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Abstract
Modern memory controllers use a write queue to optimistically
defer DRAMwrite operations until a rank is idle to avoid disrupting
latency-critical reads. Unfortunately, when the write queue reaches
capacity without adequate idle time available, all pending read
operations suffer a severe performance penalty while waiting for
the memory controller to perform a mandatory bus turnaround
and drain the outstanding writes.

To mitigate the performance impact of write draining, we intro-
duce Split Writes, which divide write operations into two phases:
Data Transfer and Row Access. Split Writes enable the memory con-
troller to first transfer the write data to a small, fast buffer—called
the Split Write Cache (SWC)—located within the DRAM chip during
write draining. Data Transfer avoids row activation or precharge,
significantly reducing the latency of write draining. Later, the mem-
ory controller can exploit bank idle time, which is more common
than rank idle time, to opportunistically write data back from the
split write caches to DRAM rows.

Unlike prior techniques that delay writes or modify cache be-
haviour, Split Writes enable timely write draining while minimizing
read disruption. Furthermore, Split Writes preserve protocol cor-
rectness, requiring modest architectural changes while improving
system responsiveness under high write pressure.

CCS Concepts
• Hardware → Memory and dense storage; • Computer sys-
tems organization → Processors and memory architectures.
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1 Introduction
Memory access latency is a key system design parameter that deter-
mines performance for a wide range of modern workloads. Memory
controllers in DRAM-based systems heavily optimize for latency-
critical read operations using techniques such as caching, prefetch-
ing, and memory access scheduling. However, these optimizations
are fundamentally limited by contention between read and write
operations that share the same DRAM bus due to packaging and
electrical constraints. The bus can only send data in one direction

at a time, so any transition between read and write operations
incurs additional latency (typically 10–12 ns [11]) known as the
bus turnaround time. This causes priority inversion where write
operations necessarily block latency-critical reads regardless of
bank availability, ultimately degrading application performance
and reducing memory bandwidth utilization.

To amortize bus turnaround overhead, the memory controller
typically serves reads and writes in bursts by buffering them in
read and write queues, respectively. Read operations are prioritized
while writes are deferred until either the DRAM rank is idle or the
write queue fills beyond a threshold value (e.g., 80%) known as the
high watermark. During rank idle time, the memory controller may
preform a minor write drain to opportunistically write back part of
the write queue. However, any read request that arrives during a
minor write drain suffers a latency penalty because the memory
controller must first interrupt the write drain or allow it to complete
and then perform a bus turnaround before the readmay be served. In
performance-sensitive settings, a memory controller may prefer to
avoid minor write drains altogether to avoid inadvertently delaying
latency-critical reads [12]. In contrast, if the high watermark is
reached, the memory controller performs a major write drain to
flush the majority of the write queue down to a lower threshold
value (e.g., 20%) known as the low watermark. A major write drain
severely impacts performance because its long latency starves all
pending read operations, regardless of their origin or criticality.

Unfortunately, a combination of higher core counts, larger write
queues, and increasing memory demands in modern systems exac-
erbates the impact that major write drains have on overall system
performance. Therefore our goal in this work is to alleviate the
performance impact of major write drains with low hardware cost.
Existing techniques such as increasing the write queue size [4],
leveraging the LLC as a temporary write buffer [8], or modifying
cache eviction policies [5, 6], often introduce additional hardware
complexity or degrade cache efficiency and still fail to fully elimi-
nate read-write contention during periods of write buffer saturation.

Our key idea in this work is to fundamentally reduce the latency
of write operations so that write drains complete quickly and effi-
ciently, reducing the latency impact to performance-critical reads.
Our work is based on the insight that DRAM write access latency
is dominated by row access operations rather than data bus trans-
fers. By decoupling the two, the memory controller can take row
operations off the critical path of major write drains.
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2 Background
Each DRAM bank contains two-dimensional arrays of DRAM cells
organized as rows and columns [2]. Wordlines are used to activate a
chosen row, and bitlines are used to access the data from a column
within that row. Each bank is internally divided into subarrays
(groups of rows), and each subarray has a row-width collection of
sense amplifiers (logically known as a subarray’s local row buffer)
that detect and cache the data values stored within an active row’s
cells. The local row buffer serves all accesses to the active row,
but only one row buffer may operate at a time with a given bank.
Therefore, consecutive accesses to different rows with in the same
bank must be serialized.

To serve a memory request that accesses data at a specific row
and column address, the memory controller issues the following
commands to a bank:
i) ACTIVATE: The controller issues an ACTIVATE command along
with the row address to open the row. This connects the memory
cells in the specified row with their respective bitlines, causing a
voltage perturbation on each bitline that the local sense amplifiers
sense and amplify to a CMOS-readable value.
ii) READ/WRITE: The controller then issues a READ or WRITE
command along with the column address to access the designated
column. The specified column from the local sense amplifiers is
selected via selection lines by asserting the CSEL signals set by the
column decoder, connecting the corresponding bitlines to the I/O
lines. For a read operation, a column-width number of global sense
amplifiers read the selected columns onto the I/O lines, forwarding
the data to the memory chip’s output pins. For a write operation,
the data is written to the local row buffer via I/O lines driven
by a circuit called the write driver, which overwrites the selected
columns of DRAM cells via the bitlines. The DRAM data bus is
bidirectional, which means that the DRAM chip drives the bus
during read operations and the memory controller drives it during
write operations. The read-to-write and write-to-read turnaround
times (tRTW and tWTR, respectively) are key timing parameters
that specify the minimum delay needed when switching the data
bus direction between read and write operations.
iii) PRECHARGE: Before activating a new row in a bank, the
controller must first reset the bitline voltage to a specific voltage
by issuing a PRECHARGE command [3].1

3 Related Work
Significant work addresses the performance degradation in DRAM
systems due to the contention between reads and writes over the
shared memory bus. Prior work mitigates this bottleneck through
various hardware modifications and memory access scheduling
strategies. However, these approaches either introduce complexity,
degrade read performance, or fail to eliminate read-write contention
under heavy write pressure.

Virtual Write Queue[4] extends the last-level cache (LLC) to act
as a virtual write buffer, allowing delayed writebacks to DRAM.
Although it helps reduce write-induced blocking, this approach

1If the requested row is already present in the row buffer, we can directly read or
write without an additional PRECHARGE or ACTIVATE. This is called a row buffer
hit. Otherwise, it is called a row buffer miss.
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Figure 1: Best-case IPC improvement possible by mitigating
read-write interference during write draining

risks LLC pollution, increasing read miss rates and harming read
performance—especially under mixed or read-heavy workloads.
Rank-aware write buffering [6] redirects writes to less-active ranks
to create idle windows in other ranks, primarily for power savings.
However, it does not target read latency or queuing delay directly,
and relies on complex coordination between cache replacement and
rank state tracking. It also becomes less effective when memory
traffic is balanced across ranks.

Adaptive Burst Writes [9] and Last-Write Prediction [8] attempt
to tune writeback behavior dynamically to reduce read interfer-
ence and write volume, respectively. These techniques are either
prediction based or require runtime adaptation and may struggle
to respond to sudden workload shifts. Other solutions, like write
coalescing and filtering, improve memory bandwidth efficiency but
do not directly address the blocking nature of write-backs on reads.

4 Motivation
Our work differs significantly from prior solutions by targeting the
DRAM access latency during write drains rather than attempting
to delay or overlap writeback timing. By temporarily transferring
data into a quickly-accessible buffer, Split Write DRAM shortens
the write drain phase and restores read service earlier, improving
system responsiveness without altering cache behavior or requiring
complex controller prediction logic. This method reduces read-write
interference, minimizes turnaround penalties, and maintains higher
read throughput without significantly impacting memory system
complexity.

We model the benefits that Split Writes can achieve using the
key DRAM timing parameters that determine the overall latency of
a DRAMwrite operation, which comprises activating a row, writing
the data, and precharging the bank:

• 𝑡RCD: Row to Column Delay—the time required to move
data from DRAM cells to the sense amplifiers during the
row activation process.

• 𝑡CWD: Column Write Delay—the delay between issuing a
write command and the point at which the memory con-
troller places data onto the data bus.

• 𝑡CCD: Column-to-Column Delay—the minimum time re-
quired between two column commands to different banks
or within the same bank.
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• 𝑡WR: Write Recovery Time—the minimum time between the
end of a write burst and the start of a precharge command;
this includes the time required for the write operation to
release I/O gating resources.

• 𝑡RP: Row Precharge Time—the time required to precharge
a DRAM bank, preparing it for another row access.

Assuming a DRAM row hit ratio of 𝛼 , the latency incurred by
draining 𝑁 writes can be modeled as:

𝑁 ((1 − 𝛼) (𝑡RCD + 𝑡CWD + 𝑡CCD + 𝑡WR + 𝑡RP) + 𝛼 · 𝑡CCD) (1)

Split Writes avoid the need for 𝑡RCD, 𝑡WR, and 𝑡RP during write
queue draining, enabling the memory controller to save up to 𝑁 (1−
𝛼) (𝑡RCD + 𝑡WR + 𝑡RP) total time. The memory controller can then
exploit bank-level parallelism to hide the latency of the Data Write
phase of the Split Write operations, thereby vastly reducing the
overall latency of a major write drain.

We conduct an oracle study using Ramulator2 [1], an open source
cycle accurate DRAM simulator. We model two configurations: i)
a baseline, where both major and minor write drains are allowed,
and ii) a write drop variant (WR-drop), where writes incur zero
latency during major write drains and therefore do not block reads,
while minor write draining is still allowed. We use an out-of-order
core running at a 4 GHz clock frequency, with a last level cache
(LLC) of 8 MB, 64 B cache line size, and 8-way associativity. The
memory subsystem is configured as a DDR4-8Gb ×8 device with 1
channel, 2 ranks, 4 bank groups, 4 banks, 64K rows, and 1K columns.
The memory controller employs FRFCFS scheduling with 64-entry
read/write queues. Benchmarks are drawn from SPEC CPU2006 [13],
STREAM, TPC, MemBench [14], which include multimedia and OS
workloads. Each benchmark is simulated for one billion instructions
and performance is reported as instruction throughput, measured
in instructions per cycle (IPC).

We characterize the impact of writes on overall performance.
Figure 1 presents normalized IPC results, where the left bar cor-
responds to the baseline model with both major and minor write
drains enabled, and the right bar corresponds to the wite drop
(WR drop) model, where writes incur zero latency and impose no
constraints on reads during major write drains. This configuration
represents an upper bound on performance, showing an average
improvement around 37%, indicating that read operations are sig-
nificantly blocked by writes in the baseline design.

4.1 Split Write DRAM Overview
The central goal of our work is to minimize the latency overhead of
write operations so that bulk write drains no longer stall latency-
sensitive read requests. Conventional DRAM systems suffer from
the fact that completing a write operation requires a full row cycle
(activation, data transfer, and precharge), where the row opera-
tions—not the data bus transfer—dominate the overall latency. Our
key observation is that this tight coupling between data transfer
and row access unnecessarily prolongs write drains and severely
limits the ability of the memory controller to prioritize reads.

Our implementation of this idea is called Split Writes, which in-
troduces small write caches called Split Write Caches (SWCs) within
each memory chip to absorb writes quickly when draining writes,
deferring the actual DRAM row access to a more opportune time.
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Figure 2: Organization of Split Write Cache for an x8 Split-
Write DRAM chip

This enables the data transfer to occur quickly and avoids blocking
the rank for the entire duration of a full DRAM write operation.
The buffered writes can then be flushed into the DRAM array in
the background or during a future idle period of that bank (no need
to wait until the rank is idle). As a result, a latency-critical read
operation may be served earlier, and if its data is present in an
SWC, may be served without requiring a DRAM row access at all.
This greatly alleviates the penalty that write draining imposes on
pending read operations.

4.2 Split Write DRAM Architecture
Figure 2 illustrates the DRAM architecture augmented with a split
write cache. Each DRAM chip incorporates a dedicated cache of
64 entries, with each entry size 64 bits. The cache is positioned in
the center stripe region of the DRAM chip, requiring modifications
only to I/O circuitry and no changes to the core storage arrays. To
visualize the architectural modifications, Figure 2 highlights the
updated datapath, including the read path in blue and the write
path in green. The proposed architecture is fully compatible with
conventional DRAM operations, also supporting the new split write
operation. This is achieved by adding a split write cache (SWC) and
two multiplexers. The multiplexers are responsible for selecting
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between read and write operations that are served by the SWC
instead of directly accessing the DRAM bank.
(i) Write Operations: The multiplexers determine whether the data
written into the DRAM array originates from the SWC or directly
from the memory controller. When the SWC write enable signal
is asserted, the data is supplied from the SWC; otherwise, it is
provided directly by the memory controller.
(ii) Read Operations: The second multiplexer controls data retrieval
by selecting either the DRAM array or the SWC as the source of
the requested data. If the requested data is present in the SWC, an
internal SWC read enable signal get asserted, and the data is directly
fetched from the cache. Otherwise, the read request is served from
the DRAM array.

4.3 Split Write DRAM Commands
The proposed split write architecture extends the baseline DRAM
command specification. Conventional DRAM commands such as
ACTIVATE, READ, and WRITE remain fully supported to ensure
compatibility with existing memory protocols. The newly intro-
duced SWC commands operate either in conjunction with or as
alternatives to these baseline operations in order to perform split
write operations.

(1) WRITE and 𝑆𝑊𝐶_𝑊𝑅𝐼𝑇𝐸: A conventional DRAM WRITE
operation writes the data directly from the memory con-
troller write buffer into the DRAM array via write drivers.
In contrast, during a major write drain, an 𝑆𝑊𝐶_𝑊𝑅𝐼𝑇𝐸

places the incoming data into the SWC, deferring the update
of the DRAM array.

(2) 𝑆𝑊𝐶_𝐹𝐿𝑈𝑆𝐻 : This command combines with a conven-
tional WRITE operation to commit buffered data from the
SWC into the DRAM array. To perform the flush, the SW
memory controller first activates the required row (row
address comes from the SWC table) and then issues the
𝑆𝑊𝐶_𝐹𝐿𝑈𝑆𝐻 command along with the corresponding col-
umn address and SWC index.

(3) READ and 𝑆𝑊𝐶_𝑅𝐸𝐴𝐷 : A conventional READ command
retrieves data from the DRAM array following an ACTI-
VATE command. 𝑆𝑊𝐶_𝑅𝐸𝐴𝐷 fetches data directly from
the SWC when the requested entry is present, thereby by-
passing both row activation and READ. If the requested
data is not available in the SWC, the SWmemory controller
must instead perform a conventional READ operation to
retrieve the data from the DRAM array.

4.4 Mechanism
The split write DRAM controller maintains a split write cache table
(SWC Table) that contains the cache index, the ID of the row and
column it holds, and a valid/invalid bit. The SWC Table uses a
parallel associative lookup (CAM-style) that can be accessed within
a single controller clock cycle, can be overlapped with request
queue handling. The lookup is small and parallelized, it does not
lie on the critical path of timing sensitive DRAM operations.
Write Operation in Split Write DRAM: The memory controller
performs a Split Write in two steps:

(1) Data Transfer: The controller transfers the write data
into a Split Write Cache (SWC) within the target DRAM
chip without performing any row operations. At this stage,
the write is considered “drained” from the memory con-
troller’s perspective. This operation is carried out by issuing
the 𝑆𝑊𝐶_𝑊𝑅𝐼𝑇𝐸 command along with the corresponding
SWC index, which is sent through the address pins.

(2) Data Write: At an opportune time, the memory controller
activates the target DRAM row, instructs the SWC to write
the data into the row, and performs a precharge operation
after write completion. This process is triggered by issuing
the 𝑆𝑊𝐶_𝐹𝐿𝑈𝑆𝐻 command. The memory controller acti-
vates the target DRAM row whose identifier is stored in
the SWC table. The SWC entry associated with the pending
flush is identified using the SWC index. This index, together
with the column address, is transmitted through the address
pins. An internal SWC write-enable signal configures the
write datapath to write the corresponding data from the
SWC into the active DRAM row at the specified column
address. This operation effectively moves the buffered data
from the SWC into its permanent storage location in the
array.

On a read request, the SW DRAM controller checks for the entry
in the SWC Table. If the data is not present in the SWC, DRAM
issues normal READ operations. If data is available in the SWC, the
SW DRAM controller take the action as described below.
Read Operation in Split Write DRAM: To serve a memory re-
quest when the requested data resides in the split write cache (SWC),
the SW DRAM controller issues an 𝑆𝑊𝐶_𝑅𝐸𝐴𝐷 command along
with the corresponding SWC index The SWC index is transmitted
through the address pins, as a conventional row address or column
address is not required for the 𝑆𝑊𝐶_𝑅𝐸𝐴𝐷 operation. An internal
SWC read-enable signal configures the read data path to read the
corresponding data from SWC.

Split writes enable the memory controller to reduce the latency
impact that writes impose on readswhile preserving access ordering
and correctness given that data is eventually committed to the
DRAM array. The SWCmay be implemented either within the bank
circuitry or globally shared across banks based on the designer’s
goals: shared SWCs improve utilization in the case of nonuniform
bank access patterns but require a single larger, slower memory
block compared with distributing smaller SWCs across banks.

4.5 Area Overhead
The Split Write DRAM architecture introduces additional hardware
overhead in the center stripe region of the DRAM chip, while leav-
ing the core storage array unmodified. The primary source of over-
head arises from the split write cache (SWC), where a 64-entry cache
with a 64-bit entry size requires 512 B of on-chip storage per DRAM
chip. The SWC table in the memory controller incurs an additional
overhead of (𝑅𝑜𝑤𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑏𝑖𝑡𝑠+𝐶𝑜𝑙𝑢𝑚𝑛𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑏𝑖𝑡𝑠+𝑉𝑎𝑙𝑖𝑑𝑏𝑖𝑡)×64×
per rank. For a DDR4–8 Gb × 8 configuration, the SWC table table
overhead in the memory controller is (16 + 10 + 1) × 64 = 216𝐵 per
rank.
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5 Conclusion
We propose split write technique to mitigate the read latency during
the write draining. This design ensures that write drains complete
with low latency, freeing the controller to resume issuing read re-
quests. The read operations that target recently written data can
be satisfied directly from the SWCs, avoiding the cost of activating
the DRAM row. Therefore, the split writes give the memory con-
troller greater flexibility to overlap or defer row operations, thereby
reducing interference between reads and writes.
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