
Implementation of a Two-Level Programmable Cache Emulation
and Test System

Marcus Figorito
Rochester Institute of Technology

Rochester, New York, USA

Vincent Michelini
Rochester Institute of Technology

Rochester, New York, USA

Benjamin Reber
University of Rochester

Rochester, New York, USA

Alexander H. Kneipp
Rochester Institute of Technology

Rochester, New York, USA

Matthew Gould
Rochester Institute of Technology

Rochester, New York, USA

Chen Ding
University of Rochester

Rochester, New York, USA

Linlin Chen
Rochester Institute of Technology

Rochester, New York, USA

Dorin Patru
Rochester Institute of Technology

Rochester, New York, USA

ABSTRACT
The processor-memory bottleneck is a well-documented problem in
HPC. The authors have set out to create a programmable cache. Tra-
ditional caches are hardware-controlled and use automatic (built-in)
replacement policies, such as Least-Recently-Used (LRU) or Pseudo-
Least-Recently-Used (PLRU). A programmable cache uses input
from software, more specifically from the compiler, about when to
evict a block of data. Previous work has described several eviction
algorithms/policies, which have been verified through simulation
using memory traces and tested in a single-core with single-level
programmable cache. In this work, we discuss in detail the design
and architecture of the current emulation and test system, which
instantiates a single-core RISCV and a two-level programmable
cache in a Field-Programmable Gate Array (FPGA).

When using a set of scientific loops, the two-level lease cache
system reduces the main memory access by 50% to 80% on average
compared to the single-level lease cache in the prior work. Com-
pared to a two-level cache system using PLRU, the programmable
cache reduces the average miss count by 20% to 40%.

CCS CONCEPTS
• Software and its engineering→ Compilers; • Hardware→
Dynamic memory.

1 INTRODUCTION
Optimal cache management requires eviction of the cache-block
which will be used the furthest in the future. Traditional cache man-
agement methods follow simple heuristics, which seek to capture
this behavior - the commonly used LRU or PLRU policies evict the
least recently used cache-block under the assumption that stale data
is less likely to be reused than new data. However, heuristic-based
solutions may not perform well in all cases.

Prechtl et al. [7] introduced the lease-based, programmable cache.
Rather thanmaking eviction decisionswhen the cache is full, a lease-
based, programmable cache prescribes a cache-block’s lifetime with
a lease. The block’s lease is updated when it is stored or refreshed
by a memory access. Leases are assigned at compile time for each
load/store instruction, which we call memory references. A lease-
based, programmable cache is said to be programmable, because it

uses program information and so its behavior can be different from
program to program.

The question which arises is how to assign leases to memory
references. The key metric is the reuse interval, which denotes the
number of memory accesses between a data’s use and reuse. For a
certain class of programs, which we call compile-time enumerable,
reuse intervals can be determined statically. The reuse interval
histogram (RIH) of each reference is used to assign a lease to each
reference, which is used at run-time by the cache to predict the
next reuse [7]. There are four lease-assignment policies, which use
reuse interval histograms to produce lease assignments: CLAM -
Compiler Lease of Cache Memory, which assigns a lease for each
reference across the entire program[7], PRL - Phased Reference
Leasing, which breaks up the program into fixed-width segments[7],
SHEL - Scope-Hooked Eviction Leasing, and C-SHEL - Cross-Scope
Hooked Eviction Leasing, which break up the program by its loop
structure [8].

The host processor uses the RISC-V architecture. Its openness,
reconfigurability, and the ecosystem of associated hardware and
software tools enable research at the hardware-software interface
using actual hardware emulation and test systems. Furthermore,
from a practical point of view, it offers a cost-effective and reliable
processor architecture, around which one can develop SoC based
hardware accelerators.

The goal of this work as far as cache design is concerned is
minimal miss count for the same program using the same amount
of cache space. The study does not consider prefetching, which
reduces the running time by reading from memory early, but does
not remove the need for reading from memory. Prefetching hides
the memory access latency, but does not reduce it. Locality is a
sub-problem of memory performance. It is only concerned with
reusing the data in the cache. We address the locality problem in
this study. The system does not implement prefetching, and each
memory access is a cache miss. By minimizing the miss count, the
cache design minimizes the amount of data movement.

The remainder of this paper is organized as follows: Section 2
covers the design and operation of the hardware emulation and test
system. Section 3 describes in detail its current use case: to emulate
and test the operation of a single RISC-V core and associated two-
level, lease-based, programmable cache. Section 4 describes the

https://orcid.org/0009-0004-2214-9129
https://orcid.org/0009-0001-8085-6102
https://orcid.org/0000-0003-1633-397X
https://orcid.org/0009-0008-7063-9009
https://orcid.org/0009-0000-8105-1851
https://orcid.org/0000-0003-4968-6659
https://orcid.org/0009-0005-2100-1517
https://orcid.org/0009-0008-5671-9061

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

FPGA Fabric

FPGA Fabric

CPU
Pipelined
RISCV –
integer

and float

CPU
Pipelined
RISCV –
integer

and float

Unified
MM

DDRx
RAM

Unified L2 Cache:
• PLRU – baseline
• CLAM and PRL

• SHEL and C-SHEL

Unified
MM

DDRx
RAM

Programable (L2) Cache and Memory
Management Unit - PCMMU

D-Cache: PLRU – baseline;
CLAM, PRL, SHEL and C-SHEL

D-L1-Cache
PLRU

I-L1-Cache
PLRU

Programable (D) Cache and Memory
Management Unit - PCMMU

I-Cache: PLRU

Figure 1: Generic Hardware Systems with Programmable
Cache. Lease policies acronyms are explained in text. Black
arrows represent data and red arrows control and status sig-
nals.

various lease policies and the lease generation process. Finally,
Section 5 presents and discusses test results.

2 DESIGN & OPERATION
Next we give the first full description of the emulation and test
system. Two components, the hardware sampler (Section 2.4) and
lease-based, programmable cache architecture (Section 2.5), have
been described previously [8]. We include them in this section for
completeness.

2.1 Overview
The systems able to be emulated and tested are comprised of a
single RISC-V core and associated single- or two-level hardware
reconfigurable and software programmable cache. All of these are
instantiated in an FPGA, while the main memory is implemented
externally using DDR3 or DDR4 memory, as shown in Figure 1.

As shown in Figure 2, the host PC runs an emulation and test
control program. This sends down the binary machine code (pro-
gram, benchmark) to be executed, the associated lease values for
the selected lease policy, and any additional initialization and/or
constant data. At the end of each program or benchmark run, it
receives back performance metrics, such as miss ratio, total number
of misses, and clock cycle count. The binary of the program or
benchmark to be executed is initialized in the external DDRx main
memory, while the lease values are uploaded in designated lease
look-up tables (LLUTs). At run-time, the Programmable Cache and
Memory Management Unit (PCMMU) controls the entire instruc-
tion and data flow/ movement between CPU and the entire memory
hierarchy. The latter is comprised of: the L1 Instruction and Data
Caches, the Unified and Shared L2 Cache, and the external DDRx
Main Memory.

Our system uses a RISC-V 32-bit core with the M and F standard
extensions [4]. We are also currently implementing a subset of the
Zicsr standard extension, primarily to extend our system to a multi-
core (dual-core) system. The pipelined core has 6 stages: Instruction

Fetch, Instruction Decode, Operand Fetch, Execute, Memory Oper-
ation, and Writeback. It further supports a 2-bit branch prediction
scheme with a 64-entry lookup table. The system is described in
Verilog and implemented on an Intel Cyclone V FPGA. Specifically,
the device is 5CGTFD9E5F35C7 and the resource utilization for the
two configurations is captured in Table1.

While we have chosen to use the RISC-V architecture because of
its openness and widespread use within the research community, a
potential user of our emulation and test system could instantiate
any other CPU core architecture. The interface between the CPU
and L1 caches and PCMMU is quite generic.

Motivation and Prior Work The prior work presented a single-
core processor with a single-level cache Prechtl et al. [7] and Reber
et al. [8]. The size of the cache is limited in the prior work. This
has motivated us to create a two-level cache system, in particular,
a level-two lease cache with four times the size of the prior design.
We will show in Section 5.2 that the amount of main memory access
in the larger lease cache is two- to four-times smaller.

2.2 Reconfigurable Cache
We have developed and tested multiple existing algorithms for as-
signing leases to memory references, which we call lease assignment
policies. Much of the difference between policies is opaque from
a hardware point of view, and simply results in different values
being filled into the lease lookup table (LLUT). However, some
lease assignment policies use dynamic scoping rules, which require
additional hardware support relative to the baseline lease-based,
programmable cache implementation.

To serve as a test platform for the various lease cache policies,
our system implements hardware reconfigurable and software pro-
grammable caches. The various hardware configurations are se-
lected using swappable Verilog define statements. The lease values
are initialized and/or uploaded in lease lookup tables (LLUTs). The
programmable cache supports all previous algorithms and policies
presented in [7, 8].

2.3 Inclusivity
In a fully inclusive cache system the caches closer to the CPU, L1
in our case, contain blocks of data which are also stored in caches
farther from the CPU, L2 in our case. In a fully exclusive cache
system, L1 caches contain only blocks not included in the L2 cache,
and vice-versa. Partially inclusive L1 caches are allowed to duplicate
blocks stored in the L2 cache, but are not required to.

In the context of the lease-based, programmable cache, each
inclusivity policy has different implications. The partially inclusive
cache presents a "shadowing" problem when blocks are written
back from L1 to L2. Since the evicted block being written-back is
not guaranteed to be in L2, it may need to allocate new space for
the written-back block. Since the written-back block is not the one
corresponding to the current CPU instruction, the reference for
the block is unavailable, and the correct lease cannot be assigned
without additional hardware support in L1, to store the reference
of the last access to each block. A fully inclusive cache resolves this
issue, since a write-back will always hit in the L2 cache, and no
new lease will need to be assigned.

Implementation of a Two-Level Programmable Cache Emulation and Test System

FPGA Fabric System Under Test - SUT

SUT
Access

and
Control

CPU
Pipelined RISCV – integer,

float, and OS support
Host
Linux

PC

Unified L2 Cache:
PLRU, CLAM, PRL,
SHEL and C-SHEL

Unified
MM
DDRx
RAM

Pr
og

ra
m

ab
le

 (L
2)

 C
ac

he

an
d

M
em

or
y

M
an

ag
em

en
t

Un
it

-P
CM

M
U

External
Memory

Controller

I-L1-Cache
PLRU

D-L1-Cache
PLRU

Test
Command
Interpreter

Sampler
Tracker

Figure 2: Block diagram of the two-level programmable cache emulation and test system. Black arrows represent SUT data, red
arrows SUT control and status signals, and blue arrows host PC control program configuration and test results data.

Table 1: FPGA Resource Utilization

Resource Single-Core, Single-Level Cache
Project Utilization on Cyclone-V GT

Single-Core, Two-Level Cache
Project Utilization on Cyclone-V GT

ALM Count 28,711 / 113,560 (25 %) 50,082 / 113,560 (44 %)
Register Count 34,370 58,060
Pin Count 127 / 616 (21 %) 127 / 616 (21 %)
Block Memory Bit Count 425,056 / 12,492,800 (3 %) 687,200 / 12,492,800 (6 %)
DSP Block Count 10 / 342 (3 %) 10 / 342 (3 %)
PLL Count 2 / 20 (10 %) 2 / 20 (10 %)

A fully exclusive cache presents an interesting alternative. It
shares the shadowing problem with the partially inclusive cache
(in fact, all accesses to L2 will be a miss), so L1 must still store the
reference of the last access for each block. However, an exclusive
cache carries additional benefits: higher total cache capacity (due to
no data duplication), and other potentially beneficial interactions
between a traditional L1 cache and a L2 lease cache.

We call our current two-level cache implementation simply in-
clusive, i.e., neither fully nor partially inclusive. To mitigate the
shadowing issue discussed above, a fully inclusive cache is presently
work-in-progress. Our inclusive implementation uses a "protection"
method, where cache blocks currently in L1 are prevented from
being evicted from L2. In order to achieve this, L2 tracks which
blocks are requested and used by L1, and L1 reports the address of
each evicted block. L2 then tracks which of its blocks are protected
using a bit-field, where each bit corresponds to a block in the cache.
Each protected block is protected from eviction utilizing a strategy
specific to each supported replacement policy. We are also consid-
ering implementing an exclusive cache, with the L2 cache serving
as a victim cache for items evicted from the L1 cache.

2.4 Hardware Program Sampler
Leases are generated based on reuse-interval (RI) histograms for
each reference in an arbitrary program. For a certain class of pro-
grams we designate as compile-time enumerable, RI histograms can

be computed at compile time [2]. However, as compile-time enumer-
able programs represent a limited subset of all possible programs,
we use a more general hardware sampling mechanism to collect RI
statistics. These are extracted by custom hardware that samples the
access stream of the program at the input of the cache-level that
uses the lease caching policy.

The hardware sampler “snoops” the communication bus between
the lease cache and the source of its accesses [8]. The sampler
contains a Linear-Feedback Shift-Register (LFSR), which bit-length
and seed is determined at run-time. The LFSR is used to populate a
down-counter, which decrements at every memory access. When
the counter reaches 0, a new sample acquisition is started and a
new value is loaded into the counter. Once a sample is started, the
reference address of the access is stored in a lookup table (LUT). In-
turn, the table contains a counter for each active sample, i.e., already
started, which counts up on every memory access. Once a reuse
for a block in any active sample is detected, the reference address,
reuse interval, block address, and the logical time of the reuse is
stored in a sample buffer. Once the sample buffer is full, the samples
are transferred to the host PC under the control of the emulation
and test control program, (further discussed in Section 2.8). Figure 3
shows the structure of the hardware sampler. If a new sample
acquisition is started when the lookup table of active samples is
full, then the active sample with the largest reuse interval counter
is stored in the sample buffer with the two’s complement of its

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

Trace
Length

Target
Address

Reuse
Interval

Reference
Address

Target
Address

Reference
Address

Trace Counter

Reuse Interval
Counter

Sampler LUT and Metric Counters

Sampler Data Buffer

RISCV Cache

Host PC

00000800, 00000001, 000ffffd, 18
000008a8, 00000001, 000ffffe, 299
00000878, 0000000d, 00080040, 452

Hardware Sampler

Figure 3: Structure of the hardware sampler (reproduced in
part from Reber et al. [8])

current reuse interval to indicate that no reuses for that access
were detected.

For the purposes of this work, a profiling pass is used to col-
lect RI statistics prior to execution. A dynamic lease assignment
framework, which collects statistics and adjusts or modifies leases
at runtime, is the target of future work.

2.5 Lease Cache Architecture
The lease cache hardware is able to support the application of
lease policies from program compilation through its execution.
Its architecture is shown in Figure 4 (significantly modified and
updated from Reber et al. [8]).

Lease Assignment. The hardware that implements a lease policy
complements an existing cache memory infrastructure through the
addition of a lease policy controller (Figure 4). In support of the
latter, the request bus to the cache is augmented with the address
of the reference invoking the access. Both target and reference ad-
dressess propagate through lookup tables and provide concurrently
cache location and lease policy information to the controller. A
combination of four 128 entry lookup tables comprise the Lease
Lookup Tables (LLUTs) and resolve the following signals:

(1) Lease Valid [1 bit] - flag indicating a lookup table hit.
(2) Primary Lease [n bit] - lease associated with the higher

probability assignment.
There is a single secondary lease associated with a single refer-

ence per program phase. Its assignment is based on an associated

probability value, specifically the probability that this lease will
not be assigned. These are provided in the header that pre-appends
each phase and are stored in software accessible registers.

The primary and secondary leases are multiplexed by probability
evaluation. An LFSR generates a random number that is compared
against the probability value output by the lease probability lookup
table. If the random value is greater than the one output by the
LLUT, the secondary lease is passed through, else the primary lease
is passed through. A second multiplexer makes the final selection.
If the access results in an LLUT hit, the current lease assignment is
validated and passed. Else if the reference is not found in the table,
a default lease assignment, stored in a software accessible register,
is instead passed through. References without an associated lease
assignment are assumed to have no near future re-reference and
provide little benefit to cache performance regardless of cache uti-
lization. We elect to assign a default lease of one to these references,
so that after their immediate use these are eligible for eviction.

Line Vacancy. Each cache line (or block location) has an associ-
ated lease register with two control ports and a multi-bit output bus.
The output bus of each register drives a NOR reduction operator,
essentially a comparator with zero, which produces an expired bit
per lease register. A priority encoder examines all expired bits and
identifies the first occurrence (lowest address) of an expired lease. A
pointer to this address is produced and transferred to the controller
to be used in case an eviction is necessary. The pointer is validated
by a reduction OR (inequality with zero comparison), of all expired
bits. If at the time an eviction is necessary and the pointer is invalid
(no lease has expired) the replacement follows the auxiliary policy
i.e., random replacement.

The auxiliary replacement policy is also employed if there are a
large number of default lease (of one) assignments in a row. This is
done to mitigate the possibility that the assumption that references
without an associated lease assignment have no near future re-
reference is not valid. If this is the case, the lease cache would
perform poorly, because it would evict the highest expired line in
the set and completely ignore any type of data locality. Hence the
lease cache is designed such that if there are more than x (for this
work 1024 was chosen) default leases assigned consecutively, the
lease cache will exclusively use the auxiliary policy until an LLUT
hit occurs, whereupon normal operation resumes.

Application of a Lease Policy. The flowchart in Figure 5 illustrates
the application of a lease policy. At every cache access, all non-
expired lease registers are decremented. If the access resolves as
a cache hit (not a lease lookup table hit) the lease register at the
translated address is load enabled, regardless of lease assignment. If
the access is a miss, then the item is cached in the location generated
by the relevant policy (either lease or the auxiliary policy) and then
assigned a lease value as described above.

Hardware Support for Scoped Lease Policies. is illustrated in Fig. 6.
After reset, the Lease Lookup Table (LLUT) is populated with the
leases of the first phase and the lease cache configuration informa-
tion: secondary lease value, secondary lease probability, the number
of references in the phase, default lease value, and the address of the
reference assigned the secondary lease. During benchmark kernel
execution, if a phase marker for a phase different than the current

Implementation of a Two-Level Programmable Cache Emulation and Test System

Block Tag

Target Address

Cache Address

Hit

Cache Address

Miss

Default
Lease

Secondary
Lease

Lease LFSR
Enable

Primary Lease
Probability

Dual
Lease

Reference
Address

Lease Policy Controller

Lease Registers
(n Lease Registers)

Lease
Load
Bus

Lease
Decrement

Bus

Multi-Detect Priority Encoder

Aux Policy
 Select

Aux LFSR
Enable

Cold Start
Select

Lease
Replacement

Pointer

LFSR Output

LFSR

Cold
Start

Counter

Lease
Replacement

Ptr Valid

Reference Address

Lease
Valid

Primary
Lease

Primary Lease

Comparator

Reference
Address

Lease
Multiplexer

Bus

Default
Lease

Counter

Dual Lease
Select9-Bit Comparator

9-Bit LFSR

h'1ff

CAM

Figure 4: Lease cache hardware architecture for a cache of n blocks and lease register size of m bits.The components in the
green box are the lease look-up circuitry. The components in the red box are the replacement logic and lease update circuitry.
Significantly modified and updated from Reber et al. [8].

one is encountered in the software, the CPU adjusts the value of the
current phase register to that of the marker. The lease cache detects
this change and sets a flag that stalls the CPU. The lease cache then
requests the leases for this new phase from main memory, writes
them to the LLUT, and additionally updates the lease cache configu-
ration information with the values from the new phase header. The
lease cache then clears the flag it sets to take the CPU out of stall
and to resume benchmark execution. This process repeats at every

phase marker denoting a new phase until the benchmark kernel
execution finishes.

2.6 Hardware Cache Tracker
To determine the effect of the different lease generation policies
on cache occupancy, a hardware cache tracker is implemented to
visualize the utilization of the lease cache at each point in program
execution. The tracker “snoops” on the lease registers of each cache

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

Reload lease into lease
register of reference address

Wait for next cache access

DON’T allocate in
cache; serve access

from upper level (MM)
bypassing the cache

Allocate into available
cache location;

if necessary, create
availability using
auxiliary eviction

policy
Le

as
e

o
f

m
is

se
d

ac

ce
ss

 =
 0

?

Yes

No

Decrement all non-expired
lease registers

CACHE-
ACCESS

encountered?

Yes

No

CACHE-HIT?

Yes

No

Figure 5: Lease cache operation flowchart - Fully described
in the text.(reproduced from Reber et al. [8]).

Take CPU out of STALL by
RESETTING CPU-STALL-FLAG

CPU (out of RESET or STALL)
executing benchmark
program/ application

CPU in RESET or STALL

Keep CPU in RESET while
loading the LLUTs with the

leases of the first phase

Load LLUTs with leases for
NEW (NEXT) PHASE

Take CPU out of RESET

Read PHASE-FLAG

STALL CPU by SETTING
CPU-STALL-FLAG

Check if SET
Yes

No

SET PHASE-FLAG

PHASE-
MARKER

encountered?

Yes

No

RIGHT: Flowchart of lease cache
controller supporting scoped
lease policies

BELOW: Flowchart of CPU
executing scoped benchmarks

Figure 6: Hardware Support for Scoped Lease Policies: SHEL
and C-SHEL(reproduced from Reber et al. [8]).

line (block location) and separates them into categories of “long
lease” (bits 31-16), “medium lease” (bits 15-8), and “short lease”
(bits 7-0). If a lease is in none of these categories, then the lease
is expired. The tracker collects these values for each cache line at
fixed intervals, and stores them into a buffer. Once the buffer is full,
the processor is stalled and the content of the buffer is transmitted
to the host PC. Cache occupancy spectra are shown and discussed
in Section 5.

2.7 External Memory Controller
The external memory controller presented in Fig. 2 provides the
means bywhich the programmable cache andmemorymanagement

unit (PCMMU) and the emulation and test control program running
on the host PC, further discussed in Section 2.8, transfer program
instructions and data to and from the external DDR3 or DDR4 main
memory. The emulation and test control program can request data
of any size, i.e., from a single word of data to multiple blocks of
data to read or write, while the PCMMU will always request a block
of data at a time, and that when a cache miss occurs. It should be
noted that since a proxy memory request does not go through the
internal processing system, the cache will be unaware of any writes
that occur to the main memory in this way and the data there may
become invalid.

2.8 Emulation and Test Control Program
The emulation and test control program is written in C++ and runs
on the host PC, Figure 2. Before a test run it loads: the benchmark
program machine code, test configuration information, and lease
values. After a test run it collects: cache performance statistics
(misses and miss rates), tracker information, and optionally result
data stored in main memory.

At present, all communication between the control program
(host PC) and the emulation and test system uses a UART-JTAG
interface. On the system side this is embedded in a test command
interpreter module, Figure 2. Depending on the objective of the
command, this module gives the control program (host PC) either
direct access to the main memory, or to the configuration and test
registers of the the System Under Test (SUT) via an intermediate
SUT access and control module. The latter registers are capturing
cache performance statistics after a Polybench benchmark is run,
and do not influence at all the operation of the SUT. The SUT
access and control module provides a "bridge" between the control
program (host PC) and SUT.

3 USE CASES
3.1 SoC Based Accelerator
The system developed and presented in this paper can be used
in emulation mode as a system-on-chip (SoC) based accelerator.
Toward this end, it instantiates in a FPGA, a RISC-V central process-
ing unit, a reconfigurable and programmable "traditional" (PLRU)
or lease-based cache, and registers for I/O peripherals. The main
memory is external and optionally implemented in DDR3 or DDR4
SDRAM. Unlike in a traditional computing system, its performance
is bolstered by the reconfigurable and programmable cache. Be-
cause the use in emulation mode employs a subset of commands
and steps relative to the test mode, we will further focus on the
latter.

3.2 Test SystemWorkflow
So far, the system has primarily been used as a test system for novel
cachememory implementations. This is possible because the system
is hardware reconfigurable and the cache software programmable.
The Polybench suite [5], a set of polyhedral benchmarks written in
C, have been used to evaluate the performance of different cache
memory implementations, and by implication the effectiveness of
different lease policies.

In test mode a benchmark run starts with the configuration of
the FPGA with the SUT and test support hardware. Then, the user

Implementation of a Two-Level Programmable Cache Emulation and Test System

control program (host PC) initializes and launches the benchmark
run and collects performance data. The latter is captured in a text
file, in which each line contains: the number of cache hits, misses,
write-backs, cycles, expired evictions, default assignments, default
misses, and random evictions for each of the caches in use. These
steps assume that benchmarks have been run before in sampling
mode using PLRU, RIs have been collected and leases have been
generated, as described previously in Section2.4.

3.3 Reference Array Checking
The control program (host PC) is able to directly access the main
memory of the emulation and test system to retrieve the output
results, also called reference arrays, generated by the benchmark
program that just finished execution. These are then compared with
the results generated by the same benchmark program run on the
host PC, i.e., good expected output values.

This process is carried out for every benchmark of the Polybench
suite individually. This functionality and feature is indispensable
to validate the correctness of the performance results. So far, the
operation of twenty-eight of the thirty benchmarks has been con-
firmed in this way. The process of reference array checking also
provides an additional tool and means to debug the hardware and
software of the emulation and test system.

4 SOFTWARE SUPPORT
We first compile a program into RISC-V binary. Then we profile its
execution once on the RISC-V machine. Profiling uses the hardware
sampler (Section 2.4) to collect the RIH for each load and store
instructions in the binary code. The profile result is then used
to assign leases using one of the policies. The simplest policy is
Uniform Lease (UL), which assigns a single lease value. This was
used in the first lease-cache prototype [6]. Since then, we have been
using reference leases, where each load and store instruction may
be assigned a different lease.

The binary code is augmented with a lease table. Each row of
the table contains the address of a load or store instruction and the
lease. The lease may be a single value or a dual lease. A dual lease
has two lease values and is used when the short lease itself would
not fully use the cache and the long lease would use more than
what is available. A dual lease contains three fields: the two leases,
and a percentage value (for choosing the short lease).

When a program is run, the lease table is loaded by the processor.
At a load or store, the lease is retrieved and given to the data block
being accessed.

In an ideal lease cache, the size may vary arbitrarily. We call
the number of active data blocks, i.e., those with a positive lease,
the Virtual Cache Size (VCS). In this case, leases can be optimally
assigned by the CARL (compiler assignment of reference lease)
algorithm, which takes a target average VCS and set of reference RI
distributions and assigns leases to maximize the number of hits per
unit of a lease. CARL is optimal in that no other lease assignment
can further reduce the number of cache misses [3]. In a hardware
cache, however, the size is fixed. We call it the Physical Cache Size
(PCS). It requires a secondary policy to evict a cache block when
VCS exceeds PCS. When the cache is full at a miss, we use the
auxiliary policy i.e., random replacement.

The following policies were used to program the single-level
lease cache [8]. In the new system, the second-level lease cache
is programmed in the same way except that the RI histograms
come from sampling L1 misses (instead of loads and stores when
programming the single-level lease cache). The following describes
four policies used in these experiments.

• CLAM Compiler Lease of Cache Memory, which uses CARL
without change. It lets CARL assign leases for the average
VCS equal to PCS and uses the same leases.

• PRL Phased Reference Leasing, which divides the execution
into equal-length intervals, and uses CARL to assign leases
within each interval, setting the target average VCS at each
interval to be PCS.

• SHEL Scope-Hooked Eviction Leasing, which applies CARL
at each loop nest (scope), setting the VCS at each scope to
be PCS. SHEL ignores cross-loop reuses.

• C-SHELCross-loop SHEL,which considers cross-loop reuses
when assigning leases in adjacent scopes (loop nests). SHEL
and C-SHEL are applicable in only multiple scope tests.

5 TEST RESULTS & DISCUSSIONS
The test results for a single-core with a single-level cache were
presented and discussed in Reber et al. [8]. In this section, we
present for the first time test results for a single-core with two-level
cache.

5.1 Implementation and Test Setup
We use GCC (RISC-V embedded GCC 8.3.0-2.3.1) to compile a pro-
gram into RISC-V binary and the hardware sampler (Section 2.4) to
generate RI samples for each load and store instruction. Given the
sample trace, a lease assignment program is used to assign refer-
ence leases which are then added as the lease table to the program
binary. When a program is run, the lease table is loaded by the
processor. At the first occurrence of a load or store, the lease is
retrieved and assigned to the data block being accessed. RI process-
ing and lease assignment are implemented in Rust and support the
policies described in Section 4.

We use PolyBench/C 4.2.1, which contains 30 numerical ker-
nels [5]. The benchmark suite is relatively easy to port through the
FPGA toolchain to allow testing on a real system. The kernels are
extracted from linear algebra, image processing, physics simula-
tion, dynamic programming, and statistics, which are all common
workloads in scientific computing. We compile each program with
the GCC -O3 optimization level without vectorization, which our
CPU does not currently support. We use small (128 KB), medium
(1 MB), and large (25 MB) data set sizes.

Experiments were performed without and with PLUTO opti-
mizations. Version 0.11.4 of the PLUTO optimizing compiler was
used to optimize the PolyBench benchmarks [1]. The compiler was
invoked using only the –tile option, in order to enable cache tiling
and polyhedral optimizations. Furthermore, it was configured to
produce 16x16x16 tiles in order to effectively fit in our cache size.

The Polybench suite can be divided into two benchmark (pro-
gram) categories: single- and multi-scope, with 17 and 13 kernels
respectively. The latter group is further divided into two subgroups.

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

small medium large

Benchmark Dataset Sizes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

es
 in

 L
2

No
rm

al
ize

d
to

 M
iss

es
 in

 S
in

gl
e

Le
ve

l C
ac

he

Normalized Miss Counts for Multi-Scoped Benchmarks
CLAM
SHEL
C-SHEL
PRL

small medium large

Benchmark Dataset Sizes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
iss

es
 in

 L
2

No
rm

al
ize

d
to

 M
iss

es
 in

 S
in

gl
e

Le
ve

l C
ac

he

Normalized Miss Counts for Single-Scoped Benchmarks
CLAM
PRL

Figure 7: The geomeans of L2 miss counts normalized to the single-level lease cache for multi-scoped (left) and single-scoped
(right) benchmarks for all three input sizes.

Acyclic programs have one phase per scope, whereas cyclic pro-
grams have multiple phases per scope. Multi-scope programs are
run with the SHEL and C-SHEL policies, where the scopes were
manually annotated as described in Reber et al. [8]. Further statisti-
cal properties of these programs were also discussed and captured
in Table 1 of the same paper, Reber et al. [8].

5.2 Comparison with Single-level Lease Cache
Figure 7 shows the reduction in memory traffic by the two-level
lease cache compared with the prior design of a single-level lease
cache. The L2 lease cache is four times the size of the single-level
lease cache. The two lease caches use the same policy, which are
CLAM and PRL for single-scoped benchmarks (right graph) and all
four policies for multi-scoped ones (left graph). The figure shows
the geomeans of the L2 cache miss count normalized to that of the
single-level cache.

Except for multi-scoped tests using the large input size, the L2
lease cache reduces the average miss count by two thirds to over a
half for single-scoped tests and around 80% for multi-scoped tests.
The reductions are similar across different lease policies. These large
improvements show the benefits of moving from a single-level lease
cache to the two-level design.

5.3 Two-level Lease Cache Performance
Figure 8 shows misses normalized to PLRU without Pluto optimiza-
tion, for multiple- (left column) and single-scope (right column)
benchmarks, and three data sizes. Without Pluto optimization, the
only applied improvement relative to traditional caching is one of
the lease policies. As can be inferred from these graphs, the applica-
tion of lease policies is effective for a majority of benchmarks, i.e.,
it reduces the miss rate compared to PLRU. As one would expect,
the effectiveness diminishes with an increase in the size of the data
set, i.e., when this significantly exceeds the capacity of the fixed,
real cache. The same test results are shown in Figure 9, which plots
the absolute miss ratio values for PLRU and all four lease policies.

Figure 10 shows misses normalized to PLRU with Pluto optimiza-
tion, for multiple- (left column) and single-scope (right column)
benchmarks, and three data sizes. These tests and results combine
the powerful Pluto optimizations with the application of lease poli-
cies. As can be inferred from these graphs, the application of lease
policies is still effective for a majority of benchmarks, i.e., it reduces
the miss rate compared to PLRU even after the application of Pluto
optimizations. Again, the effectiveness diminishes with an increase
in the size of the data set, i.e., when this significantly exceeds the
capacity of the fixed, real cache. The same test results are shown in
Figure 11, which plots the absolute miss ratio values for PLRU and
all four lease policies.

Figure 12 and Figure 13 show an interesting comparison: misses
with the application of ONLY the lease policies, but without the
application of the Pluto optimization, versus PLRU with Pluto opti-
mization. The latter is what is available to users at the present time
in "off-the-shelf" computing systems. While the results are not as
good as combining Pluto optimizations and lease policies, as shown
previously in Figures 10 and 11, the fact that lease policies alone
still lower the miss ratio for almost half the benchmarks is further
proof that these are effective.

5.4 Cache Performance Visualization
Cache Occupancy Spectra have been introduced by Prechtl et al. [7]
to visualize the state of the lease cache. While we have collected
data and generated graphs for all benchmarks, for brevity we only
show the spectra graphs for four benchmarks. Figure 14 shows the
occupancy spectra of two acyclic benchmarks: 2mm and 3mm, for
the medium data set, and CLAM and SHEL lease policies. Figure 15
shows the occupancy spectra of two cyclic benchmarks: adi and
fdtd-2d, for the medium data set, and CLAM and SHEL lease policies.
Program classification is explained in Section 5.1.

Each spectrogram (or spectra) shows cache state, sampled every
256 L2 accesses, during the entire execution of a program. Each
vertical slice is a cache state, which is colored for each cache line

Implementation of a Two-Level Programmable Cache Emulation and Test System

(a) Multiple scope, SMALL_DATASET, Misses normalized to
PLRU without Pluto optimization.

(b) Single scope, SMALL_DATASET, Misses normalized to PLRU
without Pluto optimization.

(c) Multiple scope, MEDIUM_DATASET, Misses normalized to
PLRU without Pluto optimization.

(d) Single scope,MEDIUM_DATASET,Misses normalized to PLRU
without Pluto optimization.

(e) Multiple scope, LARGE_DATASET, Misses normalized to
PLRU without Pluto optimization.

(f) Single scope, LARGE_DATASET, Misses normalized to PLRU
without Pluto optimization.

Figure 8: Misses normalized to PLRU without Pluto optimization for multiple- and single-scope benchmarks, and three data set
sizes.

for its lease state. The legend at the bottom shows how the lease is
represented by a range of colors, from a long lease in dark blue to
an expired lease in yellow. Our test programs need the full capacity
of the cache. They use more data than the cache can hold, and they
incur cache misses throughout the execution. A spectrogram shows
the quality of a lease policy whether it fully utilizes the available
cache space. In a spectrogram, too much yellow means the cache
is under-utilized: while program data exceeds the cache capacity,

not all cache blocks are “leased.” Too much deep blue means that
the cache is over allocated: they are no cache line with an expired
or expiring lease, and a cache miss will cause a random eviction.
Both of these situations are undesirable, and therefore “ideally” the
graphs show an even mix of colors with one cache line colored
yellow or nearly yellow.

In each of these two Figures, every four graphs are for a particular
benchmark. The effect of lease policy improvement is shown by the

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

(a) Multiple scope, SMALL_DATASET, Miss ratios without Pluto
optimization.

(b) Single scope, SMALL_DATASET, Miss ratios without Pluto
optimization.

(c)Multiple scope,MEDIUM_DATASET,Miss ratioswithout Pluto
optimization.

(d) Single scope, MEDIUM_DATASET, Miss ratios without Pluto
optimization.

(e) Multiple scope, LARGE_DATASET, Miss ratios without Pluto
optimization.

(f) Single scope, LARGE_DATASET, Miss ratios without Pluto
optimization.

Figure 9: Miss ratios without Pluto optimization for multiple- and single-scope benchmarks

change from top-left to top-right, the effect of program optimization
(Pluto) from top-left to bottom-left, and the combined effect by
the bottom-right. In other words, cache programming causes the
changes from left to right, and program optimization from top to
bottom.

In an ideal lease cache, the size varies arbitrarily. Hardware
cache has a fixed size. In multi-scope programs, leases are assigned
for the program as a whole may over allocate in one phase and
under allocate in another. This is seen in the spectrogram from

CLAM leases, with large blocks of yellow. The uneven allocation
is reduced by SHEL, which assigns leases within each scope and
by program optimization, which reduces the distance between data
reuses andmay fusemultiple loops together.When the twomethods
are combined, the evenness in cache allocation is retained.

Implementation of a Two-Level Programmable Cache Emulation and Test System

(a) Multiple scope, SMALL_DATASET, Misses normalized to
PLRU with Pluto optimization.

(b) Single scope, SMALL_DATASET, Misses normalized to PLRU
with Pluto optimization.

(c) Multiple scope, MEDIUM_DATASET, Misses normalized to
PLRU with Pluto optimization.

(d) Single scope,MEDIUM_DATASET,Misses normalized to PLRU
with Pluto optimization.

(e) Multiple scope, LARGE_DATASET (f) Single scope, LARGE_DATASET

Figure 10: Misses normalized to PLRU with Pluto optimization for multiple- and single-scope benchmarks

6 CONCLUSIONS
The programmable cache emulation and test system described in
this paper instantiates a RISC-V processor core and associated L1
and L2 caches. L1 instruction and data caches use PLRU, while L2 is
programmable, and can use PLRU or one of four lease policies. To
date, the system has been used to collect performance data for vari-
ous lease cache implementations. The Polybench suite test results
show that lease policies are effective in a majority of cases, with
or without Pluto optimization. The two-level lease cache system

reduces the main memory access by 50% to 80% on average com-
pared to the single-level lease cache in the prior work. Compared
to a two-level cache system using PLRU, the programmable cache
reduces the average miss count by 20% to 40%. The system can also
be used to emulate a processor with associated reconfigurable and
programmable caches.

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

(a) Multiple scope, SMALL_DATASET, Miss ratios with Pluto
optimization.

(b) Single scope, SMALL_DATASET, Miss ratios with Pluto opti-
mization.

(c) Multiple scope, MEDIUM_DATASET, Miss ratios with Pluto
optimization.

(d) Single scope, MEDIUM_DATASET, Miss ratios with Pluto op-
timization.

(e) Multiple scope, LARGE_DATASET, Miss ratios with Pluto
optimization.

(f) Single scope, LARGE_DATASET, Miss ratios with Pluto opti-
mization.

Figure 11: Miss ratios with Pluto optimization for multiple- and single-scope benchmarks

ACKNOWLEDGMENTS
The authors wish to thank Woody Wu, Jack Cashman and Leo
Sciortino for proof reading of the paper. This work was supported
in part by the National Science Foundation (Contract No. CCF-
2217395, CCF-2114285, CCF-2114319, CNS-1909099). Conclusions
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding organizations.

REFERENCES
[1] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A

practical automatic polyhedral parallelizer and locality optimizer. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation. 101–113.

[2] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018. Locality analysis
through static parallel sampling. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation. 557–570. https://doi.org/
10.1145/3192366.3192402

[3] Chen Ding, Dong Chen, Fangzhou Liu, Benjamin Reber, and Wesley Smith. 2022.
CARL: Compiler Assigned Reference Leasing. ACM Transactions on Architecture
and Code Optimization 19, 1 (2022), 15:1–15:28.

https://doi.org/10.1145/3192366.3192402
https://doi.org/10.1145/3192366.3192402

Implementation of a Two-Level Programmable Cache Emulation and Test System

(a) Multiple scope, SMALL_DATASET, Misses without Pluto nor-
malized to PLRU with Pluto.

(b) Single scope, SMALL_DATASET, Misses without Pluto nor-
malized to PLRU with Pluto.

(c) Multiple scope, MEDIUM_DATASET, Misses without Pluto
normalized to PLRU with Pluto.

(d) Single scope, MEDIUM_DATASET, Misses without Pluto nor-
malized to PLRU with Pluto.

(e) Multiple scope, LARGE_DATASET, Misses without Pluto nor-
malized to PLRU with Pluto.

(f) Single scope, LARGE_DATASET, Misses without Pluto nor-
malized to PLRU with Pluto.

Figure 12: Misses without Pluto normalized to PLRU with Pluto for multiple- and single-scope benchmarks

[4] RISC-V International. 2024. The RISC-V Instruction Set Manual Volume 2: Privi-
leged Architecture.

[5] Louis-Noël Pouchet. [n. d.]. PolyBench/C 4.0. http://polybench.sourceforge.net.
[6] Ian Prechtl, Chen Ding, and Dorin Patru. 2020. Design and Evaluation of a

Fixed-size Programmable Working-set Cache on FPGAs. preprint online at
https://dx.doi.org/10.13140/RG.2.2.24423.60320.

[7] Ian Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen. 2020. CLAM:
Compiler Lease of Cache Memory. In MEMSYS 2020: The International Symposium
on Memory Systems, Washington, DC, USA, September, 2020. ACM, 281–296.

[8] Benjamin Reber, Matthew Gould, Alexander H. Kneipp, Fangzhou Liu, Ian Prechtl,
Chen Ding, Linlin Chen, and Dorin Patru. 2023. Cache Programming for Scientific
Loops Using Leases. ACM Transactions on Architecture and Code Optimization 20,
3, Article 39 (jul 2023), 25 pages.

https://dx.doi.org/10.13140/RG.2.2.24423.60320

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

(a) Multiple scope, SMALL_DATASET, Miss ratios without Pluto
versus PLRU with Pluto.

(b) Single scope, SMALL_DATASET, Miss ratios without Pluto
versus PLRU with Pluto.

(c)Multiple scope,MEDIUM_DATASET,Miss ratioswithout Pluto
versus PLRU with Pluto.

(d) Single scope, MEDIUM_DATASET, Miss ratios without Pluto
versus PLRU with Pluto.

(e) Multiple scope, LARGE_DATASET, Miss ratios without Pluto
versus PLRU with Pluto.

(f) Single scope, LARGE_DATASET, Miss ratios without Pluto
versus PLRU with Pluto.

Figure 13: Miss ratios without Pluto versus PLRU with Pluto for multiple- and single-scope benchmarks

Implementation of a Two-Level Programmable Cache Emulation and Test System

(a) 2mm, MEDIUM, CLAM lease without Pluto. (b) 2mm, MEDIUM, SHEL lease without Pluto.

(c) 2mm, MEDIUM, CLAM lease with Pluto. (d) 2mm, MEDIUM, SHEL lease with Pluto.

(e) 3mm, MEDIUM, CLAM lease without Pluto. (f) 3mm, MEDIUM, SHEL lease without Pluto.

(g) 3mm, MEDIUM, CLAM lease with Pluto. (h) 3mm, MEDIUM, SHEL lease with Pluto.

Figure 14: Occupancy Spectra of acyclic benchmarks 2mm and 3mm, for medium data set, CLAM and SHEL lease policies. Blue
indicates lease remaining, and yellow indicates an expired lease in a cache line.

Marcus Figorito, Vincent Michelini, Benjamin Reber, Alexander H. Kneipp, Matthew Gould, Chen Ding, Linlin Chen, and Dorin Patru

(a) adi, MEDIUM, CLAM lease without Pluto. (b) adi, MEDIUM, SHEL lease without Pluto.

(c) adi, MEDIUM, CLAM lease with Pluto. (d) adi, MEDIUM, SHEL lease with Pluto.

(e) fdtd-2d, MEDIUM, CLAM lease without Pluto. (f) fdtd-2d, MEDIUM, SHEL lease without Pluto.

(g) fdtd-2d, MEDIUM, CLAM lease with Pluto. (h) fdtd-2d, MEDIUM, SHEL lease with Pluto.

Figure 15: Occupancy Spectra of cyclic benchmarks adi and fdtd-2d, for medium data set, CLAM and SHEL lease policies. Blue
indicates lease remaining, and yellow indicates an expired lease in a cache line.

	Abstract
	1 Introduction
	2 Design & Operation
	2.1 Overview
	2.2 Reconfigurable Cache
	2.3 Inclusivity
	2.4 Hardware Program Sampler
	2.5 Lease Cache Architecture
	2.6 Hardware Cache Tracker
	2.7 External Memory Controller
	2.8 Emulation and Test Control Program

	3 Use Cases
	3.1 SoC Based Accelerator
	3.2 Test System Workflow
	3.3 Reference Array Checking

	4 Software Support
	5 Test Results & Discussions
	5.1 Implementation and Test Setup
	5.2 Comparison with Single-level Lease Cache
	5.3 Two-level Lease Cache Performance
	5.4 Cache Performance Visualization

	6 Conclusions
	Acknowledgments
	References

