TriPIM — Exact Triangle Counting on UPMEM
Processing-in-Memory for Graph Analytics

Morteza Baradaran

morteza@virginia.edu

University of Virginia
Charlottesville, Virginia, USA

Abdullah T. Mughrabi
atmughra@virginia.edu
University of Virginia
Charlottesville, Virginia, USA

Abstract

Efficient triangle counting remains a fundamental challenge in graph
analytics, with applications spanning computational biology, so-
cial network analysis, and emerging AI workloads such as Graph
Neural Networks (GNNs). As these Al models scale to larger graphs,
existing CPU- and GPU-based methods face scalability limits due

to memory bottlenecks and limited parallelism. The TriCORE method-

ology introduced significant improvements with its binary search-
driven algorithm, enhancing thread parallelism and memory effi-
ciency on GPUs. This optimization allows TriCORE to outperform
existing techniques and handle larger graphs. However, its reliance
on multiple graph representations and the inherent limitations of
GPU memory capacity can hinder its scalability and practical util-
ity for Exascale graph datasets.

We present TriPIM, a novel architectural solution that combines

TriCORE’s algorithmic strengths with UPMEM Processing-In-Memory

(PIM) technology to overcome graph scalability and memory band-
width limitations. TriPIM leverages PIM to minimize data move-
ment and accelerate triangle counting computations directly within
memory. This integration maintains the algorithmic benefits of
TriCORE while extending its applicability to significantly larger
graph datasets, overcoming the constraints of traditional CPU- and
GPU-based implementations. TriPIM scales triangle counting by
partitioning Compressed Sparse Row (CSR) data across multiple
UPMEM DIMMs and running TriCORE’s binary-search engine in-
dependently within each memory partition. In summary, TriPIM
offers a scalable and efficient solution for triangle counting in graph
analytics, combining the strengths of TriCORE with the benefits of
PIM technology. Our evaluation demonstrates TriPIM’s superior
performance over TriCORE (GPU) and GAP (CPU) benchmarks for
Exascale graphs.

Keywords

Triangle Counting, UPMEM, Large-Scale Graph Analytics, Graph
Neural Networks, Processing in Memory

1 Introduction

Triangle counting is an essential algorithm for analyzing graph
structures, including clustering coefficients [41], k-truss [40], de-
tection of spams [4], link recommendation [37] and social network
analysis [6, 8]. In addition to these traditional applications, triangle

Khyati Kiyawat
vynImp@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

Akhil Shekar
as8hu@virginia.edu
University of Virginia
Charlottesville, Virginia, USA

Kevin Skadron
skadron@virginia.edu
University of Virginia

Charlottesville, Virginia, USA

Table 1: Triangle Counting Optimization Methods and Their
Complexities

Method Complexity References
Naive Methods o(n3) [14, 34]
Optimized Edge Iteration O(m-d) [34]
Vertex Ordering and Intersection O(m-+m) [19]
Adjacency Matrix Multiplication o(n?) [14]
Hash-Based Methods O(m-d) [30]
Exact Algorithms (e.g., Schank and Wagner) O(m-d) [27]
Approximate Algorithms O(m - logn) [36]

Table 2: Symbols

Symbol Meaning

n Number of vertices in the graph
m Number of edges in the graph
d Average degree of the vertices

counting is becoming increasingly important in Al workloads such
as graph neural networks (GNNs), community detection, and struc-
tural reasoning in large language models. Recent studies highlight
that as these models scale to larger graphs, the ability to efficiently
count or reason about triangles becomes a computational bottle-
neck, underscoring the need for fast and scalable triangle counting
techniques [7, 16, 23].

In vertex-centric triangle counting, the algorithm examines each
pair of connected nodes in the graph to determine if they share a
third common neighbor, forming a triangle. This process is typi-
cally represented as an intersection between a node’s 1-hop neigh-
bors (direct neighbors) and 2-hop neighbors (neighbors of neigh-
bors), resulting in the graph triangle count.

Triangle counting in large graphs presents two significant chal-
lenges: computational complexity and efficient data access. To ad-
dress these, several approaches have been proposed on CPUs, GPUs,
and FPGAs [2, 3, 11-13, 15, 21, 32]. In practice, CPU-based methods
such as GAP [2, 3] often suffer from cache inefficiencies, while GPU
frameworks like TriCORE [12] are constrained by device memory
capacity. Although several optimizations have been proposed to

https://orcid.org/0009-0004-0705-2820

improve memory locality [5, 22, 24-26, 33, 35, 38], these techniques
still fall short of overcoming the fundamental scalability barriers.
Therefore, addressing these challenges requires methods that not
only scale with graph size but also minimize computational over-
head and maintain balanced workloads across compute nodes.

Triangle Counting Runtime Complexity O(|n|?): One effec-
tive approach to reducing computational complexity is the vertex
ordering method used in the GAP Benchmark Suite (GAPBS) [2,
3]. As presented in Algorithm 1, vertex ordering involves sorting
vertices and performing ordered intersections of neighbor lists to
count triangles efficiently. The algorithm considers each vertex u,
iterates over its neighbors v such that v > u, and for each pair
(u,v), finds common neighbors w such that w > v. By leverag-
ing the sorted order of vertices, this method reduces the need to
consider all possible triplets, thereby lowering the computational
complexity from O(|n|®) in the naive approach to O(m-+/m), where
m is the number of edges and n is the number of vertices.

The Binary Search method shown in Algorithm 2, used in Tri-
CORE [12] to effectively address inefficient node lookups by lever-
aging the sorted nature of neighbor lists to perform quick searches.
When processing each edge (u, v), the algorithm performs a binary
search on the neighboring list of v to identify intersections with the

Algorithm 1: GAPBS - TriangleCount

Data: Graph g
Result: Total Triangle Count total
1 total « 0; // Initialize total triangle count

/* Parallel triangle counting using OpenMP */
2 #pragma omp parallel for reduction(+ : total)
schedule(dynamic, 64)
3 for u « 0 to g.num_nodes() — 1 do
4 foreach v in g.outNeigh(u) do

5 if v > u then
6 break ; // Ensure v <u for ordered
counting
7 end
8 it « g.outNeigh(v).begin() ; // Initialize
iterator for ou’s neighbors

9 foreach w in g.outNeigh(u) do

10 if w > v then

11 break; // Ensure w <o for ordered

counting

12 end

13 while *it < w do

14 ‘ it++; // Advance iterator to find w
15 end

16 if w == xit then

17 ‘ total + +; // Triangle found
18 end

19 end

20 end
21 end

22 return total ; // Return the total triangle count

Baradaran et al.

neighbor list of u. This approach reduces the complexity of finding
a common neighbor from O(d) to O(logd), where d is the degree
of the vertex.

Optimization Dependent Data Movement From GPU to
PIM: The partitioning technique used by TriCORE [12] is highly ef-
ficient for GPU scenarios as it evenly distributes the computational
load across multiple GPU cores. This ensures that each core has a
balanced workload, minimizing idle times and maximizing the uti-
lization of the parallel processing capabilities inherent in GPUs.
Dividing the graph based on vertex ranges and balancing the num-
ber of edges across partitions facilitates efficient graph process-
ing. However, this partitioning approach faces challenges when
implemented for emerging Processing-in-Memory (PIM) technolo-
gies [17, 18, 28, 29, 31] like UPMEM [1, 9]. In PIM architectures,
data processing relies on the data being stationary and load-balanced
within the memory. Unlike TriCORE, which can handle edge data
transfers efficiently via stream buffers, PIM technologies require
data to remain fixed in memory to exploit the benefits of in-memory
processing fully. The dependence on GPU stream buffers and fre-
quent edge data requests inherent in TriCORE’s partitioning method
can lead to inefficiencies and performance degradation in PIM en-
vironments. Therefore, while TriCORE’s partitioning technique is
optimized for the high-throughput stream buffers and parallel na-
ture of GPUs, it is less suitable for PIM architectures, where station-
ary and balanced data placement in memory is crucial for optimal
performance.

TriPIM — Breaking Through the Scalability Barrier with
UPMEM: TRUST [24], an extension to TriCORE, mitigates some

Algorithm 2: TriCORE - Binary Search Intersection

Data: Array neighborIdxs_m, Long start, Size end, NodeID
target, Pointer cache_w
Result: Index of target in neighborIdxs_m or —1 if not
found
1 left « (start == —1)?0 : start ;
boundary

// Initialize left

2 right < end —1;

3 while left < right do
4 medium « left + ((right —left) > 1) ; // Calculate
middle index

// Initialize right boundary

5 current < neighborIdxs_m(medium) ; // Load
current value

6 if current == target then

7 return medium ; // Target found, return

medium index

8 end

9 if current < target then

10 ‘ left « medium+1; // Adjust left boundary
11 end

12 else

13 ‘ right «< medium —1;// Adjust right boundary
14 end

15 end

6 return —1; // Target not found, return -1

=

TriPIM — Exact Triangle Counting on UPMEM Processing-in-Memory for Graph Analytics

Load Balanced TRUST 2D partitioned graph

0%pm | Pio P11 Pz

Py P31 P3

u%pn

Figure 1: TRUST 2D partitioning for vertex-centric triangle
counting. Vertices are labeled according to degree for load-
balanced partitioning,.

of its memory overhead by using a vertex-ordered balanced hash-

based partitioning, thus eliminating the need for edge stream buffers.

This approach simplifies data handling, reduces memory consump-
tion, and minimizes data movement overhead. While TRUST uses
less memory for each partition by not requiring the edge list streams,
it incorporates hash-based intersection, which requires extra mem-
ory resources for building hashmaps for each intersect operation.
In this work, we introduce TriPIM as a hybrid approach that com-
bines TRUST-based memory-efficient partitioning and the TriCORE
binary search technique, which avoids using hash-based intersec-
tions. TriPIM reduces graph storage and intersection overhead us-
ing prior triangle counting techniques for PIM. By leveraging the
efficient partitioning strategy of TRUST and the fast intersection
method of the TriCORE binary search, TriPIM aims to optimize tri-
angle counting in PIM environments, ensuring high performance
for the Exascale graph with low memory usage and low computa-
tional overhead.

2 Background and Related Work

2.1 UPMEM Architecture

An UPMEM module [1, 9, 39] is a standard DDR4-2400 DIMM con-
taining several PIM chips. Each module’s DPUs operate as a par-
allel coprocessor to the host CPU. Each UPMEM PIM chip has 8
DPUs, each with 64-MB Main memory (MRAM), 24-KB Instruction
RAM (IRAM), and 64-KB Working RAM (WRAM).

The host CPU can access MRAM to transfer input data and re-
trieve results. Data transfers can be parallel across MRAM banks
if buffers are the same size; otherwise, they occur serially. DPUs
do not communicate directly; inter-DPU communication happens
via the host CPU. Concurrent access by the CPU and DPUs to the
same MRAM bank is not supported in current UPMEM-based PIM
systems.

2.2 Triangle Counting (TC) on CPU

For CPU experiments, we used GAPBS [2, 3], a portable high-performance

baseline that only requires a compiler with support for C++11. It
uses OpenMP for parallelism but can be compiled without OpenMP
to run serially. The details of the benchmark can be found in the
specification.

2.3 Triangle Counting (TC) on GPU

TriCORE [12] is a scalable GPU-based triangle counting system
with three key innovations. It employs a binary search-based al-
gorithm to boost thread parallelism and memory performance on
GPUs. Unlike previous methods requiring multiple graph represen-
tations in GPU memory, TriCORE partitions CSR data across GPUs
and streams the edge list from CPU memory, enabling it to han-
dle larger graphs. Additionally, it uses dynamic workload manage-
ment to balance tasks across GPUs. TriCORE can count triangles
in the billion-edge Twitter graph in 24 seconds on a single GPU, 22
times faster than the best CPU-based solutions.

3 TriPIM Overview

3.1 Load-Balanced Hash-Based Graph
Partitioning

We employ a load-balanced hash-based partitioning method for
distributing the graph across multiple partitions. This approach
ensures that each partition has an approximately equal number of
vertices, thus balancing the computational load across the DPUs.
The vertices are labeled according to their degrees to facilitate load
balancing, as shown in Figure 1.

3.2 TriPIM Description

3.2.1 Local Triangle Counting. The local triangle counting algo-
rithm runs on the DPUs in parallel, counting triangles within indi-
vidual partitions. The algorithm iterates over each partition, calcu-
lates the index for the current partition, and counts the triangles.
Local triangle counting allows us to leverage the DPU’s parallel
processing capabilities, providing efficient computation within in-
dividual partitions. This method ensures that all local triangles are
counted accurately before moving on to cross-partition counting.

Algorithm 3: Partitioned - Local Triangle Counting

Data: Partitioned Graph p_g, Parameters p_m, p_n
Result: Total Triangle Count total
1 p_g < b.MakePartitionedGraph() ;
partitioned graph
// Initialize total triangle count

// Create a

2 total < 0;
3 p_total < 0; // Initialize partition triangle
count

/* Local triangle counting in parallel on the

DPU */
4 forcol — 0top_m—1do
5 for row < 0to p_n—1do
6 idx < row-p_m+col; // Calculate the index

for the partition

7 p_total « TriangleCount(p_glidx]); // Count
triangles in the partition (executed in
parallel on DPU)

8 total « total + p_total ;
total triangle count

// Accumulate the

end
10 end

3.2.2 Cross-Partition Triangle Counting. The cross-partition trian-
gle counting algorithm identifies and counts triangles that span
multiple partitions. This is achieved by iterating over pairs of par-
titions and counting triangles involving vertices from both. Cross-
partition triangle counting is crucial for identifying triangles that
span multiple partitions, which are not captured by local counting
alone. Running this in parallel on the DPUs, TriPIM ensures that
the computation is efficient and scalable.

Algorithm 4: Partitioned - Cross Triangle Counting

Data: Partitioned Graph p_g, Parameters p_m, p_n
Result: Total Triangle Count total
1 p_g « b.MakePartitionedGraph() ;
partitioned graph
2 total < 0; // Initialize total triangle count
3 p_total < 0;

// Create a

// Initialize partition triangle

count
/* Cross triangle counting in parallel on the
DPU */
4 forcol — 0top_m—1do
5 for rowl < O0top_n—1do
6 idx1 < rowl-p_m+col; // Calculate the
index for the first partition
7 for row2 « rowl+1top_n—1do
8 idx2 < row2-p _m+col; // Calculate the

index for the second partition

9 p_total «—
CrossTriangleCount(p_glidx1], p_g[idx2]) ;
// Count cross-partition triangles
(executed in parallel on DPU)

10 total « total + p_total ; // Accumulate the
total triangle count

1 end
12 end
13 end

4 Evaluation and Results
4.1 Methodology

We utilized the system configurations detailed in Table 3 for our
evaluation. We used TriCORE as the GPU baseline and the GAP
Benchmark Suite (GAP) as the CPU baseline. Additionally, we im-
plemented the binary search and GAP triangle counting algorithms
with TRUST partitioning on UPMEM. The implementation of the

TriPIM framework is available at: https://github.com/UVA-LavaLab/TriP

4.1.1 CPU Baseline. The GAP Benchmark Suite (GAP) was used
as the baseline for CPU-based triangle counting. GAP provides a
set of graph algorithms optimized for multi-core CPUs, allowing
us to measure triangle counting performance on traditional CPU
architectures.

4.1.2 GPU Baseline. TriCORE was used as the baseline for GPU-
based triangle counting. It uses a binary search method to find

Baradaran et al.

Table 3: System environment for TriPIM evaluation

GPU
Model NVIDIA A40
CUDA Cores 10752
Boost Clock Speed 1.74 GHz
Memory 48 GB GDDR6
Memory Bandwidth 696 GBs™!
PIM Configuration
Model UPMEM PIM
DPUs 2549 used / 2560 total
DPU Frequency 350 MHz
Memory per DPU 64 MB
Total Memory 160 GB
DIMMs 20
Memory Bandwidth 1000GBs™!
Host CPU
Model||Cores|| Threads Intel Xeon Silver 4216]|16||32
Clock Speed 2.10GHz
Memory 256 GB
0Os Ubuntu 22.04 LTS

L1||L2||L3 Cache 512 kB (8-way)|| 16 MB (16-way)||22 MB (11-way)

Table 4: Graph workloads used in evaluation

Graph #Vertices #Edges Degree Size (MB) Triangle Count
Kron_13_20 8,191 246,888 20 1 1,744,952
Kron_16_18 65,536 2,026,386 18 8 19,672,632
Kron_18_17 262,143 8,057,720 17 32 93,521,523
Urand_13_16 8,192 261,556 16 1 5,559
Urand_16_16 65,536 1,965,534 16 8 4,467
Urand_17_32 131,072 8,386,472 32 32 43,363

neighboring triangles and takes full advantage of the parallel pro-
cessing capabilities of GPUs to achieve high throughput.

4.1.3 UPMEM PIM. In order to take full advantage of UPMEM’s
processing-in-memory (PIM) technology, we have incorporated both
the binary search technique and GAP’s triangle counting algorithms
with TRUST partitioning. This approach aims to combine the memory-
efficient partitioning of TRUST with the TriCORE intersection method
of binary search.

4.2 System Environment

4.2.1 CPU System. The evaluations for both the GPU and CPU
fxgre conducted on a host CPU with an Intel Xeon Silver 4216 pro-
cessor. This CPU is equipped with 16 cores and 32 threads, oper-
ates at a clock speed of 2.10 GHz, and has 256 GB of memory. The
operating system used for the evaluations was Ubuntu 22.04 LTS.

4.2.2 GPU System. For the GPU evaluation, we utilized the NVIDIA
A40. This GPU is equipped with 10,752 CUDA cores, providing
extensive parallel processing capabilities. The boost clock speed
reaches 1.74 GHz. The A40 includes 48 GB of GDDR6 memory, of-
fering a memory bandwidth of 696 GB/s.

https://github.com/UVA-LavaLab/TriPIM

TriPIM — Exact Triangle Counting on UPMEM Processing-in-Memory for Graph Analytics

102
I TriPIM_Base
[TriPIM_BS
10t
@ 100
(]
£
F 10t
1072
o ® A © © 0
«?’,} \3’} «3’} \?"} wb} «',\’?
Q7 Q7 Q7 (<24 (<24 (<
& «©° & \B@Q \\)@o o

Figure 2: Comparing Binary Search vs. Base Intersection

4.2.3 UPMEM System. In our evaluation of the UPMEM PIM, we
used a configuration with 2,560 DRAM Processing Units (DPUs).
Each DPU runs at a frequency of 350 MHz and has 64 MB of mem-
ory, giving a total memory capacity of 160 GB. The UPMEM ar-
chitecture offers a memory bandwidth of 1,000 GB/s, allowing for
rapid data processing directly within the memory.

4.3 Graph Datasets

In our evaluation, we utilized a diverse set of synthetic graph datasets
generated using GAPBS Kronecker and Urand models to assess the
performance of TriPIM as listed in Table 4.

Kronecker graphs [20], generated using the GAPBS Kronecker
synthetic graph generator, are a key part of our research. With pa-
rameters A=0.57, B=0.19, C=0.19, and D=0.05, as used in the Graph
500 benchmark, this model replicates many real-world network
properties. The Kronecker model’s scalability allows for the gen-
eration of large graphs from smaller seed graphs through the Kro-
necker product, creating synthetic graphs that closely resemble ac-
tual networks in various domains.

Urand graphs are generated using the Erd6s—Rényi model (Uni-
form Random) [10]. This model creates graphs by randomly con-
necting vertices with edges, with each edge having an equal proba-
bility of being present. It represents the worst-case scenario for lo-
cality, as every vertex has an equal probability of being a neighbor
to every other vertex. The uniform random nature of Urand graphs
makes them valuable as a baseline for benchmarking, as they lack
the structured properties found in real-world graphs, thus allow-
ing for a clear contrast with Kronecker graphs.

4.4 TriPIM Binary Search vs. Base

In this section, we compare two intersection methods: Base and
Binary Search (BS). In the Base approach, the inner loop of trian-
gle counting compares the elements of two adjacency lists (i.e., 1-
hop and 2-hop), and a triangle is counted whenever the elements
are equal. In the Binary Search approach, the longer adjacency
list is added to the binary search tree, and the elements in the
shorter adjacency list serve as keys for probing the binary search
algorithm. As illustrated in Figure 2, the Binary Search algorithm
“TriPIM_BS" significantly improves runtime compared to the Base

103 —e— Kron_13_20
Kron_16_18
1021 —e— Kron_18_17
Urand_13_16
101] —e— Urand_16_16
L —e— Urand_17_32
4] N
E 10,
'_
1071.
10—2 4
0 500 1000 1500 2000 2500

DPU Count

Figure 3: TriPIM Scalability with UPMEM

approach “TriPIM_Base", achieving on average 7.3% across all datasets
and up to a 51X speedup in the Kron_16_18 experiment.

4.5 TriPIM Scalability

Figure 3 illustrates the scalability of TriPIM for small graphs across
different DPU counts. As the number of DPUs increases, execution
time drops sharply until the count reaches eight, after which the
decrease becomes more gradual. The steep drop in execution time
at lower DPU counts reflects reduced parallelism, as each DPU
must process a larger share of the graph, leading to longer run-
times. This underscores the importance of maintaining high DPU
counts to preserve TriPIM performance, even for small graphs.

4.6 Exascale Graph Processing

In this section, we evaluate TriPIM against GAP (CPU baseline) and
TriCORE (GPU baseline) across varying graph sizes (Figure 4). The
x-axis values indicate the factor by which the base graph size (Size)
is multiplied. The evaluation starts from Sizex32 and increases by
a factor of four at each step up to Sizex2048 for CPU and GPU base-
lines, while TriPIM can scale further to Sizex2549, corresponding
to the total number of available DPUs. For all three systems, we
report only the execution time of the triangle counting kernel; ini-
tial setup, graph loading, and result gathering time are excluded.
In TriPIM, increasing the graph size simply loads more partitions
onto more DPUs, with each DPU processing the same partition size
(Size). As a result, TriPIM’s kernel time remains nearly constant as
the total graph size increases. This setup enables direct comparison
from small to extremely large graphs.

Across all datasets, TriCORE achieves the lowest execution time
for small graphs (e.g., Sizex32, Sizex128), outperforming both TriPIM
and GAP. However, it fails to execute beyond certain graph sizes
due to GPU memory limitations, as indicated by the vertical red
“Out of Memory” markers in Figure 4. GAP is faster than TriPIM
at smaller graph sizes, benefiting from efficient CPU execution
when the graph fits comfortably in the cache hierarchy. Moreover,
for small graphs, TriPIM underperforms partly because the setup
overhead and characteristics of UPMEM’s architecture may not of-
fer a significant advantage over traditional CPU or GPU process-
ing. For large graphs (e.g., Sizex2048 for CPU/GPU baselines and

Baradaran et al.

I TriPIM [GAP [TriCORE
Kron_13_20 Kron_16_18 Kron_18_17
10000 10000 10000
= 1000 = 1000 & 1000
2 > >l > >l > >
£ 100 o o £ 100 o o £ 100 <) o
IS £ £ E £ £ E £ £
[} [} [} [} [} [}
S 10 = = S 10 = = S 10 = =
E s 5 s |5 s s
o 1 - - 9 1 - - 9 1 - -
3 é H | & é H | & é é
Y01 Yoo Y01
0.01 0.01 0.01
32 128 512 1024 2048/2549 128 512 1024 2048/2549 128 512 1024 2048/2549
Urand_13_16 Urand_16_16 Urand_17_32
10000 10000 10000
& 1000 & 1000 & 1000
g 100 E E g 100 E E g 100 E E E
E = E E E E E E E E
[} [} [} [} [} [} [}
S 10 = = S 10 = = S 10 = = =
E s s i s s s s s
2 1 - - g 1 - - 9 1 - - -
o 3 3] = =)] = = =
w o o w o o w o o o

o
a

o
o
-

32 128 512

1024 2048/2549

1024 2048/2549 1024 2048/2549

Figure 4: Performance comparison of TriPIM with TriCORE (GPU baseline) and GAP (CPU baseline) across six graph datasets.
The x-axis represents increasing graph sizes, from Sizex32 to Sizex2048 for CPU and GPU baselines, and up to Sizex2549 for
TriPIM, where Size denotes the base graph size. “Out of Memory” markers indicate graph sizes where TriCORE could not

execute due to GPU memory limitations.

Sizex2549 for TriPIM), GAP’s execution time rises rapidly, whereas
TriPIM maintains nearly constant performance. Scaling becomes
increasingly challenging for CPU and GPU due to hardware con-
straints—CPUs suffer from more cache misses, while GPUs are lim-
ited by their memory capacity (e.g., 48 GB for the A40). At large
scales, TriPIM not only surpasses GAP in most cases but can also
process graphs that exceed GPU memory capacity.

5 Conclusions and Future Work

Efficient triangle counting remains a main challenge in graph ana-
lytics, underpinning applications in computational biology, social
networks, and emerging Al workloads such as graph neural net-
works and community detection. While CPU and GPU approaches,
including TriCORE, provide strong performance for small to medium
graphs, they face scalability barriers due to cache inefficiencies and
limited device memory.

TriPIM integrates the algorithmic advantages of TriCORE with
UPMEM’s Processing-In-Memory (PIM) architecture to address these
challenges. By minimizing data movement and distributing work-
loads across thousands of DPUs, TriPIM enables scalable triangle
counting on datasets that exceed the capacity of conventional pro-
cessors. Although TriPIM is slower for small graphs due to setup
overhead, balanced partitioning allows it to roughly match or sur-
pass CPU/GPU performance at larger graphs. A key strength is its
ability to execute beyond GPU memory limits, demonstrating clear
scalability advantages for massive graphs.

While these results highlight the advantage of using PIM-based
architectures, the comparison is not normalized across hardware
cost, memory capacity, or power consumption. Tradeoffs under

cost and power constraints, identifying new PIM features, and gen-
eralizing these methods to broader graph analytics workloads, are
interesting areas for future work.

6 Acknowledgement

This work was supported in part by PRISM, one of seven centers in
JUMP 2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

References

[1] 2018. Introduction to UPMEM PIM. Processing-in-memory (PIM) on DRAM Accel-
erator (White Paper). Technical Report. UPMEM, Grenoble, France.

[2] S. Beamer. 2015. GAP benchmark suite reference code v0.6.
https://github.com/sbeamer/gapbs

[3] S. Beamer, K. Asanovic, and D. A. Patterson. 2015. The GAP benchmark suite.
arXiv:1508.03619 (Aug. 2015).

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. 2008. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Las Vegas, Nevada, USA) (KDD °08). Association for Computing Ma-
chinery, New York, NY, USA, 16-24. doi:10.1145/1401890.1401898

[5] L.Becchetti, P. Boldi, C. Castillo, and A. Gionis. 2008. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Las Vegas, Nevada, USA) (KDD °08). Association for Computing Ma-
chinery, New York, NY, USA, 16-24. doi:10.1145/1401890.1401898

[6] R.Burt. 2004. Structural holes and good ideas. Amer. J. Sociology (2004).

[7] Z. Chen, L. Chen, S. Villar, and J. Bruna. 2020. Can graph neural networks
count substructures?. In Proceedings of the 34th International Conference on Neu-
ral Information Processing Systems (Vancouver, BC, Canada) (NIPS 20). Curran
Associates Inc., Red Hook, NY, USA, Article 871, 13 pages.

[8] J. Coleman. 1988. Social capital in the creation of human capital. Amer. . Soci-
ology (1988).

[9] F.Devaux. 2019. The true processing in memory accelerator. In IEEE Hot Chips
31 Symposium (HCS). 1-24.

https://github.com/sbeamer/gapbs
https://doi.org/10.1145/1401890.1401898
https://doi.org/10.1145/1401890.1401898

TriPIM — Exact Triangle Counting on UPMEM Processing-in-Memory for Graph Analytics

[10]

[11]

[12]

[13]

[14

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26

[27]

[28]

[29]

[30]

[31]

P. Erdés and A. Rényi. 1959. On Random Graphs I. Publicationes Mathematicae
6 (1959), 290-297

L. Hu, L. Zou, and Y. Liu. 2021. Accelerating Triangle Counting on GPU. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD °21). Association for Computing Machinery, New York,
NY, USA, 736-748. doi:10.1145/3448016.3452815

Y. Hu, H. Liu, and H. H. Huang. 2018. TriCore: Parallel Triangle Counting on
GPUs. In SC18: International Conference for High Performance Computing, Net-
working, Storage and Analysis. 171-182. doi:10.1109/SC.2018.00017

S. Huang, M. El-Hadedy, C. Hao, Q. Li, V. Mailthody, K. Date, J. Xiong, D. Chen,
R. Nagi, and W. Hwu. 2018. Triangle Counting and Truss Decomposition using
FPGA. In 2018 IEEE High Performance extreme Computing Conference (HPEC).
1-7. doi:10.1109/HPEC.2018.8547536

A. Ttai and M. Rodeh. 1977. Finding a minimum circuit in a graph (STOC ’77).
Association for Computing Machinery, New York, NY, USA, 1-10.

O. Jaiyeoba, A. Mughrabi, M. Baradaran, B. Gul, and K. Skadron. 2024. Swift:
A Multi-FPGA Framework for Scaling Up Accelerated Graph Analytics. In
2024 International Conference on Field Programmable Technology (ICFPT). 1-10.
doi:10.1109/ICFPT64416.2024.11113456

C. Kanatsoulis and A. Ribeiro. 2024. Counting graph substructures with graph
neural networks. In International Conference on Learning Representations.
J.Kim, S. Kang, S. Lee, H. Kim, W. Song, Y. Ro, S. Lee, D. Wang, H. Shin, B. Phuah,
J. Choi, J. So, Y. Cho, J. Song, J. Choi, J. Cho, K. Sohn, Y. Sohn, K. Park, and N.
Kim. 2021. Aquabolt-XL: Samsung HBM2-PIM with in-memory processing for
ML accelerators and beyond. In 2021 IEEE Hot Chips 33 Symposium (HCS). 1-26.
doi:10.1109/HCS52781.2021.9567191

Y. Kwon, V. Kornijcuk, N. Kim, W. Shin, J. Won, M. Lee, H. Joo, H. Choi, G. Kim,
B. An, J. Kim,]. Lee, L. Kim, J. Park, C. Park, Y. Song, B. Yang, H. Lee, S. Kim,
D. Kwon, S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park, K.
Kang, J. Kim, J. Jeon, M. Lee, M. Shin, M. Shin, J. Cha, C. Jung, K. Chang, C.
Jeong, E. Lim, L. Park, J. Chun, and Sk Hynix. 2022. System Architecture and
Software Stack for GDDR6-AIM. In 2022 IEEE Hot Chips 34 Symposium (HCS).
1-25. doi:10.1109/HCS55958.2022.9895629

M. Latapy. 2008. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical Computer Science 407 (2008), 458—473.

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. 2010.
Kronecker Graphs: An Approach to Modeling Networks. J. Mach. Learn. Res. 11
(March 2010), 985-1042.

J. Liang, M. Rajashekar, X. Tian, and Z. Fang. 2024. HiTC: High-Performance
Triangle Counting on HBM-Equipped FPGAs Using HLS. In 2024 IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing (PACRIM).
1-6. doi:10.1109/PACRIM61180.2024.10690214

A. T. Mughrabi, M. Baradaran, A. Samara, and K. Skadron. 2024. ECG: Ex-
pressing Locality and Prefetching for Optimal Caching in Graph Structures. In
2024 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 520-525. doi:10.1109/IPDPSW63119.2024.00105

L. H. Nguyen and Y. Yan. 2024. Evaluating the structural awareness of large
language models on graphs: Can they count substructures?. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.

S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie, C.
Ding, D. Li, and H. Liu. 2021. TRUST: Triangle Counting Reloaded on GPUs.
arXiv:2103.08053 (2021).

H. Park, F. Silvestri, R. Pagh, C. Chung, S. Myaeng, and U. Kang. 2018. Enumer-
ating Trillion Subgraphs On Distributed Systems. ACM Trans. Knowl. Discov.
Data 12, 6, Article 71 (Oct. 2018), 30 pages. doi:10.1145/3237191

K. Ravichandran, A. Subramaniasivam, P.S. Aishwarya, and N.S. Kumar. 2023.
Chapter Eight - Fast exact triangle counting in large graphs using SIMD accel-
eration. In Principles of Big Graph: In-depth Insight, Ripon Patgiri, Ganesh Chan-
dra Deka, and Anupam Biswas (Eds.). Advances in Computers, Vol. 128. Elsevier,
233-250. doi:10.1016/bs.adcom.2021.10.003

T. Schank and D. Wagner. 2005. Finding, counting and listing all triangles in
large graphs, an experimental study. In International Workshop on Experimental
and Efficient Algorithms. 606-609.

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O.
Mutlu, P. B. Gibbons, and T. C. Mowry. 2017. Ambit: in-memory accelerator for
bulk bitwise operations using commodity DRAM technology. In Proceedings of
the 50th Annual IEEE/ACM International Symposium on Microarchitecture (Cam-
bridge, Massachusetts) (MICRO-50 ’17). Association for Computing Machinery,
New York, NY, USA, 273-287. doi:10.1145/3123939.3124544

A. Shekar, M. Baradaran, S. Tajdari, and K. Skadron. 2023. HashMem: PIM-based
Hashmap Accelerator. doi:arXiv:2306.17721[cs.AR]

J. Shun and K. Tangwongsan. 2015. Multicore triangle computations without
tuning. In 2015 IEEE 31st International Conference on Data Engineering. 149-160.
doi:10.1109/ICDE.2015.7113280

F. Siddique, D. Guo, Z. Fan, M. Gholamrezaei, M. Baradaran, A. Ahmed, H. Ab-
bot, K. Durrer, K. Nandagopal, E. Ermovick, K. Kiyawat, B. Gul, A. Mughrabi, A.
Venkat, and K. Skadron. 2024. Architectural Modeling and Benchmarking for

[32

(33]

[35

[36]

(37]

Digital DRAM PIM. In 2024 IEEE International Symposium on Workload Charac-
terization (IISWC). 247-261. doi:10.1109/IISWC63097.2024.00030

G. Singh, M. Alser, D. Senol Cali, D. Diamantopoulos, J. Gémez-Luna, H.
Corporaal, and O. Mutlu. 2021. FPGA-Based Near-Memory Acceleration
of Modern Data-Intensive Applications. ~ IEEE Micro PP (06 2021), 1-1.
doi:10.1109/MM.2021.3088396

L. De Stefani, A. Epasto, M. Riondato, and E. Upfal. 2017. TRIEST: Count-
ing Local and Global Triangles in Fully Dynamic Streams with Fixed Memory
Size. ACM Trans. Knowl. Discov. Data 11, 4, Article 43 (June 2017), 50 pages.
doi:10.1145/3059194

S. Suri and S. Vassilvitskii. 2011. Counting triangles and the curse of the last
reducer. In Proceedings of the 20th International Conference on World Wide Web
(Hyderabad, India) (WWW ’11). Association for Computing Machinery, New
York, NY, USA, 607-614. doi:10.1145/1963405.1963491

A. Sarah Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman, M. Kodiy-
ath, I. Hur, F. Petrini, and G. Karypis. 2017. Exploring optimizations
on shared-memory platforms for parallel triangle counting algorithms. In
2017 IEEE High Performance Extreme Computing Conference (HPEC). 1-7.
doi:10.1109/HPEC.2017.8091054

C. E. Tsourakakis. 2008. Fast Counting of Triangles in Large Real Networks
without Counting: Algorithms and Laws. In 2008 Eighth IEEE International Con-
ference on Data Mining. 608-617. doi:10.1109/ICDM.2008.72

C. E. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos. 2011.
Spectral counting of triangles via element-wise sparsification and triangle-
based link recommendation. Social Network Analysis and Mining 1 (2011), 75-81.
d0i:10.1007/s13278-010-0001-9

C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. 2009. DOULION:
counting triangles in massive graphs with a coin. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (Paris, France) (KDD ’09). Association for Computing Machinery, New York,
NY, USA, 837-846. doi:10.1145/1557019.1557111

UPMEM. 2020. UPMEM Website. https://www.upmem.com

J. Wang and J. Cheng. 2012. Truss decomposition in massive networks. Proc.
VLDB Endow. 5, 9 (May 2012), 812-823. doi:10.14778/2311906.2311909

D. J. Watts and S. H. Strogatz. 1998. Collective dynamics of *small-world’ net-
works. Nature 393 (1998), 440-442. doi:10.1038/30918

https://doi.org/10.1145/3448016.3452815
https://doi.org/10.1109/SC.2018.00017
https://doi.org/10.1109/HPEC.2018.8547536
https://doi.org/10.1109/ICFPT64416.2024.11113456
https://doi.org/10.1109/HCS52781.2021.9567191
https://doi.org/10.1109/HCS55958.2022.9895629
https://doi.org/10.1109/PACRIM61180.2024.10690214
https://doi.org/10.1109/IPDPSW63119.2024.00105
https://doi.org/10.1145/3237191
https://doi.org/10.1016/bs.adcom.2021.10.003
https://doi.org/10.1145/3123939.3124544
https://doi.org/arXiv:2306.17721 [cs.AR]
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1109/IISWC63097.2024.00030
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1145/3059194
https://doi.org/10.1145/1963405.1963491
https://doi.org/10.1109/HPEC.2017.8091054
https://doi.org/10.1109/ICDM.2008.72
https://doi.org/10.1007/s13278-010-0001-9
https://doi.org/10.1145/1557019.1557111
https://www.upmem.com
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.1038/30918

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 UPMEM Architecture
	2.2 Triangle Counting (TC) on CPU
	2.3 Triangle Counting (TC) on GPU

	3 TriPIM Overview
	3.1 Load-Balanced Hash-Based Graph Partitioning
	3.2 TriPIM Description

	4 Evaluation and Results
	4.1 Methodology
	4.2 System Environment
	4.3 Graph Datasets
	4.4 TriPIM Binary Search vs. Base
	4.5 TriPIM Scalability
	4.6 Exascale Graph Processing

	5 Conclusions and Future Work
	6 Acknowledgement
	References

