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Abstract
In-host shared memory (IVSHMEM) enables high-throughput, zero-
copy communication between virtual machines, but today’s imple-
mentations lack any security control, allowing any application
to eavesdrop or tamper with the IVSHMEM region. This paper
presents Secure IVSHMEM, a protocol that provides end-to-end
mutual authentication and fine-grained access enforcement with
negligible performance overhead. We combine three techniques
to ensure security: (1) channel separation and kernel module ac-
cess control, (2) hypervisor-mediated handshake for end-to-end
service authentication, and (3) application-level integration for ab-
straction and performance mitigation. In microbenchmarks, Secure
IVSHMEM completes its one-time handshake in under 100 𝜇s and
sustains data-plane round-trip latencies within 5% of the unmodi-
fied baseline, with negligible bandwidth overhead. We believe this
design is ideally suited for safety and latency-critical in-host do-
mains, such as automotive systems, where both performance and
security are paramount.

CCS Concepts
• Computer systems organization→ Embedded software; • Se-
curity and privacy→ Access control.

Keywords
IVSHMEM, Inter-VM Shared Memory, End-to-End Security

1 Introduction
The automotive industry is rapidly evolving, driven by advances in
semiconductor technology that have shifted system architectures
from traditional microcontrollers (MCUs) to powerful Systems-
on-Chip (SoCs). This evolution not only enhances computational
capabilities but also paves the way for Software-Defined Vehicles
(SDVs), where flexibility, scalability, and rapid updates are para-
mount. In SDVs, virtualization technology plays a crucial role by
enabling the coexistence of multiple virtual machines (VMs) on a
single hardware platform, ensuring isolated yet efficient execution
of diverse applications. For example, modern cockpit domain con-
trollers often deploy separate VMs for real-time operations (RTOS)
and infotainment systems, which is essential for balancing perfor-
mance and safety[6, 15].
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Figure 1: A performance comparison between IVSHMEM
and other inter-VM communication methods.

Inter-VM communication in these environments is critical. Tra-
ditional approaches, such as TCP/UDP over a network stack or
even UART-based messaging, often lack sufficient speed and re-
source efficiency[16]. Alternative solutions like VirtIO offer a para-
virtualized communicationmechanism through ring buffers (VirtQueues),
but they do not fully leverage the benefits of shared physicalmemory.[18]
IVSHMEM(Inter-VM Shared Memory) addresses these limitations
by mapping each VM’s virtualized PCI device to a common physi-
cal memory region, allowing rapid data exchange through shared
memory[9, 16, 27]. As illustrated in Figure 1, IVSHMEM achieves
substantially higher bandwidth and lower latency compared to
VirtIO-based networking (Virt-Net) and inter-machine TCP com-
munication over Ethernet, highlighting its superior performance for
inter-VM communication. Despite its performance advantages, this
method introduces significant security challenges; multiple VMs
accessing the same memory space creates vulnerabilities where a
compromised or malicious VM could potentially access or modify
data belonging to another VM[22].

This concern is particularly acute in scenarios where critical
systems interact with less secure environments. For instance, when
an RTOS communicates with an Android-based infotainment VM,
there is a tangible risk that a malicious application within Android
might tamper with the shared memory region[15]. Such tampering
could result in attacks ranging from man-in-the-middle to eaves-
dropping, ultimately compromising system stability and safety.

In response to these challenges, we propose a secure protocol
designed specifically for IVSHMEM communication. Our approach
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introduces robust security measures on top of the IVSHMEM frame-
work, ensuring data integrity and access control even in an envi-
ronment with inherent vulnerabilities. While our protocol does
introduce some performance overhead, we have implemented tech-
niques to mitigate this impact, ensuring that the overhead remains
minimal relative to the performance gains achieved by shared mem-
ory communication.

In this paper, we provide a detailed analysis of the security threats
associated with IVSHMEM, explore the limitations of existing inter-
VM communication methods, and describe our protocol’s architec-
ture and mitigation strategies. Through comprehensive evaluation,
we demonstrate that our secure protocol successfully balances be-
tween robust security and the high-performance demands of IVSH-
MEM applications—such as those found in modern automotive
systems.

2 Background
In this section, we examine the IVSHMEM mechanism, outline its
challenges, and review recent progress.

2.1 IVSHMEM: Mechanism and Architecture
IVSHMEM is a specialized implementation of shared memory IPC
designed for virtualized environments. It emulates a virtual PCI
device to expose the shared memory’s base address and size to
guest VMs[5, 13]. As shown in Figure 2, the hypervisor exposes the
shared-memory region to the guest VM, and the UIO kernel driver
maps the emulated PCI device, allowing applications to access
that memory directly via /dev/uioX. The design leverages the
standardized PCI configuration to facilitate memory mapping and
efficient communication. Specifically, IVSHMEM utilizes:

• BAR0 (Base Address Register 0): This region (256 bytes
of MMIO) holds the device registers, which control the
operation of the virtual device.

• BAR1: It contains the MSI-X table and Pending Bit Array
(PBA), primarily used by the IVSHMEM doorbell mecha-
nism for signaling interrupts.

• BAR2: This is mapped to the shared memory object, pro-
viding a direct communication channel between VMs.

The doorbell interrupt mechanism enabled by this configuration
allows VMs to notify one another when new data is available, en-
suring efficient core utilization and reducing latency in inter-VM
communication[7].

2.2 Security Concerns of Shared Memory
Shared-memory IPCwithin a single OS benefits fromwell-established
protections, including file access controls, sandboxing, and secu-
rity modules such as SELinux or AppArmor. IVSHMEM, however,
presents distinct challenges [1, 21]. In a traditional OS environment,
the OS enforces strict access controls over shared memory regions,
ensuring that only authorized processes can read or write data.
However, these protections doesn’t work whenmultiple, potentially
untrusted VMs share the same memory space. A compromised or
malicious VM could easily access or tamper with data in the shared
region, leading to unauthorized data disclosure, corruption, or even
system instability[22].

Figure 2: The overview of IVSHMEM architecture

2.3 Secure Communication Over Insecure
Channels

The challenge of ensuring secure communication in IVSHMEM
environments is analogous to securing communication over the
Internet, where multiple parties exchange information over an in-
herently insecure channel. In network communications, protocols
such as TLS rely on key exchange mechanisms, mutual authenti-
cation, and end-to-end encryption to safeguard data integrity and
confidentiality[17, 19]. Similarly, secure multi-party communica-
tion techniques, such as Diffie-Hellman key exchange and advanced
encryption standards, are employed to establish trust even when
the channel is compromised[3, 14].

In the context of IVSHMEM, the situation is even more complex
because multiple services must share the same restricted memory
space as a communication channel. This necessitates designing a
secure protocol that ensures confidentiality and integrity, similar to
TLS or other network security protocols, while also accommodating
the shared nature of the memory resource. Our research addresses
these challenges by proposing a secure protocol that protect the data
transmitted via IVSHMEM, while also mitigating the performance
overhead typically associated with such security measures.

2.4 Recent Progress of IVSHMEM
Communication

Recent research and developments in IVSHMEM communication
have focused on balancing performance and security, with various
approaches having distinct trade-offs.

The SIVSHM project introduces a segmentation approach to
IVSHMEM, enhancing security by isolating shared memory re-
gions among VMs. However, this strict isolation introduces notable
overheads from reduced buffer size. [22].
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Performance-centric solutions, such as XenLoop and MemPipe,
have been proposed to optimize IVSHMEM by improving trans-
parency and reducing latency[29][16][28][24][2][10]. These solu-
tions integrate seamlessly with traditional socket-based network
stacks, allowing applications to benefit from high-speed shared
memory communication without explicit changes. However, these
solutions primarily prioritize performance and transparency and
lack of mechanisms for security threats[16].

Other approaches have leveraged hypervisor-managed policies
and features, like Xen’s grant tables, to enforce finer-grained se-
curity controls. Grant tables establish explicit, controlled memory-
sharing agreements between VMs, restricting access to designated
regions. However, this technique is tied to a specific hypervisor
and does not provide a general-purpose driver interface [26].

Overall, while significant progress has been made in enhancing
both the performance and security of IVSHMEM, current solutions
optimize for one at the expense of the other. We aim to design a
Secure IVSHMEM protocol that delivers security features while
keeping performance overhead to a minimum.

3 Threat Model
In this section we define the assets to be protected, the adversary’s
capabilities, our trust assumptions, concrete threat scenarios with
corresponding defenses, the security goals achieved, and known
limitations.

3.1 Assets
• Shared-Memory Contents: All plaintext data exchanged

via the IVSHMEM region (e.g., sensor readings, control
commands).

• VM Identities: Certificates and private keys provisioned
to each VM by the hypervisor CA.

3.2 Adversary Model
We consider an attacker with the following capabilities and goals:

Location: Co-resident on the same host, either in another VM or
with limited host privileges.

Privileges in Guest: May be an unprivileged process or even
gain root in one VM, and thus can open and attempt to
mmap() the IVSHMEM region directly.

Goals:
(1) Confidentiality breach: Read plaintext data from an-

other VM’s IVSHMEM region.
(2) Integrity breach: Inject or tamper with messages in the

shared region.
(3) Authentication breach: Impersonate a VM by forging

or replaying handshake messages.

3.3 Trust Assumptions
• Trusted Hypervisor: Each VM trusts the hypervisor as

the root of trust; although VMs do not inherently trust
the IVSHMEM communication channel, they rely on the
hypervisor acting as a Certificate Authority (CA) to issue,
sign, and validate VM certificates.

• Kernel-Module Enforcement: All VMs in the system
load and execute the same IVSHMEM enforcement kernel
module, ensuring uniform, in-kernel access control and
preventing any unauthorized memory mappings across the
entire platform.

3.4 Security Goals
Under the above model and countermeasures, our protocol achieves:

(1) Confidentiality: No application in VM can read another’s
channel’s plaintext data.

(2) Integrity: Any tampering with shared data is detected by
authentication tags.

(3) Mutual Authentication: Only application in VMs with
valid, hypervisor-signed certificates complete the hand-
shake.

3.5 Limitations of Conventional Security
Protocols

Conventional end-to-end security protocols such as TLS, IPsec, or
DTLS are ill-suited to the IVSHMEM use-case for several reasons:

(1) Performance Overhead: Conventional TLS requires sym-
metric encryption and decryption on each record, which
breaks IVSHMEM’s zero-copy path and forces additional
data copies and context switches[17][11]. In a high-throughput
IVSHMEM environment—where direct page mappings sus-
tain multiple gigabytes per second—this per-record crypto
overhead introduces unacceptable latency and CPU load.

(2) Limited Shared-MemoryCapacity:Unlike network chan-
nels, IVSHMEM regions are fixed and small (e.g., 1MiB)[13][5].
To prevent a malicious VM or service from overwhelming
the shared-memory resource, the hypervisor must strictly
assign and enforce per-service channel quotas. Conven-
tional socket-based protocols provide no mechanism for
hypervisor-driven, size-limited region allocation or fine-
grained resource control.

(3) Inadequate Fit for End-to-End Schemes: Conventional
end-to-end protocols (e.g., IPsec, SSH, DTLS) assume a net-
work stack with IP addresses, ports, and hostnames or DNS
names to establish and authenticate channels. IVSHMEM
operates entirely in-host via PCI BAR mappings without
any network identifiers, so these protocols cannot provide
true end-to-end security for shared-memory communica-
tion or integrate with hypervisor-managed channel assign-
ment.

Conventional end-to-end protocols such as TLS, IPsec, and DTLS
are ill-suited for IVSHMEM communication because they (1) im-
pose per-record cryptographic overhead that breaks zero-copy
performance[11, 20], (2) offer no mechanism to enforce fixed, size-
limited shared-memory quotas, and (3) depend on network-layer
identifiers (e.g., hostnames, IP addresses) while lacking support for
hypervisor-driven channel assignment[19]. Securing IVSHMEM
therefore requires a specialized protocol that leverages IVSHMEM’s
in-host, fixed-region semantics and hypervisor control, providing
end-to-end protection with minimizing additional performance
overhead.
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4 Design Proposal
In this section, we present the Secure IVSHMEM design, which
aims to provide dedicated, zero-copy shared-memory channels be-
tween VM services while preventing unauthorized access, spoofing,
and impersonation. Our approach combines three complementary
mechanisms: service-based channel separation to allocate isolated
IVSHMEM regions per service pair, granular kernel-module enforce-
ment to block any unauthorized open, mmap, or I/O operations, and
a hypervisor-mediated mutual-authentication handshake to estab-
lish trust on channel setup. Together, these components ensure
end-to-end security with negligible impact on IVSHMEM’s high-
performance communication.

4.1 Service-based Channel Separation
As illustrated in Figure 3, our design divides the IVSHMEM archi-
tecture into two primary sections: the Control Section and the
Data Section. The Control Section is a fixed-size region where a
trusted host stores dynamic configurations related to data alloca-
tion, while the Data Section is where the service in virtual machines
(VMs) actually read and write data through their assigned channels.
Importantly, only the trusted host has permission to modify data
in the Control Section, and each VM is restricted to reading and
writing only to its designated channels within the Data Section.

The Data Section comprises multiple channels, with each chan-
nel serving as a dedicated buffer space for a specific server and
client service pair. For each pair, a dedicated channel is allocated,
and the Control Section dynamically adjusts its size based on the
activation of channels.

For example, consider a scenario where Service A in VM1 needs
to send data to Service B in VM2. In this case, the trusted host allo-
cates an initial channel with a buffer size of 512 KiB. The control
information for this allocation is written into the Control Section,
and only Service A and Service B are permitted to access the chan-
nel’s buffer. Additionally, the size of the channel buffer can be
adjusted based on the usage patterns between the services.

An exception to this rule is the first channel in the Data Section.
This channel is of a fixed-size and is exclusively used for communi-
cation between the trusted host and the VMs, such as during the
initial handshake when a VM sends data to the trusted host. All
VMs have access to this channel.

The Control Section maintains all of the metadata needed for
buffer allocation and channel management. It tracks the next free
offset, the number of active channels, and protects updates with
a lock. Per-channel metadata (service IDs, process IDs, buffer ad-
dresses and sizes) is stored in an internal array. Channels use this
information to coordinate reads and writes to their assigned re-
gions.

4.2 Granular Kernel Module Enforcement
To enhance the security of the IVSHMEM framework, we propose
a granular access control mechanism that restricts access to the
shared memory channels on a per-application basis. This mecha-
nism is implemented via a dedicated kernel module that operates
on top of the IVSHMEM device driver.

4.2.1 Kernel Module Integration. Our kernel module hooks all
IVSHMEM-related system calls, including open, read, write, and
mmap, as well as any I/O control operations targeting the IVSHMEM
device. On each intercepted call, the module retrieves the caller’s
service_id and checks the Control Section’s metadata to verify
that this service identifier matches the channel being accessed. If
the service_id does not correspond to that channel’s assigned
service, the module denies the operation. This enforcement ensures
that only the authorized host or VM service can interact with its
designated shared-memory region.

4.2.2 Channel-Specific Enforcement. Each channel within the Data
Section is allocated to a specific pair of services (e.g., a server and a
client). The kernel module uses the control section’s metadata to
determine channel assignments and enforces strict access control,
permitting operations only on the designated channel buffers.

4.3 Hypervisor-Mediated
Mutual-Authentication Handshake

A secure, hypervisor-mediated handshake is essential for IVSH-
MEM because it protects against spoofing and impersonation on
both sides of the shared-memory channel. In our model, the trusted
host (e.g., dom0 in Xen, SOS in ACRN[8], or the host in QEMU/KVM)
cannot simply trust that any service presenting a request truly owns
its claimed endpoint; similarly, a VM service cannot blindly accept
control messages or credentials from the host without risk of imper-
sonation. By embedding a mutual-authentication handshake into
the Control Section—that is, having each party present and verify
cryptographic credentials tied to its service id—the host first con-
firms that the requesting service is one of its pre-registered, trusted
entities, and then the VM service validates that the host’s response
really comes from the genuine hypervisor authority. Only once
both directions of identity proof succeed do we allocate a dedicated,
zero-copy channel in the Data Section. This two-way validation
thwarts malicious actors on either side and ensures end-to-end
trust before any IVSHMEM communication occurs.

Our proposed protocol is different from the conventional internet
based security protocol in that 1) The trusted host (hypervisor) is
not merely a passive participant but is responsible for allocating
finite resources and establishing the communication channel and
2) The hypervisor functions as a certification authority (CA)[12],
validating service credentials and orchestrating the creation of
dedicated secure channels between clients and servers.

The detailed handshake protocol steps are provided below, demon-
strating the mutual authentication processes that lead to the estab-
lishment of a confidential IVSHMEM channel.

4.3.1 Protocol Steps (Fig. 4).

1. Client Hello:
• Purpose: Initiate the handshake and propose commu-

nication parameters.
• Message Contents: protocol version & extensions,

supported cipher suites, client identity (service ID, PID,
VM ID), nonce + timestamp for replay protection.

2. Trusted Host Hello:
• Purpose: Acknowledge the client’s request and pro-

vide trusted credentials.
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Figure 3: Service-based channel separation in Secure IVSHMEM: the trusted host controls metadata in the Control Section and
is assigned its own channel in the Data Section for host–VM communication, while each service pair communicates over its
dedicated Data Section channel.

«Client»
Service A (VM1)

«Client»
Service A (VM1)

«Trusted Host»
Hypervisor

«Trusted Host»
Hypervisor

«Server»
Service B (VM2)

«Server»
Service B (VM2)

Client Hello

Client Hello
(Metadata with ClientRandom)

Trusted Host (Hypervisor) Hello

Trusted Host Hello
(Certificate with metadata)

Temporary channel established

Client Authentication and Challenge

Client Authentication & Challenge
(Client certificate with signature,
target service ID)

Host Verification and Server Request

Validate client's certificate and challenge

Temporary channel established

Forward connection request

Server Hello

Server Hello
(Server certificate, cryptographic challenge,
cipher suites, acceptance of request)

Trusted Host Authorization and Channel Creation

Validate server's certificate and challenge

Secure channel(between Server and Client) is created

Temporary channels are deleted

Notify: Secure IVSHMEM channel created

Secure Data Transfer

Secure data transfer

Figure 4: Secure IVSHMEM handshake flow: eight steps from
Client Hello through Host authorization to establishment of
the dedicated shared-memory channel

• Message Contents: host certificate (± selected ci-
phers);

• Action: A temporary secure channel is created be-
tween the client and the trusted host.

3. Client Authentication and Challenge:
• Purpose: Enable explicit mutual authentication.
• Message Contents: The client certificate, signature

over nonce, target server’s service ID.
4. Host Verification and Server Request:

• Purpose: Verify the client’s credentials and initiate
communication with the server.

• Action:
– The trusted host validates the client’s certificate

and challenge.
– Upon successful validation, the trusted host cre-

ates a temporary channel for the server and for-
wards a secure connection request to the server,
including the nonce.

5. Server Hello:
• Purpose: Server passes its credentials and decision to

accept the client’s request.
• Message Contents: server certificate, signature chal-

lenge, supported ciphers, acceptance flag.
6. Trusted Host Authorization and Channel Creation:

• Purpose: Establish a secure, dedicated IVSHMEMchan-
nel for data transfer between the server and client.

• Action:
– The trusted host verifies the server’s certificate

and the corresponding challenge.
– The trusted host creates a communication chan-

nel for the server and client and notifies the
client.

– The trusted host deletes temporary channels pre-
viously established with both the client and the
server.

7. Secure Data Transfer:
• Purpose: Enable protected communication.
• Action: The client and server commence secure data

transfer over the authorized IVSHMEM channel.
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8. Session Management (Optional Enhancements): Im-
plement mechanisms (similar to TLS session tickets) for
efficient session resumptionwithout repeating the full hand-
shake process.

4.4 Ring Buffer and Anticipation Timing
Window

Figure 5: The IVSHMEM protocol is optimized using a Ring
Buffer and an Anticipation Time Window mechanism.

To enhance performance in our IVSHMEM protocol design, we
adopt two key mechanisms: a ring buffer and an anticipation timing
window. Ring buffers are widely used in shared memory communi-
cation due to their low-overhead, lock-free design, which supports
efficient producer-consumer patterns. This structure allows contin-
uous data exchange without the need for frequent synchronization,
thereby improving throughput and reducing contention.

In addition, we incorporate the anticipation timing window
mechanism, originally proposed in [28], to mitigate the overhead
associated with frequent interrupt handling. Rather than triggering
an interrupt (IRQ) for every data transmission, which incurs sig-
nificant system-wide context switching overhead, the receiver VM
periodically polls the shared buffer for a predefined time window.
This approach reduce interrupt cost while maintaining responsive-
ness, ultimately reducing communication latency and improving
overall efficiency.

The performance benefits of these optimizations are evaluated
in detail in Section 6.

5 Implementation
In this section, we implment Secure IVSHMEM through three com-
ponents: a kernel module that hooks into the UIO PCI driver[25] to
enforce per-channel access control, a user-space OpenSSL-based
mutual-authentication handshake over the control page, and a BSD-
socket-style library for zero-copy ring-buffer data transfers on au-
thenticated channels.

5.1 Kernel-Module Integration via Dynamic
Hooks

We build on top of the existing UIO PCI driver for IVSHMEM
by inserting a lightweight kernel module that intercepts system
calls(mmap(), read() and write())to enforce per-channel access
control.

Hook Implementation. Using a combination of kprobes and ftrace[4],
our module attaches to the IVSHMEM driver’s mmap() entry point.
In the hook we:

• Extract the vma pointer from the CPU registers.
• Compute the requested mapping’s channel ID and range.
• Look up the authorized-PID list stored in the IVSHMEM

control section.
• If current->pid is not present or the channel is notmarked

AUTHORIZED, force-return -EPERM and skip the real handler.

Policy Management. An in-kernel hash table of policy_entry
structs—keyed by channel_id—tracks which PIDs are permitted
each channel. The hypervisor populates this table at boot, and upon
handshake completion a simple ioctl marks the corresponding entry
as AUTHORIZED.

Cleanup. On module unload or VM teardown, all probes are
unregistered and the policy table cleared, restoring the original UIO
driver behavior.

This dynamic-hook approach adds minimal overhead, preserves
zero-copy data mappings for authorized clients, and requires no
modification to the upstream IVSHMEM driver.

5.2 Handshake Implementation

Figure 6: Credential management: the hypervisor publishes
a CA certificate and per-service public keys in the Allowed
Service List for Secure IVSHMEM

As illustrated in Figure 6, the mutual-authentication handshake
is implemented entirely in user-land using OpenSSL[23] and lever-
ages a IVSHMEM as an in-host transport. During the initial setup,
the hypervisor generates a 4096-bit RSA CA key and self-signed
certificate. It then builds an allowed-service list that maps each (ser-
vice_ID, VM_ID) pair to its corresponding public key, and publishes
that list together with the CA’s public certificate to all VMs via
a shared directory. Next, the hypervisor issues 2048-bit RSA key
pairs for each registered service, retaining the public key in its
allowed-service list and provisioning the private key to the guest
VM. Each service in the VM uses this private key to generate its cer-
tificate when it performs the handshake. At runtime, host and VM
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Scenario Attack Flow Countermeasure

Eavesdropping & Unauthorized
Mapping

Rogue VM or process calls open/mmap on IVSHMEM
and reads raw data from an unassigned channel before
authentication.

Kernel module enforces per-channel access con-
trol, blocking any open, mmap, or I/O until the
channel is marked ESTABLISHED by the hand-
shake.

Replay & Man-in-the-Middle
Attacks

Adversary captures or intercepts handshake messages
(certificates, nonces) and replays or tampers with them
to hijack or impersonate a service.

Mutual-authentication handshake with CA-
signed certificates and nonce-based challenge
prevents replay and ensures both endpoints ver-
ify peer identity.

Table 1: Key threat scenarios and corresponding Secure IVSHMEM defenses

exchange certificates over the IVSHMEM control channel, verify
each peer’s certificate against the CA and the allowed-service list,
and send signed acknowledgments to confirm mutual credential
validation. Once both sides have verified the signature, the VM
mark the kernel module that the channel is ESTABLISHED, enabling
zero-copy operations under the authenticated session.

5.3 Application Library Implementation
To simplify adoption of Secure IVSHMEM, we provide a lightweight
user-land library with APIs analogous to BSD sockets:

• ivshmem_listen(vm_id, service_id) – being ready to
accept connections from target on a dedicated IVSHMEM
channel

• ivshmem_connect(vm_id, service_id) – initiate a con-
nection to the target, performing the handshake over the
control page

• ivshmem_send(buf, len) – copy len bytes from buf into
the ring buffer slots of the established channel and ring the
doorbell

• ivshmem_receive(buf, len) – poll the ring buffer for
new data, copy up to len bytes into buf

Under the hood, ivshmem_listen and ivshmem_connect map
the (vm_id, service_id) tuple to a hypervisor-assigned PCI BAR
channel, then carry out the certificate exchange and mutual valida-
tion over the IVSHMEM control region.

For payload transfers, the library allocates a ring buffer within
the IVSHMEM data section so that producers and consumers oper-
ate without blocking:

1. The sender writes into its next available slot in the ring buffer
and triggers a doorbell interrupt. 2. The receiver, polling the door-
bell and head pointer, copies the data into its local buffer and ad-
vances the consumer index. 3. A secondary doorbell notifies the
sender that the slot is free.

By combining zero-copy ring buffers with doorbell interrupts
followed by brief polling, this API achieves near-native IVSHMEM
performance while enforcing end-to-end authentication. We evalu-
ate its throughput in Section 6.

6 Measurements
The experiments were run on two Linux guest VMs, each using
the 6.12.10-0-lts kernel and provisioned with 2 GiB of RAM and
4 vCPUs. The host is an x86_64 machine with an Intel® Core™

Ultra 7 155H (VT-x enabled, 400 MHz-4.8 GHz) and 32 GiB of DDR
memory. To minimize interference, each VM was pinned to its own
physical cores, and both the control channel and IVSHMEM devices
were instantiated via QEMU’s full-virtualized interfaces

6.1 Latency Overhead for Initial Handshake
We record the one-time handshake cost—from the initial ivshmem_connect()
call through certificate exchange and verification until the first con-
firmation—and then measure steady-state data-plane round-trip
latency for each 32-bit write (plus doorbell notification), comparing
vanilla IVSHMEM to Secure IVSHMEM.

Operation Vanilla (µs) Secure (µs)

Initial Handshake - 90
Round-Trip Transfer 8.1 8.4

Table 2: Round-trip latency for a single 32-bit integer. Secure
IVSHMEM incurs a 90µs handshake cost, but per-message
latency afterward is within 5 % of the vanilla baseline.

As shown in Table 2, although the initial handshake adds a
modest 90µs one-time overhead, the steady-state data-plane latency
(8.4 µs) is almost identical to vanilla IVSHMEM (8.1 µs). This shows
that, although the initial handshake introduces some latency, our
security mechanism adds negligible per-message overhead once
the session is established.

6.2 Kernel Module Enforcement Overhead
For each experiment, a total of 32GiB of random data was trans-
ferred to evaluate raw throughput and quantify the overhead intro-
duced by granular access control via a kernel module.

Figure 7 compares the performance of IVSHMEM with and with-
out access control, across message sizes ranging from 26 to 215 bytes.
For small messages (<= 28 B), the integration of kernel-module
hooks incurs a throughput reduction of approximately 20–25%.
However, this overhead diminishes rapidly with increasing mes-
sage size. For transfers >= 1 KiB, the bandwidth of Secure IVSHMEM
remains within 5% of the unmodified baseline, indicating that the
additional hooking logic imposes minimal overhead at larger scales.

In terms of latency, the kernel-module integration introduces
an overhead of up to 25–30% for small messages, but this impact
also decreases as the message size grows. For messages ≥ 1 KiB, the
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Figure 7: Bandwidth comparison of Secure IVSHMEM Proto-
col versus Vanilla IVSHMEM.

latency overhead drops to below 10%, demonstrating that the cost
of access control becomes negligible for larger payloads.

6.3 Performance Optimization
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Figure 8: Performance improvements achieved through the
use of a ring buffer and anticipation timing window. Channel
separation further enhances bandwidth in multi-producer,
multi-consumer scenarios

Figure 8 compares the performance of three IVSHMEM commu-
nication designs across increasing shared memory sizes: a basic
message-passing scheme, a ring-buffer implementation, and a de-
sign enhanced by an anticipation timing window.

The results demonstrate substantial performance gains from
both optimizations. Applying the ring-buffer architecture—which
leverages batching and zero-copy techniques—reduces system call
and memory copy overhead and increases bandwidth by more
than 30% once the shared-memory size reaches ≥ 210 bytes, with
an improvement of approximately 46% at 210 and sustained gains
above 30% at larger sizes. The anticipation timing window further
improves throughput by minimizing the cost of frequent interrupt
handling, delivering performance boosts of at least 4% across all
tested sizes. Together, these enhancements enable more efficient
use of shared memory and higher communication bandwidth as
the message size increases.

Additionally, one of the interesting things is that channel separa-
tion brings additional performance gains in multi-producer, multi-
consumer scenarios. Figure 8 depicts throughput as a function of
the number of concurrent producer/consumer pairs (separate IVSH-
MEM channels). With a single channel, both vanila and Secure
IVSHMEM sustain ∼ 3.58GiB/s. As the channel count increases
to eight, per-channel throughput decreases to ∼ 1.56GiB/s for

vanilla and ∼ 1.23GiB/s for the secure variant. This performance
gain stems from reduced lock contention and parallel, lock-free
processing across channels.

In summary, although our Secure IVSHMEM protocol incurs
a one-time handshake latency when establishing each channel, it
introduces negligible per-message overhead in both latency and
bandwidth once the channel is established; moreover, channel sep-
aration combined with a ring-buffer and anticipation timing win-
dow delivers additional scalability and throughput gains in multi-
producer/multi-consumer scenarios by reducing lock contention.

6.4 Security Validation Experiments
To validate that our kernel-module enforcement reliably blocks
unauthorized access, we designed three attack scenarios reflecting
realistic bypass attempts. Each scenario was exercised 30 times on
our testbed with the Secure IVSHMEM module active:
Out-of-Bounds Data Access Attack: mmap() requests a data range

that lies outside the limits recorded in the control-section meta-
data.

Control-Section Access Violation Attack: attempt to read via
syscall from the read-only control section.

Impersonation Attack Attack: handshake request using an in-
valid or replayed credential (wrong service ID or stale nonce).
In all three cases, the kernel module returned -EPERM and no

pages or credentials were granted. A valid data-section mapping
(exactly matching the bounds in control metadata) succeeded and
was cleanly unmapped.

Test Scenario Attempts Blocked (%)

Out-of-Bounds Data Access 30 30 (100%)
Control-Section Access Violation 30 30 (100%)
Impersonation Attack 30 30 (100%)

Table 3: Invalid Access Test Results: all invalid attempts were
correctly blocked.

7 Discussion
Hypervisor Independence. Our Secure IVSHMEM protocol and

its kernel-module integration are hypervisor-agnostic. Both the
handshake mechanism and the IVSHMEM driver can be deployed
on any virtualization platform that supports UIO and the IVSHMEM
device, including ACRN and Xen.

Dynamic Channel Buffer Allocation. In our current prototype,
each channel’s buffer is allocated as a single contiguous region for
simplicity. To reduce external fragmentation and improve memory
utilization, a page-based or scatter/gather buffer allocation scheme
could be adopted.

Key Exchange and Symmetric Encryption. While we focus here
on authentication and integrity, confidentiality could be added
via symmetric encryption. A TLS-style key-exchange (for exam-
ple, ephemeral Diffie-Hellman over the control channel) would
introduce only a modest one-time handshake delay and encryption
overhead sacrificing zero-copy data-plane performance.
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Transparency. Our protocol and kernel module require applica-
tions to link against the IVSHMEM-specific library and invoke its
API, rather than using standard socket or networking calls. Achiev-
ing full transparency[24, 24, 28, 29]—so that unmodified applica-
tions could communicate over IVSHMEM as if it were TCP/IP or
any other network transport—is beyond the scope of this work and
is left for future exploration (e.g., via socket-API interposition or
hypervisor-level redirection).

8 Conclusion
We have presented Secure IVSHMEM, a protocol that delivers end-
to-end authentication and integrity for in-host shared-memory
channels without sacrificing zero-copy performance. By treating
the hypervisor as a trusted CA and implementing a hypervisor-
mediated mutual-authentication handshake, our design prevents
spoofing and impersonation attacks, while dynamic kernel-module
hooks enforce fine-grained channel access control. Microbench-
marks show that the one-time handshake incurs less than 100 µs la-
tency and that subsequent data transfers achieve near-native IVSH-
MEM throughput and ⩽ 5% round-trip latency overhead. Thus,
Secure IVSHMEM is well-suited for safety critical, high perfor-
mance environments such as automotive systems, where untrusted
services share memory in the same host.
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