpDown lane (UpDown-1) achieves 1.7x
geomean speedup over OOO and 2.4x geomean speedup over OOO-
MSHR+PF. With hardware parallelism, UpDown-256 achieves 51x
geomean speedup over OOO and 74x over OOO-MSHR + PF.

Figure 15a emphasizes the fact that applications with low data
reuse, like TK and DP, see minimal benefit from the addition of a
cache or enabling prefetch (OOO → OOO-MSHR → OOO-MSHR
+ PF). In contrast, UpDown’s memory access mechanisms enable
even a single lane UpDown-1 to achieve performance comparable
to OOO-MSHR + PF across all applications irrespective of the level
of data reuse. Figure 15b confirms the performance benefits being
directly related to the higher bandwidths achieved in these applica-
tions. It is instructive to note that even on applications like FFT and
CNN that benefit from caching in traditional systems, UpDown-256
achieves high performance by offsetting cache benefits with higher
memory parallelism. This highlights the alternate path to high per-
formance - utilizing higher memory bandwidths more effectively
(like in HBMs) as opposed to using hardwired caching mechanisms
to reduce latency.

7.3 Scalability
We next analyze memory-parallelism scalability with an increas-
ing number of cores. Figure 16 shows the impact of increasing
the number of cores (lanes in UpDown) on Memory Parallelism
using STREAM [42] (COPY). With OOO-MSHR+PF, the memory
parallelism quickly saturates beyond 20 cores due to the namespace
limits in the shared𝑀𝑆𝐻𝑅𝑙3. UpDown on the other hand (with 64
lanes) is able to hit ∼ 438 outstanding requests on HBM2e, which

Andronicus, Tianchi, Ruiqi and Andrew

Figure 15: a) SpeedUp of UpDown-1 and UpDown-256 over OOO, OOO-MSHR, OOO-MSHR+PF, b) Measured Memory BW on
OOO, OOO-MSHR, OOO-MSHR+PF, UpDown-1 and UpDown-256

0 10 20 30 40 50 60
#cores

0

200

400

600

800

1000

1200

M
em

or
y-

Le
ve

l P
ar

al
le

lis
m

HBM2e

HBM3e

OOO-MSHR + Pref-n UpDown-HBM-2e UpDown-HBM-3e

Figure 16: Memory Parallelism vs #cores on ST-C

is > 63% of the maximum required to saturate it. With HBM3e,
on ST-C, UpDown is able to achieve ∼ 1100 outstanding requests,
which is > 59% of the maximum. In both cases, unlike the scan-
read benchmark in Figure 13, STREAM is limited by the switching
between reads and writes and the write bandwidth limits.

7.4 Correlation between Performance and
Memory Parallelism

The correlation between performance and memory parallelism on
all configurations under evaluation is shown in Figure 17. We also
plot the MPAM-derived limits for the baseline systems (𝑀𝐿𝑃𝐼𝑁 ,
𝑀𝐿𝑃𝑂𝑂𝑂−𝑀𝑆𝐻𝑅+𝑃𝐹 ,𝑀𝐿𝑃𝑂𝑂𝑂−𝑀𝑆𝐻𝑅+𝑃𝐹−32). These limits divide
the space into 4 illustrative bands.

The first band, occupied by IN, is a low memory parallelism
region. The memory parallelism achievable on a single In-order
core does not exceed 1. The second band is occupied by UpDown-1
and OOO-MSHR+PF. This clearly shows the impact of the mem-
ory access mechanisms in UpDown and the fact that removing the
namespace constraints in the architecture provides the opportu-
nity to achieve extremely high memory parallelism at low costs.
UpDown-1 is able to extract memory parallelism comparable to and
up to 3.5xmore than a sophisticated OOO core (nearly 22 outstand-
ing requests in ST-C), while being ∼ 250x smaller in area. The third
band shows the effect of hardware parallelismwith OOO-MSHR+PF

Figure 17: SpeedUp vs Memory Parallelism on In, OOO-
MSHR+Pref, OOO-32, UpDown-1 and UpDown-256

cores. For a high data-reuse application like CNN, increasing the
number of cores results in a nearly linear performance benefit of
31x. However, for other applications, performance uplifts are lim-
ited (< 19x) by the memory parallelism limits of the shared L3 cache
(𝑁𝑠ℎ) and its finite resource-bound miss-handling mechanisms.

The fourth band in Figure 17 shows the high performance and
corresponding memory parallelism achieved in UpDown-256 gener-
ating up to 670 outstanding references. UpDown-256, comparable
in area to OOO-MSHR+PF, achieves 26-79x higher memory paral-
lelism with the potential to scale-out more (Figure 13).

7.5 Cost of Memory Parallelism
Finally, we compare the cost of different approaches to memory par-
allelism. Book-keeping and tracking of in-flight memory requests
are done using Content-Addressable Memories (CAM) [24] at vari-
ous levels in the memory hierarchy - the Load/Store queues, MSHRs
across the cache hierarchy, write buffers, and so on. For every re-
quest sent to the next level in the memory hierarchy, an associative
check is performed against all the buffer/memory entries in the
current level, typically using the physical memory address. When
responses arrive at a particular level of memory, a similar associa-
tive check is repeated to update the state and data. Thus, a CAM

UpDown for unlimited memory parallelism

100 101 102 103

Memory-Level Parallelism

101

103

105

#C
om

pa
ra

to
r

a)

100 101 102 103

Memory-Level Parallelism

0

10

20

30

40

50

60

De
pt

h
of

 C
om

pa
ra

to
r

b)

OOO-MSHR+PF OOO-MSHR+PF-32 OOO-largeMSHR+PF-32 UpDown-256

100 101 102 103

Memory-Level Parallelism

100

101

102

103

104

105

Gi
ga

 C
om

pa
ris

on
s /

 s

c)

Figure 18: Comparing the Cost of Memory Parallelism of various OOO cores and UpDown (the lower the better) a) Number of
Comparators vs Memory Parallelism ; b) Depth of Comparators vs Memory-Level Parallelism ; c) GigaComparisons/second vs
Memory Parallelism

with 𝑛 words requires 𝑛-way comparators with 𝑙𝑜𝑔2𝑛 depth match
address encoder(depth)[24]. We use this idea for a notional area and
power comparison between OOO-MSHR+PF, OOO-MSHR+PF-32,
and UpDown for memory parallelism. We also compare against a
hypothetical configuration (OOO-largeMSHR+PF-32) with large
enough CAMs to meet the required memory parallelism. 1

Figure 18a and 18b highlight the trend in the number of com-
parators (cumulative over all structures - Load/Store queue, MSHR
entries in l1, l2, and l3) while increasing the system’s memory par-
allelism. Figure 18b, similarly, shows an increase in the depth of the
comparator (encoder depth) against memory parallelism [24, 67, 75].
The two figures show that the cost of the comparator increases
linearly in area to support the increase in outstanding memory
requests. Increasing the number of comparators has the additional
effect of increasing latency in producing the match result. Nominal
inverter delays at 7nm are ∼ 20ps ([49]), leading to about 10 lev-
els of logic per cycle (3.5GHz freq). Figure 18b shows that having
very large MSHRs can increase the depths > 50 levels, adding ∼ 12
additional cycles to memory latency, clearly demonstrating the limi-
tation in scaling CAM structures. In contrast, because UpDown does
not track or book-keep the outstanding requests and implements
consistency in software, no dedicated hardware comparators are
needed, and increasing memory parallelism has no additional cost.

Beyond the quantity of hardware, these comparators need to
be run at a high rate - we estimate the giga-comparisons/second
required to achieve a given memory bandwidth (see Figure 18c).
These giga-comparisons (and associated data movement) reflect the
power consumption required to sustain that memory parallelism.
The results show that ∼ 10,000 giga-comparison per second (10
tera-comparisons/second) are required to reach HBM2e bandwidths.
Again, no such operation rates are needed in UpDown .

Current OOO cores cannot saturate a single HBM2e stack. 32 or
more OOO-MSHR+PF cores with an overhead > 10,000x compara-
tors in trees with depth > 40 are required to match the requirement
for HBM2e bandwidths. We also show a hypothetical OOO core
with an extremely large MSHR (OOO_largeMSHR+PF-32) to esti-
mate overhead to achieve HBM3e (1.2TB/s) bandwidths. As can be
seen > 1,000,000 comparators arranged in depths of > 60 would be
required to achieve and sustain HBM3e bandwidths.

1We ignore the match line sense amplifier and search word register area and power as
an approximation compared to the area and power of the CAM cells and the encoder

8 RELATEDWORK
8.1 Hardware Prefetchers
Hardware prefetching mechanisms provide additional memory par-
allelism in an asynchronous manner (𝑁𝑜𝑢𝑡_𝑎𝑠𝑦𝑛𝑐) by predicting the
access patterns. A number of custom prefetchers [46, 54, 73, 74]
have been proposed for irregular applications as well that are cus-
tomized to specific applications. This is in addition to the large body
of research that exists in this space [20, 28, 29]. The lack of uniform
data access patterns narrows the effectiveness of prefetchers to a
subset of applications that benefit from the predictive cacheline
fills. Additionally, prefetchers compete for the same resources as
the load/store instructions - namely memory bandwidth and cache
storage. Previous studies [36, 39] have shown the negative impact
on performance due to competitive thrashing between demandmiss
fills and prefetch fills and potential reduction in usable memory
bandwidth. UpDown, on the other hand, provides applications the
ability to achieve the benefits of prefetching using software and
lightweight threads. As our experiments have shown, UpDown can
almost fully utilize any given memory system, fetching only useful
data.

8.2 Multi-Threaded Architectures
A number of processors with various forms of hardware multi-
threading have been proposed and built over the last couple of
decades [5, 6, 8, 19]. From having hardware threads switching at ev-
ery cycle as in barrel processors [44] to SIMT-style threads in GPUs
[41] that switch out a warp of 32 threads at long-latency memory
accesses, these mechanisms attempt to generate sufficient memory
requests to saturate the available bandwidth using a large number
of threads. All the thread-switching is controlled by hardware. To
support this, the size of the 𝑁sync is multiplied by the number of
thread contexts required. For GPUs, 𝑁𝑠𝑦𝑛𝑐 is further expanded by
allowing the shared local memory also to be used as a synchro-
nization space. However, this increase in 𝑁𝑠𝑦𝑛𝑐 comes at the cost
of excessive registers (> 2K per thread [3]). The outstanding and
shared request namespaces remain the same. UpDown with their
lightweight threads that are software-controlled allow runahead
execution inherently, beyond memory reference instructions until
an explicit yield, yieldt instruction is encountered. This gives
greater control over the memory accesses per thread, enabling
higher memory parallelism per thread.

Andronicus, Tianchi, Ruiqi and Andrew

8.3 Decoupled Access Execute Architectures
Modern incarnations of the original Decoupled Access Execute ar-
chitectures [60] have been proposed in an effort to overcome some
of the limitations in the original idea [48, 71, 72]. These architec-
tures need sophisticated compilers that can sufficiently decouple
the access and execute programs to achieve good performance on
the decoupled version. Further, recent proposals have suggested
the use of OOO cores to replace the in-order cores in [60]. This
leads to complex and expensive mechanisms to seamlessly support
mis-prediction, mis-speculation rollbackmechanisms requiring syn-
chronization between the 2 processors. Finally, as an approach to
achieve higher memory parallelism shown in Section 4, they are still
limited by the sizes of the queues used to book-keep outstanding
requests and synchronize responses. Scaling up to the higher mem-
ory bandwidths of HBM2e/3e will require allocating and managing
larger queues or more instances to support higher memory paral-
lelism. UpDown, on the other hand, is only limited by the issue rate
of memory references and can scale up to meet the requirements
of higher bandwidth systems.

9 CONCLUSION
We defined the Memory Parallelism Abstract Machine (MPAM) to
model the limits of memory parallelism in different architectures
and characterized the limits on key architectures. To the best of
our knowledge, this is the first work that highlights the multiple
local namespaces as limits to memory-level parallelism in a concise
model. We applied MPAM to 4 commercial CPUs to characterize
their design and performance. MPAM can be used by architects
to either understand the various limits in a system for memory
parallelism or to design future systems with specific memory par-
allelism requirements. We described the UpDown: a novel archi-
tecture for unlimited parallelism building on insights from MPAM.
A single UpDown lane achieves 3.5x more memory parallelism
than a sophisticated OOO core. We also showed that UpDown can
also scale-up and scale-out cost-effectively to saturate an HBM3e
stack’s memory bandwidth ∼ 1.2TB/s.

ACKNOWLEDGEMENTS
This research is based upon work supported by the Office of the
Director of National Intelligence (ODNI), Intelligence Advanced
Research Projects Activity (IARPA), through the Advanced Graphi-
cal Intelligence Logical Computing Environment (AGILE) research
program, under Army Research Office (ARO) contract number
W911NF22C0082. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the ODNI, IARPA, or the U.S. Government.

This work is also supported in part by NSF Grant CNS-1907863
and a Computation Innovation Fellows Award. Thanks also to the
entire UChicago UpDown team, and also our collaborators at Pur-
due University and Tactical Computing Laboratories.

REFERENCES
[1] [n. d.]. Synopsys teaching resources. https://www.synopsys.com/community/

university-program/teaching-resources.html.
[2] 2022. AGILE: ADVANCED GRAPHIC INTELLIGENCE LOGICAL COMPUTING

ENVIRONMENT Program. https://www.iarpa.gov/research-programs/agile.

[3] 2023. NVIDIA H100 Tensor Core GPU Architecture. NVIDIA (2023). https:
//resources.nvidia.com/en-us-tensor-core

[4] 2024. Intel® 64 and IA-32 Architectures Optimization Reference Manual Volume
1. Intel (2024). https://cdrdv2.intel.com/v1/dl/getContent/671488

[5] Sriram Aananthakrishnan, Nesreen K. Ahmed, Vincent Cave, Marcelo Cintra,
Yigit Demir, Kristof Du Bois, Stijn Eyerman, Joshua B. Fryman, Ivan Ganev, Wim
Heirman, Hans-Christian Hoppe, Jason Howard, Ibrahim Hur, MidhunChan-
dra Kodiyath, Samkit Jain, Daniel S. Klowden, Marek M. Landowski, Laurent
Montigny, Ankit More, Przemyslaw Ossowski, Robert Pawlowski, Nick Pep-
perling, Fabrizio Petrini, Mariusz Sikora, Balasubramanian Seshasayee, Shaden
Smith, Sebastian Szkoda, Sanjaya Tayal, Jesmin Jahan Tithi, Yves Vandriessche,
and Izajasz P. Wrosz. 2020. PIUMA: Programmable Integrated Unified Memory
Architecture. http://arxiv.org/abs/2010.06277 arXiv:2010.06277 [cs].

[6] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. 1990. The Tera computer system. In Proceedings of
the 4th International Conference on Supercomputing (Amsterdam, The Nether-
lands) (ICS ’90). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/77726.255132

[7] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
field, and Burton Smith. 1990. The Tera computer system. In Proceedings of the
4th International Conference on Supercomputing. 1–6.

[8] Wendell Anderson, Robert Rosenberg, and Marco Lanzagorta. 2003. Experiences
Using the Cray Multi-Threaded Architecture (MTA-2). In Proceedings of the 2003
DoD User Group Conference (DOD_UGC ’03). IEEE Computer Society, USA, 378.

[9] Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross, H. T. Kung, Mon-
ica Lam, Margie Levine, Brian Moore, Wire Moore, Craig Peterson, Jim Sus-
man, Jim Sutton, John Urbanski, and Jon Webb. 1990. Supporting Systolic
and Memory Communication in IWarp. In Proceedings of the 17th Annual In-
ternational Symposium on Computer Architecture (Seattle, Washington, USA)
(ISCA ’90). Association for Computing Machinery, New York, NY, USA, 70–81.
https://doi.org/10.1145/325164.325116

[10] David Brooks. 2018. What’s the future of technology scaling? https://www.
sigarch.org/whats-the-future-of-technology-scaling/

[11] Tien-Fu Chen and Jean-Loup Baer. 1995. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE Trans. Comput. 44, 5 (1995), 609–623.
https://doi.org/10.1109/12.381947

[12] George Cozma Chester Lam. 2022. AMD’s Zen 4, Part 2: Memory Subsystem
and Conclusion. Chips and Cheese (November 2022). https://chipsandcheese.
com/2022/11/08/amds-zen-4-part-2-memory-subsystem-and-conclusion/

[13] Daniel Chiang. 2024. SK Hynix to reveal 16-layer HBM3E to main the lead. Dig-
iTimesAsia (February 2024). https://www.digitimes.com/news/a20240222PD215/
sk-hynix-hbm-dram-2024-production.html

[14] Andrew Chien, Andronicus Rajasukumar, Marziyeh Nourian, Yuqing Wang,
Tianshuo Su, Chen Zou, and Yuanwei Fang. 2024. UpDown Accelerator Instruc-
tion Set Architecture (ISA) v2.4. Technical Report TR-2024-03. University of
Chicago. https://newtraell.cs.uchicago.edu/research/publications/techreports/
TR-2024-03

[15] W. J. Dally, L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty,
and S. Wills. 1987. Architecture of a Message-Driven Processor. In Proceedings of
the 14th Annual International Symposium on Computer Architecture (Pittsburgh,
Pennsylvania, USA) (ISCA ’87). Association for Computing Machinery, New York,
NY, USA, 189–196. https://doi.org/10.1145/30350.30372

[16] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. 2015. Fast
Support for Unstructured Data Processing: The Unified Automata Processor. In
Proceedings of the 48th International Symposium on Microarchitecture (Waikiki,
Hawaii) (MICRO-48). Association for Computing Machinery, New York, NY, USA,
533–545. https://doi.org/10.1145/2830772.2830809

[17] Yuanwei Fang, Chen Zou, Aaron J. Elmore, and Andrew A. Chien. 2017. UDP: a
programmable accelerator for extract-transform-load workloads and more. In
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-50 ’17). Association for Computing Machinery, New York, NY,
USA, 55–68. https://doi.org/10.1145/3123939.3123983

[18] K. I. Farkas and N. P. Jouppi. 1994. Complexity/performance tradeoffs with
non-blocking loads. In Proceedings of the 21st Annual International Symposium on
Computer Architecture (Chicago, Illinois, USA) (ISCA ’94). IEEE Computer Society
Press, Washington, DC, USA, 211–222. https://doi.org/10.1145/191995.192029

[19] John Feo, David Harper, Simon Kahan, and Petr Konecny. 2005. ELDORADO.
In Proceedings of the 2nd Conference on Computing Frontiers (Ischia, Italy) (CF
’05). Association for Computing Machinery, New York, NY, USA, 28–34. https:
//doi.org/10.1145/1062261.1062268

[20] John WC Fu, Janak H Patel, and Bob L Janssens. 1992. Stride directed prefetching
in scalar processors. ACM SIGMICRO Newsletter 23, 1-2 (1992), 102–110.

[21] Chester Lam George Cozma. 2022. Graviton 3: First Impressions. Chips and
Cheese (May 2022). https://chipsandcheese.com/2022/05/29/graviton-3-first-
impressions/

[22] Kourosh Gharachorloo. [n. d.]. MEMORY CONSISTENCY MODELS FOR
SHARED-MEMORY MULTIPROCESSORS. ([n. d.]).

https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.iarpa.gov/research-programs/agile
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://cdrdv2.intel.com/v1/dl/getContent/671488
http://arxiv.org/abs/2010.06277
https://doi.org/10.1145/77726.255132
https://doi.org/10.1145/325164.325116
https://www.sigarch.org/whats-the-future-of-technology-scaling/
https://www.sigarch.org/whats-the-future-of-technology-scaling/
https://doi.org/10.1109/12.381947
https://chipsandcheese.com/2022/11/08/amds-zen-4-part-2-memory-subsystem-and-conclusion/
https://chipsandcheese.com/2022/11/08/amds-zen-4-part-2-memory-subsystem-and-conclusion/
https://www.digitimes.com/news/a20240222PD215/sk-hynix-hbm-dram-2024-production.html
https://www.digitimes.com/news/a20240222PD215/sk-hynix-hbm-dram-2024-production.html
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2024-03
https://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2024-03
https://doi.org/10.1145/30350.30372
https://doi.org/10.1145/2830772.2830809
https://doi.org/10.1145/3123939.3123983
https://doi.org/10.1145/191995.192029
https://doi.org/10.1145/1062261.1062268
https://doi.org/10.1145/1062261.1062268
https://chipsandcheese.com/2022/05/29/graviton-3-first-impressions/
https://chipsandcheese.com/2022/05/29/graviton-3-first-impressions/

UpDown for unlimited memory parallelism

[23] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. 1992. Hiding memory
latency using dynamic scheduling in shared-memory multiprocessors. ACM
SIGARCH Computer Architecture News 20, 2 (May 1992), 22–33. https://doi.org/
10.1145/146628.139678

[24] Karl-Erwin Grosspietsch. 1992. Associative processors and memories: A survey.
IEEE Micro 12, 3 (1992), 12–19.

[25] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2015. DeSC: Decoupled
supply-compute communication management for heterogeneous architectures.
In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 191–203. https://doi.org/10.1145/2830772.2830800

[26] John L. Hennessy and David A. Patterson. 2012. Computer Architecture: A Quan-
titative Approach (5 ed.). Morgan Kaufmann, Amsterdam.

[27] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. 2003. TCP: Tag Corre-
lating Prefetchers. In Proceedings of the 9th International Symposium on High-
Performance Computer Architecture (HPCA ’03). IEEE Computer Society, USA,
317.

[28] Z. Hu, M. Martonosi, and S. Kaxiras. 2003. TCP: tag correlating prefetchers. In The
Ninth International Symposium on High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. 317–326. https://doi.org/10.1109/HPCA.2003.1183549

[29] Sorin Iacobovici, Lawrence Spracklen, Sudarshan Kadambi, Yuan Chou, and
Santosh G. Abraham. 2004. Effective stream-based and execution-based data
prefetching. In Proceedings of the 18th Annual International Conference on Super-
computing (Malo, France) (ICS ’04). Association for Computing Machinery, New
York, NY, USA, 1–11. https://doi.org/10.1145/1006209.1006211

[30] Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho
Jin, and Keith Kim. 2017. HBM (High Bandwidth Memory) DRAM Technology
and Architecture. In 2017 IEEE International MemoryWorkshop (IMW). 1–4. https:
//doi.org/10.1109/IMW.2017.7939084

[31] Jack Kang. 2017. SiFive U54-MCCoreplex:Multicore, 64-bit Application Processor
class RISC-V CPU. https://static.dev.sifive.com/slides/SiFive-U54-MC.pdf

[32] David Kroft. 1998. Lockup-free instruction fetch/prefetch cache organization. In
25 years of the international symposia on Computer architecture (selected papers).
ACM, Barcelona Spain, 195–201. https://doi.org/10.1145/285930.285979

[33] Kartik Lakhotia, Laura Monroe, Kelly Isham, Maciej Besta, Nils Blach, Torsten
Hoefler, and Fabrizio Petrini. 2024. PolarStar: Expanding the Horizon of Diameter-
3 Networks. In Proceedings of the 36th ACM Symposium on Parallelism in Algo-
rithms and Architectures (Nantes, France) (SPAA ’24). Association for Comput-
ing Machinery, New York, NY, USA, 345–357. https://doi.org/10.1145/3626183.
3659975

[34] Chester Lam. 2021. Popping the Hood on Golden Cove. Chips and Cheese
(December 2021). https://chipsandcheese.com/2021/12/02/popping-the-hood-
on-golden-cove/

[35] Chester Lam. 2022. Sunny Cove: Intel’s Lost Generation. Chips and Cheese
(June 2022). https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-
generation/

[36] Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When Prefetching Works,
When It Doesn’t, and Why. ACM Trans. Archit. Code Optim. 9, 1, Article 2 (mar
2012), 29 pages. https://doi.org/10.1145/2133382.2133384

[37] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator. IEEE Com-
puter Architecture Letters 19, 2 (2020), 106–109. https://doi.org/10.1109/LCA.
2020.2973991

[38] John D. C. Little. 1961. A Proof for the Queuing Formula: L = 𝜆W. Oper. Res. 9, 3
(jun 1961), 383–387. https://doi.org/10.1287/opre.9.3.383

[39] Gabriel H. Loh. 2008. 3D-Stacked Memory Architectures for Multi-core Pro-
cessors. In Proceedings of the 35th Annual International Symposium on Com-
puter Architecture (ISCA ’08). IEEE Computer Society, USA, 453–464. https:
//doi.org/10.1109/ISCA.2008.15

[40] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues
Carvalho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Di-
estelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fariborz, Amin Farmahini-
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas
Grass, Anthony Gutierrez, Bagus Hanindhito, Andreas Hansson, Swapnil Haria,
Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell, Syed Ali Raza
Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias
Jung, Subash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Miquel Moreto,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris,
Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke,
Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D.
Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish,
Ilias Vougioukas, William Wang, Zhengrong Wang, Norbert Wehn, Christian
Weis, David A.Wood, Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator:
Version 20.0+. https://doi.org/10.48550/arXiv.2007.03152 arXiv:2007.03152 [cs].

[41] David Luebke. 2008. CUDA: Scalable parallel programming for high-performance
scientific computing. In 2008 5th IEEE International Symposium on Biomedical
Imaging: FromNano to Macro. 836–838. https://doi.org/10.1109/ISBI.2008.4541126

[42] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth in High
Performance Computers. Technical Report. University of Virginia, Charlottesville,
Virginia. http://www.cs.virginia.edu/stream/ A continually updated technical
report. http://www.cs.virginia.edu/stream/.

[43] JohnD.McCalpin. 2023. Bandwidth Limits in the Intel XeonMax (Sapphire Rapids
with HBM) Processors. In High Performance Computing, Amanda Bienz, Michèle
Weiland, Marc Baboulin, and Carola Kruse (Eds.). Springer Nature Switzerland,
Cham, 403–413.

[44] David Mizell and Kristyn Maschhoff. 2009. Early experiences with large-scale
Cray XMT systems. In Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing (IPDPS ’09). IEEE Computer Society, USA, 1–9.
https://doi.org/10.1109/IPDPS.2009.5161108

[45] Hassan Mujtaba. 2022. Intel Sapphire Rapids ‘4th Gen Xeon’ CPU Delidded
By Der8auer, Unveils Extreme Core Count Die With 56 Golden Cove Cores.
WCCFTech (January 2022). https://wccf.tech/189cd

[46] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera, Xiaosong Ma, and
Daniel Sanchez. 2018. Exploiting Locality in Graph Analytics through Hardware-
Accelerated Traversal Scheduling. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1–14. https://doi.org/10.1109/MICRO.
2018.00010

[47] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. 1993. The J-
Machine Multicomputer: An Architectural Evaluation. In Proceedings of the 20th
Annual International Symposium on Computer Architecture (San Diego, California,
USA) (ISCA ’93). Association for Computing Machinery, New York, NY, USA,
224–235. https://doi.org/10.1145/165123.165158

[48] Marcelo Orenes-Vera, Aninda Manocha, Jonathan Balkind, Fei Gao, Juan L.
Aragón, David Wentzlaff, and Margaret Martonosi. 2022. Tiny but mighty:
designing and realizing scalable latency tolerance for manycore SoCs. In Pro-
ceedings of the 49th Annual International Symposium on Computer Architecture.
ACM, New York New York, 817–830. https://doi.org/10.1145/3470496.3527400

[49] Rajeev Kumar Pandey and Sanjeev Kumar Pandey. 2020. Analyzing the Perfor-
mance of 7nm FinFET Based Logic Circuit for the Signal Processing in Neural
Network. In 2020 IEEE Recent Advances in Intelligent Computational Systems
(RAICS). 136–140. https://doi.org/10.1109/RAICS51191.2020.9332500

[50] J. Thomas Pawlowski. 2011. Hybrid memory cube (HMC). In 2011 IEEE Hot Chips
23 Symposium (HCS). 1–24. https://doi.org/10.1109/HOTCHIPS.2011.7477494

[51] Steven A. Przybylski. 1990. Cache and memory hierarchy design. (1 1990).
https://doi.org/10.1016/B978-0-08-050059-1.50006-2

[52] Andronicus Rajasukumar, Jiya Su, Yuqing,Wang, Tianshuo Su,MarziyehNourian,
Jose M Monsalve Diaz, Tianchi Zhang, Jianru Ding, Wenyi Wang, Ziyi Zhang,
Moubarak Jeje, Henry Hoffmann, Yanjing Li, and Andrew A. Chien. 2024. Up-
Down: Programmable fine-grained Events for Scalable Performance on Irregular
Applications. arXiv:2407.20773 [cs.AR] https://arxiv.org/abs/2407.20773

[53] Cliff Robinson. 2021. AMD Zen 3 at Hot Chips 33. https://www.servethehome.
com/amd-zen-3-at-hot-chips-33/

[54] Brian C. Schwedock, Piratach Yoovidhya, Jennifer Seibert, and Nathan Beckmann.
2022. täkō: a polymorphic cache hierarchy for general-purpose optimization of
data movement. In Proceedings of the 49th Annual International Symposium on
Computer Architecture. ACM, New York New York, 42–58. https://doi.org/10.
1145/3470496.3527379

[55] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model
for x86 multiprocessors. Commun. ACM 53, 7 (July 2010), 89–97. https:
//doi.org/10.1145/1785414.1785443

[56] Anton Shilov. 2023. Micron Publishes Updated DRAM Roadmap:
32 Gb DDR5 DRAMs, GDDR7, HBMNext. AnandTech (July 2023).
https://www.anandtech.com/show/18982/micron-publishes-updated-dram-
roadmap-32-gb-ddr5-drams-gddr7-hbmnext

[57] Anton Shilov. 2023. Micron Unveils HBM3 Gen2 Memory: 1.2 TB/sec
Memory Stacks For HPC and AI Processors. AnandTech (July 2023).
https://www.anandtech.com/show/18981/micron-unveils-hbm3-gen2-12-tbs-
per-stack-at-92-gts-speed

[58] Siarhei Siamashka. 2017. tinymembench. https://github.com/ssvb/
tinymembench.

[59] J.E. Smith and A.R. Pleszkun. 1988. Implementing precise interrupts in pipelined
processors. IEEE Trans. Comput. 37, 5 (1988), 562–573. https://doi.org/10.1109/
12.4607

[60] James E Smith. 1982. Decoupled access/execute computer architectures. ACM
SIGARCH Computer Architecture News 10, 3 (1982), 112–119.

[61] Ryan Smith. 2023. AMD: EPYC "Genoa-X" CPUs With 1.1GB of L3 Cache Now
Available. AnandTech (June 2023). https://www.anandtech.com/show/18914/
amd-epyc-genoax-cpus-with-11gb-of-l3-cache-shipping-now

[62] Ryan Smith. 2024. NVIDIA Blackwell Architecture and B200/B100 Accel-
erators Announced: Going Bigger With Smaller Data. AnandTech (March
2024). https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-

https://doi.org/10.1145/146628.139678
https://doi.org/10.1145/146628.139678
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1109/HPCA.2003.1183549
https://doi.org/10.1145/1006209.1006211
https://doi.org/10.1109/IMW.2017.7939084
https://doi.org/10.1109/IMW.2017.7939084
https://static.dev.sifive.com/slides/SiFive-U54-MC.pdf
https://doi.org/10.1145/285930.285979
https://doi.org/10.1145/3626183.3659975
https://doi.org/10.1145/3626183.3659975
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/
https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/
https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/
https://doi.org/10.1145/2133382.2133384
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1287/opre.9.3.383
https://doi.org/10.1109/ISCA.2008.15
https://doi.org/10.1109/ISCA.2008.15
https://doi.org/10.48550/arXiv.2007.03152
https://doi.org/10.1109/ISBI.2008.4541126
http://www.cs.virginia.edu/stream/
https://doi.org/10.1109/IPDPS.2009.5161108
https://wccf.tech/189cd
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1145/165123.165158
https://doi.org/10.1145/3470496.3527400
https://doi.org/10.1109/RAICS51191.2020.9332500
https://doi.org/10.1109/HOTCHIPS.2011.7477494
https://doi.org/10.1016/B978-0-08-050059-1.50006-2
https://arxiv.org/abs/2407.20773
https://arxiv.org/abs/2407.20773
https://www.servethehome.com/amd-zen-3-at-hot-chips-33/
https://www.servethehome.com/amd-zen-3-at-hot-chips-33/
https://doi.org/10.1145/3470496.3527379
https://doi.org/10.1145/3470496.3527379
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://www.anandtech.com/show/18982/micron-publishes-updated-dram-roadmap-32-gb-ddr5-drams-gddr7-hbmnext
https://www.anandtech.com/show/18982/micron-publishes-updated-dram-roadmap-32-gb-ddr5-drams-gddr7-hbmnext
https://www.anandtech.com/show/18981/micron-unveils-hbm3-gen2-12-tbs-per-stack-at-92-gts-speed
https://www.anandtech.com/show/18981/micron-unveils-hbm3-gen2-12-tbs-per-stack-at-92-gts-speed
https://github.com/ssvb/tinymembench
https://github.com/ssvb/tinymembench
https://doi.org/10.1109/12.4607
https://doi.org/10.1109/12.4607
https://www.anandtech.com/show/18914/amd-epyc-genoax-cpus-with-11gb-of-l3-cache-shipping-now
https://www.anandtech.com/show/18914/amd-epyc-genoax-cpus-with-11gb-of-l3-cache-shipping-now
https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-and-b200b100-accelerators-announced-going-bigger-with-smaller-data
https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-and-b200b100-accelerators-announced-going-bigger-with-smaller-data

Andronicus, Tianchi, Ruiqi and Andrew

and-b200b100-accelerators-announced-going-bigger-with-smaller-data
[63] Jared Stark, Paul Racunas, and Yale N. Patt. 1997. Reducing the performance

impact of instruction cache misses by writing instructions into the reservation
stations out-of-order. In Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture (Research Triangle Park, North Carolina, USA)
(MICRO 30). IEEE Computer Society, USA, 34–43.

[64] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm. Integration 58
(2017), 74–81. https://doi.org/10.1016/j.vlsi.2017.02.002

[65] Aaron Stillmaker and Bevan Baas. 2019. Corrigendum to “Scaling Equations
for the Accurate Prediction of CMOS Device Performance from 180nm to 7nm”
[Integr. VLSI J. 58 (2017) 74–81]. Integr. VLSI J. 67, C (jul 2019), 170. https:
//doi.org/10.1016/j.vlsi.2019.04.006

[66] M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman,
P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V.
Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. 2002. The Raw micro-
processor: a computational fabric for software circuits and general-purpose pro-
grams. IEEE Micro 22, 2 (2002), 25–35. https://doi.org/10.1109/MM.2002.997877

[67] G. Thirugnanam, N. Vijaykrishnan, and M.J. Irwin. 2001. A novel low power
CAM design. In Proceedings 14th Annual IEEE International ASIC/SOC Conference
(IEEE Cat. No.01TH8558). 198–202. https://doi.org/10.1109/ASIC.2001.954697

[68] R. M. Tomasulo. 1967. An Efficient Algorithm for Exploiting Multiple Arithmetic
Units. IBM Journal of Research and Development 11, 1 (1967), 25–33. https:
//doi.org/10.1147/rd.111.0025

[69] Steve VanderWiel and David J Lilja. 1996. A survey of data prefetching techniques.
In Procs. of the 23rd International Symposium on Computer Architecture. Citeseer.

[70] Krishnaswamy Viswanathan. 2024. Intel® memory latency Checker
v3.11. https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-
memory-latency-checker.html

[71] Luming Wang, Xu Zhang, Songyue Wang, Zhuolun Jiang, Tianyue Lu, Mingyu
Chen, Siwei Luo, and Keji Huang. 2024. Asynchronous Memory Access Unit:
Exploiting Massive Parallelism for Far Memory Access. http://arxiv.org/abs/
2404.11044 arXiv:2404.11044 [cs].

[72] Zhengrong Wang and Tony Nowatzki. 2019. Stream-based memory access
specialization for general purpose processors. In Proceedings of the 46th In-
ternational Symposium on Computer Architecture (, Phoenix, Arizona,) (ISCA
’19). Association for Computing Machinery, New York, NY, USA, 736–749.
https://doi.org/10.1145/3307650.3322229

[73] Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, and Srinivas Devadas.
2015. IMP: indirect memory prefetcher. In Proceedings of the 48th International
Symposium on Microarchitecture (Waikiki, Hawaii) (MICRO-48). Association for
Computing Machinery, New York, NY, USA, 178–190. https://doi.org/10.1145/
2830772.2830807

[74] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek Chiou. 2018. Minnow:
Lightweight Offload Engines for Worklist Management and Worklist-Directed
Prefetching. In Proceedings of the Twenty-Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (Williams-
burg, VA, USA) (ASPLOS ’18). Association for Computing Machinery, New York,
NY, USA, 593–607. https://doi.org/10.1145/3173162.3173197

[75] C.A. Zukowski and Shao-Yi Wang. 1997. Use of selective precharge for low-
power content-addressable memories. In 1997 IEEE International Symposium on
Circuits and Systems (ISCAS), Vol. 3. 1788–1791 vol.3. https://doi.org/10.1109/
ISCAS.1997.621492

A MAPPING MPAM TO OTHER
ARCHITECTURES

A.1 Decoupled Access and Execute
Architectures:

In Decoupled Access Execute(DAE) Architecture [60], 𝐴𝑀𝐹𝐸 and
𝐴𝑀𝐵𝐸 are implemented as two separate in-order cores - Execute (𝐸)
and Access (𝐴) respectively. Each processor runs a separate instruc-
tion stream. These two instruction streams are carefully derived
such that the Access processor performs all the memory operations,
and the Execute processor only runs non-memory instructions.
Both these processors are executed in-order. The two processors

communicate using two queues 1. 𝐴𝐸𝑄-Access to Execute Queue
to forward loads from 𝐴 to 𝐸 and 2. 𝐸𝐴𝑄-Execute to Access Queue
to forward stores from 𝐸 to 𝐴. For stores, the 𝐴 processor allocates
computed addresses in an internal queue𝑊𝐴𝑄-Write address queue
that is synchronized with the arrival of data on 𝐸𝐴𝑄 . For loads, an
entry in the 𝐴𝐸𝑄 is allocated to synchronize memory responses.
𝑁𝑠𝑦𝑛𝑐 and 𝑁𝑜𝑢𝑡 are the same value in these architectures and given
by

MLP = 𝑁sync = 𝑁out = (1/𝑐𝑙) · (FIFOWAQ · 𝑠𝑞 + FIFOAEQ · 𝑠𝑞)

where FIFO𝑋 is the number of entries in Queue 𝑋 and 𝑠𝑞 is the
size of each entry in words.

A.1.1 Decoupled Supply-Compute (DeSC)[25]: Decoupled Supply-
Compute (DeSC) develops the DAE idea further. In DeSC AMFE
and AMBE are implemented as two specialized devices, SuppD and
CompD. SuppD ’supplies’ CompD with data to compute on. These
devices can be programmable processors or specialized accelerators.
The two devices are coupled with CommQ, a hardware FIFO queue
that feeds into CommBuff in CompD. A Store Value Buffer is also
used for synchronizing store values. However, memory accesses and
memory parallelism are controlled and limited by mechanisms in
SuppD. If SuppD is an OOO core (as evaluated in [25]), the memory
parallelism matches that of an OOO core as below

𝑁out_sync =MSHR𝑙1
𝑁out_async =𝛼 (MSHR𝑙2 −MSHR𝑙1)

MLP =min(𝑅phy/cl,MSHR𝑙1)
+ 𝛼 · (MSHR𝑙2 −MSHR𝑙1) (26)

The design does allow SuppD to be a specialized accelerator,
in which case the memory access mechanism of that accelerator
will dictate the MLP of the system. The performance benefit of
the system lies in the runahead execution of SuppD over CompD
that fills up CommQ and CommBuff with operands for CompD to
lookup.

A.1.2 MAPLE[48]: MAPLE implements AMFE and AMBE as ex-
ecute and access processes running on separate cores, coupled
circular communication queues in a special hardware unit (MAPLE
Engine) using its scratchpad. The processes communicate with
MAPLE using MMIO, and MAPLE queue slots are used for syn-
chronization and outstanding namespaces. Thus, the MAPLE queue
size determines the MLP per process. Multiple cores can share a
single MAPLE unit. MAPLE itself goes through the LLC to access
the DRAM memory.

𝑁sync =𝑁out = 𝑛MAPLE · (1/cl) · FIFOMAPLE

𝑁sh =𝑛MAPLE ·MSHRllc
MLP =min(𝑛MAPLE · (1/cl) · FIFOMAPLE · 𝑠𝑞,

𝑛MAPLE ·MSHRllc) (27)

where 𝑛MAPLE is the number of MAPLE units, FIFOMAPLE is the
number of entries per MAPLE unit, and 𝑠𝑞 is the size of each entry
in words.

https://www.anandtech.com/show/21310/nvidia-blackwell-architecture-and-b200b100-accelerators-announced-going-bigger-with-smaller-data
https://doi.org/10.1016/j.vlsi.2017.02.002
https://doi.org/10.1016/j.vlsi.2019.04.006
https://doi.org/10.1016/j.vlsi.2019.04.006
https://doi.org/10.1109/MM.2002.997877
https://doi.org/10.1109/ASIC.2001.954697
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1147/rd.111.0025
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
http://arxiv.org/abs/2404.11044
http://arxiv.org/abs/2404.11044
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1145/2830772.2830807
https://doi.org/10.1145/3173162.3173197
https://doi.org/10.1109/ISCAS.1997.621492
https://doi.org/10.1109/ISCAS.1997.621492

UpDown for unlimited memory parallelism

A.1.3 AMU[71]: Finally, amore recent research proposal, the Asyn-
chronous Memory Access Unit, partitions the L2 cache to create
a scratchpad for book-keeping of outstanding requests to support
higher memory parallelism with an OOO core. 𝑁sync and 𝑁out for
this system are again equal and limited by the number of entries in
its memory access request table (or request ID namespace). If 𝑏req
represents the number of bits in the request ID,

MLP = 𝑁sync = 𝑁out = (1/cl) · 2𝑏req · 𝑠𝑞 (28)

where 𝑠𝑞 is the average size of each memory access.

A.2 Multi-Threaded Architectures:
A.2.1 MTA based Architectures [7, 44]: Barrel Process Architec-
tures like [7, 8, 44] used multiple thread contexts to create larger
synchronization namespace and removed data caches. Each thread
could issue up to 8 outstanding requests. So for these systems,

𝑁sync = 𝑛threads · 𝑅
𝑁out = 𝑛threads · 8
MLP = (1/cl)min(𝑛threads · 𝑅 · 𝑠𝑠 , 𝑛threads · 8 · 𝑠𝑜) (29)

for a single processor. 𝑅 is the number of registers available per
thread, 𝑠𝑠 is the word-length of each register and 𝑠𝑜 is the size of
each outstanding request.

A.2.2 GPUs: GPU threads execute in warps. The synchronization
namespace is enlarged to the number of threads supported as in
[7]. However, all threads in a GPU do not use the same number
of registers, and the synchronization namespace is limited by the
physical registers available 𝑅𝑝ℎ𝑦′ . This is typically an order of
magnitude higher than the physical registers in a CPU to support
the large number of threads.

𝑁sync =min(𝑛threads · 𝑅, 𝑅phy’)
𝑁out_sync =MSHR𝑙2
MLPSM =(1/cl)min(min(𝑛threads · 𝑅, 𝑅phy’) · 𝑠𝑠 ,

MSHR𝑙2) (30)

where MLPSM is the MLP per stream processor, and 𝑠𝑠 is the
register word size. With newer designs [3], accelerators have been
added to asynchronously fill the shared memory with data from
memory. In such cases, an additional component 𝑁out_async is added
as below

MLPSM =(1/cl) (min(min(𝑛threads · 𝑅, 𝑅phy’) · 𝑠𝑠 ,
MSHR𝑙2) + Shmem) (31)

where Shmem is the maximum shared memory that can be con-
figured to be loaded by the accelerator.

	Abstract
	1 Introduction
	2 Background
	2.1 Out-of-Order Execution
	2.2 Mechanisms for Memory Parallelism in Caches
	2.3 High Bandwidth Memories
	2.4 The UpDown System and Project

	3 Motivation
	4 Memory Parallelism Abstract Machine (MPAM)
	4.1 Memory Parallelism Limits
	4.2 Model Description
	4.3 Modeling Microarchitectures with MPAM
	4.4 Validating MPAM's ability to Model Commercial Systems
	4.5 Using MPAM to derive architectural parameters

	5 UpDown Architecture
	5.1 UpDown Design
	5.2 Key Mechanisms for Memory Parallelism in UpDown
	5.3 Memory Level Parallelism analysis on UpDown using MPAM

	6 Methodology
	6.1 Workloads and Datasets
	6.2 Simulation Model and Configurations

	7 Evaluation
	7.1 Performance relative to In-Order core
	7.2 Performance relative to OOO cores and cache mechanisms
	7.3 Scalability
	7.4 Correlation between Performance and Memory Parallelism
	7.5 Cost of Memory Parallelism

	8 Related Work
	8.1 Hardware Prefetchers
	8.2 Multi-Threaded Architectures
	8.3 Decoupled Access Execute Architectures

	9 Conclusion
	References
	A Mapping MPAM to other architectures
	A.1 Decoupled Access and Execute Architectures:
	A.2 Multi-Threaded Architectures:

