
PIMSys: A Virtual Prototype for Processing in Memory
Derek Christ

derek.christ@iese.fraunhofer.de
Fraunhofer IESE

Kaiserslautern, Germany

Lukas Steiner
lukas.steiner@rptu.de

RPTU Kaiserslautern-Landau
Kaiserslautern, Germany

Matthias Jung
m.jung@uni-wuerzburg.de

JMU Würzburg
Würzburg, Germany

Norbert Wehn
norbert.wehn@rptu.de

RPTU Kaiserslautern-Landau
Kaiserslautern, Germany

ABSTRACT
Data-driven applications are increasingly central to our information
technology society, propelled by AI techniques reshaping various
sectors of our economy. Despite their transformative potential,
these applications demand immense data processing, leading to
significant energy consumption primarily in communication and
data storage rather than computation. The concept of processing-in-
memory (PIM) offers a solution by processing data within memory,
reducing energy overheads associated with data transfer. PIM has
been an enduring idea, with recent advancements in DRAM test
chips integrating PIM functionality, indicating potential market
adoption.

This paper introduces a virtual prototype of Samsung’s PIM-
HBM architecture, leveraging open-source tools like gem5 and
DRAMSys, along with a custom Rust software library facilitating
easy utilization of PIM functionality. Key contributions include the
first gem5 based full-system simulation of PIM-HBM, experimen-
tal validation of the virtual platform with benchmarks, and the
development of a Rust library enabling PIM functionality at the
software level. Our benchmarks evaluated speedup for PIM in the
range of 6.0× to 17.5× compared to a respective non-PIM system
for different memory-bound workloads.

CCS CONCEPTS
• Hardware → Memory and dense storage; • Computer sys-
tems organization→ Parallel architectures; •Computingmethod-
ologies → Artificial intelligence.

KEYWORDS
DRAM, PIM, Virtual Platforms

1 INTRODUCTION
Data-driven applications are increasingly becoming the focal point
of our information technology society, with AI techniques funda-
mentally altering various sectors of our society and economy. A
common characteristic of these applications is the vast amount
of data they require to be captured, stored, and processed. Conse-
quently, many of these applications, e. g., large language models
(LLMs) or other artificial intelligence workloads are bound by the
memory performance. Furthermore, a significant portion of energy
is consumed by communication and data storage rather than com-
putation. As demonstrated by Jouppi et al. [8], in a 7nm process,
a 32-bit floating-point multiplication requires 1.31 pJ, whereas a

64-bit DRAM memory access demands 1300 pJ. This energy is ex-
pended in transferring data from memory through the network
on chip, arbiters, and various levels of caches. Hence, it would be
considerably more energy-efficient to process data where it resides,
particularly within the memory itself. This approach works very
well with data-flow oriented applications. In other words, rather
than transmitting data to computational units, the computational
instructions should be sent to the memory housing the data.

This concept, known as processing-in-memory (PIM), has been
around for many years. For instance, Stone already proposed it in
the 1970s [26]. Since then, similar to the field of artificial intelli-
gence, this idea has experienced “summer” and “winter” periods in
research over the past decades. However, recently, different com-
panies have developed DRAM test chips with integrated PIM func-
tionality, showing promising potential for entry into the market.

For instance, UPMEM introduced the first publicly available real-
world general-purpose PIM architecture [4]. UPMEM integrates
standard DDR4 DIMM-based DRAM with a series of PIM-enabled
UPMEM DIMMs containing multiple PIM chips. Each PIM chip
houses eight DRAM processing units (DPUs), each with dedicated
access to a 64 MiB memory bank, a 24 KiB instruction memory, and
a 64 KiB scratchpadmemory. These DPUs function asmultithreaded
32-bit reduced instruction set computer (RISC) cores, featuring a
complete set of general-purpose registers and a 14-stage pipeline [4].
Even prior to UPMEM, Micron introduced its automata processor
[28]. It features a nondeterministic finite automaton (NFA) inside
the DRAM to accelerate certain algorithms. In 2020, SK Hynix, a
leading DRAM manufacturer, unveiled its PIM technology, named
Newton, utilizing High Bandwidth Memory (HBM) [5]. Unlike UP-
MEM, Newton integrates small MAC units and buffers into the
bank area of the DRAM to mitigate the area and power overhead
of a fully programmable processor core. Following SK Hynix’s lead,
Samsung, another major DRAM manufacturer, announced its own
PIM DRAM implementation named Function-In-Memory DRAM
(PIM-HBM or FIMDRAM) one year later [11].

With these new architectures on the horizon, it becomes crucial
for system-level designers to assess whether these promising devel-
opments can enhance their applications. Furthermore, these emerg-
ing hardware architectures necessitate new software paradigms.
It remains unclear whether libraries, compilers, or operating sys-
tems will effectively manage these new devices at the software
level. Therefore, it is imperative to establish comprehensive virtual
platforms for these devices, enabling real applications to be tested
within a realistic architectural and software platform context.

https://orcid.org/0009-0005-4234-6362
https://orcid.org/0000-0003-2677-6475
https://orcid.org/0000-0003-0036-2143
https://orcid.org/0000-0002-9010-086X

D. Christ et al.

This paper introduces a virtual prototype of Samsung’s PIM-
HBM, developed using open-source tools such as gem5 [13] and the
DRAM simulator DRAMSys [24]. Additionally, the virtual proto-
type is accompanied by a custom Rust software library, simplifying
the utilization of PIM functionality at the software level.

In summary, this paper makes the following contributions:

• We propose, to the best of our knowledge, for the first time
full-system simulation of PIM-HBM with a virtual platform
consisting of gem5 and DRAMSys.

• We provide an experimental verification of the virtual pro-
totype with benchmarks.

• We propose a modern Rust library to provide the PIM func-
tionality up to the software level.

Using this novel full-system simulation framework, it is possi-
ble to evaluate the effectiveness of PIM-HBM for real-world ap-
plications in a detailed and realistic manner and to examine the
implications of integrating this PIM solution into these applications.

The paper is structured as follows. Section 2 shows the related
work in the area of PIM simulation. Section 3 gives a brief back-
ground on the relative PIM architectures, whereas Section 4 explains
the proposed PIM virtual platform. The Sections 5 and 6 show exper-
imental simulation setup and the results, which are compared with
already published results from PIM vendors. The paper is finally
concluded in Section 7.

2 RELATEDWORK
Several virtual prototypes of PIM architectures have been object to
research in the past. The authors of NAPEL [23] used Ramulator-
PIM, which is based on the processor simulator ZSim [18] and
the DRAM simulator Ramulator [9], to build a high-level perfor-
mance and energy estimation framework. Yu et al. [31] introduced
MultiPIM, a PIM simulator, which is also based on Ramulator and
ZSim, capable of simulating parallel PIM cores, distributed over a
memory network. However, these publications evaluate the PIM
systems only from a high level of abstraction.With PIMSim [30], the
authors provide a configurable PIM simulation framework that en-
ables a full-system simulation of user-specified PIM logic cores. The
authors of DP-Sim [32] present a full-stack infrastructure for PIM,
based on a front-end that generates PIM instructions by instrument-
ing a host application and executing them in a PIM-enabledmemory
model. In a similar way, Sim2PIM [3, 19] uses instrumentation to
simulate only the PIM side of a host application. The MPU-Sim [29]
simulator focuses on general-purpose near-bank processing units
based on 3D DRAM technology, while neglecting the data transfers
between the host CPU and the PIM devices. These instrumentation
approaches are less accurate when it comes to integration with
the host processor because they primarily focus on simulating the
PIM units. Recently, the authors of [1] presented a novel Active
Compute Memory (ACM) architecture that allows for key-value
sorting within the Dynamic Random Access Memory (DRAM). To
investigate the performance and energy improvements, they imple-
mented a virtual prototype based on ZSim and DRAMSim3 [12]. A
slightly different approach is taken by PiMulator [14], which does
not simulate but emulates PIM implementations such as RowClone
[20] or Ambit [21] by implementing a soft-model in an FPGA.

In addition to PIM architectures from research, there are also
virtual prototypes of industry architectures. Very recently, the au-
thors of [6] introduced uPIMulator, a cycle-accurate simulator that
models UPMEM’s real-world general-purpose PIM architecture. In
addition to its automata processor, Micron introduced another PIM
architecture called In-Memory Intelligence [2]. The new architec-
ture places bit-serial computing elements at the sense amplifier
level of the memory array. Evaluations of In-Memory Intelligence
are based on a custom Micron discrete event simulator that im-
plements the hardware models. Similarly, to analyze the potential
performance and power impact of Newton, SK Hynix developed
a virtual prototype based on the DRAMSim2 [16] cycle-accurate
memory simulator, which models a High Bandwidth Memory 2
(HBM2) memory and the extended Newton DRAM protocol. How-
ever, DRAMSim2 is more than 10 years old and several orders of
magnitude slower than DRAMSys [25]. The simulated system is
compared with two different non-PIM systems: an ideal non-PIM
host with infinite compute bandwidth and a GPU model of a high-
end Titan-V graphics card using a cycle-accurate GPU simulator.
SK Hynix finds that Newton achieves a 54× speedup over the
Titan-V GPU model and a speedup of 10× for the ideal non-PIM
case, setting a lower bound on the acceleration for every possible
non-PIM architecture. With PIMSimulator [22], Samsung provides
a virtual prototype of PIM-HBM, also based on DRAMSim2. PIM-
Simulator offers two simulation modes: it can either accept pre-
recorded memory traces or generate very simplified memory traffic
using a minimal host processor model that essentially executes
only the PIM-related program regions. However, both approaches
do not accurately model a complete system consisting of a host
processor running a real compiled binary and a memory system
that integrates PIM-HBM. As a result, only limited conclusions can
be drawn about the performance improvements of PIM-HBM and
the necessary modifications to the application code to support the
new architecture. In Samsung’s findings, the simulated PIM-HBM
system provides a speedup in the range of 2.1× to 2.6× depending
on the simulated workload with an average speedup of 2.5× com-
pared to the system with standard HBM2 memory. Based on both
the Newton and PIM-HBM architectures, PipePIM [7] pipelines the
operation of the bank-level processing units, achieving speedups
of 2.16× and 1.74×, respectively, over the base PIM architectures.
The simulation environment is based on Ramulator, but few details
are given about how detailed the host is simulated.

Looking beyond the simulation frameworks presented, this work
aims to provide a virtual prototype of an existing PIM architecture
to enable functionally correct full-system simulations: from the
integration of the PIM software stack into the application, over
the detailed simulation of a processor running the real compiled
binary, to the simulation of a model of PIM-HBM, while obeying
the complex DRAM-related timing dependencies.

3 BACKGROUND DRAM-PIM
Many types of deep neural networks (DNNs) used for language
and speech processing, such as recurrent neural networks (RNNs),
multilayer perceptrons (MLPs) and some layers of convolutional
neural networks (CNNs), are severely limited by the memory band-
width that the DRAM can provide, making themmemory-bound [5].

PIMSys: A Virtual Prototype for Processing in Memory

PIM is a good fit for accelerating memory-bound workloads with
low operational intensity. In contrast, compute-bound workloads
tend to have high data reuse and can make excessive use of the
on-chip cache and therefore do not need to utilize the full memory
bandwidth.

A large number of modern DNN layers can be expressed as a
matrix-vector multiplication. The layer inputs can be represented
as a vector and the model weights can be viewed as a matrix, where
the number of columns is equal to the size of the input vector and
the number of rows is equal to the size of the output vector. Pairwise
multiplication of the input vector and a row of thematrix are used to
calculate an entry of the output vector. Such an operation, defined in
the widely used Basic Linear Algebra Subprograms (BLAS) library
[15], is also known as a GEMV routine. Because one matrix element
is only used exactly once in the calculation of the output vector,
there is no data reuse in the matrix. Further, as the weight matrices
tend to be too large to fit into the on-chip cache, such a GEMV
operation is deeply memory-bound [5]. Consequently, such an
operation is a good fit for PIM.

Many different PIM architectures have been proposed by re-
searchers in the past, and more recently real implementations
have been introduced by hardware vendors. These proposals differ
largely in the location of the processing operation, ranging from
analog distribution of capacitor charges at the DRAM subarray level
to additional processing units at the global I/O level. Each of these
approaches comes with different advantages and disadvantages.
The closer the processing is located to the DRAM subarray, the
higher the energy efficiency and achievable processing bandwidth,
as a higher level of parallelism can be achieved. This is because
the processing bandwidth is not limited by the narrow data bus,
but by the respective hierarchical level of the processing units. On
the other hand, the integration of the PIM units inside the memory
array becomes more difficult as area and power constraints limit
the integration [27].

One real PIM implementation of the DRAM manufacturer Sam-
sung, called Function-In-Memory DRAM (PIM-HBM or FIMDRAM),
was presented in 2021 [10, 11]. PIM-HBM is based on the HBM2
memory standard and it integrates 16-wide single-instructionmultiple-
data (SIMD) engines directly into the memory banks, exploiting
bank-level parallelism, while preserving the highly optimized mem-
ory subarray [10]. A special feature of PIM-HBM is that it does not
require any modifications to components of modern processors,
such as the memory controller, i.e., it is agnostic to existing HBM2
platforms. Consequently, for the operation of the processing units
(PUs), mode switching is required for PIM-HBM, which makes it
less useful for interleaved PIM and non-PIM traffic and small batch
sizes.

At the heart of PIM-HBM lie the PUs, where one of which is
shared by two banks of the same pseudo channel (pCH). The ar-
chitecture of such a PU is illustrated in Figure 1. A PU contains
two sets of SIMD floating-point units (FPUs), one for addition and
one for multiplication, where each set contains 16 16-bit wide FPUs
each. Besides the FPUs, a PU contains a command register file (CRF),
a general register file (GRF) and a scalar register file (SRF) [11]. The
16-wide SIMD units correspond to the 256-bit prefetch architecture
of HBM2, where 16 16-bit floating-point operands are passed di-
rectly from the secondary sense amplifiers (SSAs) to the FPUs as

Even Bank Interface

Odd Bank Interface

Co
nt
ro
l

CRF
SRF

GRF_A

GRF_B

FP16MULT FP16ADD

Local Bus to Odd Bank

Local Bus to Even Bank

Ad
dr
es
s

In
te
rn
al

Co
m
m
an
ds

Figure 1: The architecture of a PU, according to [11].

the result of a single memory access. As all PIM units operate in
parallel, with 16 banks per pCH, a singular memory access loads
a total of 256 bit · 8 PUs = 2048 bit into the FPUs. As a result, the
theoretical internal bandwidth of PIM-HBM is 8× higher than the
external bus bandwidth to the host processor.

PIM-HBM defines three operating modes: In the default Single-
Bank (SB) mode, the PIM-HBM has identical behavior to normal
HBM2 memory. To switch to another mode, a specific sequence of
activate (ACT) and precharge (PRE) commands must be sent by the
memory controller to specific row addresses. The All-Bank (AB)
mode is an extension to the SB mode where the PIM execution
units allow for concurrent access to half of the DRAM banks at the
same time. This provides 8× more bandwidth than the standard
operation mode, which can be used for the initialization of memory
regions across all banks. With another predefined DRAM access
sequence, the memory switches to the All-Bank-PIM (AB-PIM)
mode. In this mode, a single memory access initiates the concur-
rent execution of the next instruction across all processing units.
In addition, the I/O circuits of the DRAM for the data bus are com-
pletely disabled in this mode, reducing the power required during
PIM operation. Both in AB mode and in AB-PIM mode, the total
HBM2 bandwidth per pCH of 16GB/s is 8× higher with 128GB/s
or in total 2 TB/s for 16 pCHs.

Due to the focus on DNN applications in PIM-HBM, the native
data type for the FPUs are 16-bit floating-point (FP16) numbers,
which is motivated by the significantly lower area and power re-
quirements for FPUs compared to 32-bit floating-point numbers.
The SIMD FPUs of the processing units are implemented as both
an 16-wide FP16 multiplier unit and an 16-wide FP16 adder unit,
providing support for these basic algorithmic operations.

The CRF acts as an instruction buffer, holding the 32 32-bit
instructions to be executed by the processor when performing
a memory access. A program that is stored in the CRF is called
a microkernel. Each GRF consists of 16 registers, each with the
HBM2 prefetch size of 256 bits, where each entry can hold the data
of a full memory burst. The GRF of a processing unit is divided
into two halves (GRF-A and GRF-B), with eight register entries
allocated to each of the two banks. Finally, in the SRFs, a 16-bit
scalar value is replicated 16× as it is fed into the 16-wide SIMD FPU

D. Christ et al.

as a constant summand or factor for an addition or multiplication. It
is also divided into two halves (SRF-A and SRF-M) for addition and
multiplication with eight entries each. The PIM-HBM instruction
set provides a total of 9 32-bit RISC instructions, each of which falls
into one of three groups: control flow instructions (NOP, JUMP,
EXIT), arithmetic instructions (ADD, MUL, MAC, MAD) and data
movement instructions (MOV, FILL).

Since the execution of an instruction in the microkernel is ini-
tiated by a memory access, the host processor must execute load
(LD) or store (ST) instructions in a sequence that perfectly matches
the loaded PIM microkernel. When an instruction executes directly
on data that is provided by a memory bank, the addresses of these
memory accesses specify the exact row and column where the data
should be loaded from or stored to. This means that the order of the
respective memory accesses for such instructions is important and
must not be reordered by the processor or memory controller, as it
must match the corresponding instruction in the microkernel. One
solution to this problem would be to introduce memory barriers be-
tween each LD and ST instruction of the processor, to prevent any
reordering, however this comes at a significant performance cost
and results in memory bandwidth being underutilized. To solve this
overhead, Samsung has introduced the address alignedmode (AAM)
mode for arithmetic instructions. In the AAM mode, the register
indices of an instruction are ignored and decoded from the column
and row address of the memory access itself. Using this approach,
the register indices and bank addresses remain synchronized, even
if the memory controller reorders the access order.

4 PIM VIRTUAL PLATFORM
To build a virtual prototype of PIM-HBM, an accurate model for
HBM2 is needed, in which the additional PIM-PUs can be inte-
grated. For this, the cycle-accurate DRAM simulator DRAMSys
[25] is used and its HBM2 model is extended to include the previ-
ously described PUs into the pCHs of the PIM-activated channels.
The PIM-HBM model itself does not need to model any timing
behavior: its submodel is essentially untimed, since it is already
synchronized with the operation of the DRAM model of DRAMSys.
Consequently, the model focuses on implementing the functional
behavior of PIM-HBM, while implicitly being accurate with respect
to DRAM timing constraints. To achieve a full-system simulation,
detailed processor and cache models are required in addition to the
PIM-enabled memory system. For this, the gem5 simulator is used,
which generates memory requests by executing the instructions of
a compiled workload binary.

While PIM-HBM operates in the default SB mode, it behaves
exactly like a normal HBM2memory. Only when the host initiates a
mode switch of one of the PIM-enabled pCHs, the processing units
become active. When entering AB mode, the DRAM model ignores
the specific bank address of incoming write (WR) commands and
internally performs the write operation for either all even or all
odd banks of the pCH, depending on the parity of the original
bank index. After the transition to the AB mode, the DRAM can
further transition to the AB-PIM mode, which allows the execution
of instructions in the processing units. The AB-PIM mode is similar
to the AB mode in that it also ignores the concrete bank address
except for its parity, while additionally passing the column and row

address and, in the case of a read, also the respective fetched bank
data to the processing units. Only then, the PU model executes
the instructions of the microkernel that operate on the read input
data. In the case of a write access, the output of the processing
unit is written directly into the corresponding bank, ignoring the
actual data of the transaction object coming from the host processor.
This is equivalent to the real PIM-HBM implementation, where the
global I/O bus of the memory is not actually driven, and all data
movement is done internally in the banks.

The model’s internal state of a processing unit consists of the
GRF register files GRF-A and GRF-B, the SRF register files SRF-A
and SRF-M, the program counter, and a jump counter that keeps
track of the current iteration of a JUMP instruction. Depending
on a RD or WR command received from the DRAM model, the
control flow is dispatched into one of two functions that execute
an instruction in the CRF and increment the program counter of
the corresponding PIM unit. Both functions calculate the register
indices from the memory address that are used by the AAM execu-
tion mode, and dispatch using a branch table to the handler of the
current instruction. In case of the data movement instructions MOV
and FILL, the model executes a move operation that loads the value
of one register or the bank data and assigns it to the destination
register. The arithmetic instructions fetch the operand data from
their respective sources and perform the operation, and write back
the result by modifying the internal state of the PU. Note that while
the MAC instruction can iteratively add to the same destination
register, it can not reduce the 16-wide FP16 vector itself. Instead, it
is the responsibility of the host processor to reduce these 16 floating
point numbers to a single FP16 number that represents an entry in
the output vector.

With this implementation of a PIM-HBM model, it is now pos-
sible to write a user program that controls the execution of the
PIM-PUs directly in the HBM2 model. However, correctly plac-
ing the input data in the DRAM and arbitrating its execution is a
non-trivial task. Therefore, a software library based on the Rust
programming language [17] is provided. Due to its strict aliasing
rules, Rust allows for a safe execution of the microkernels, as it can
guarantee that the PIM data is not accessed by the program during
operation of the PUs. The library contains the logic to safely switch
between SB, AB and AB-PIM modes by writing to a designated
memory region. Additionally, it offers data structures to facilitate
the assembly and transfer of microkernels to the PIM units. In or-
der to place input operands in a specific memory layout required
for PIM, data structures are also provided to facilitate this. After
mode switching and programming of the microkernel, the library
implements functionality to execute a user-defined microkernel by
issuing the necessary memory requests through the execution of
LD and ST instructions.

The use of AAM requires a special memory layout so that the
register indices are correctly calculated from the column and row
addresses of a memory access. Themapping of an exemplary weight
matrix used for a GEMV operation is illustrated in Figure 2. The
actual memory layout in the linear address space required to achieve
this mapping depends on the address mapping of the memory
controller. To use all eight GRF-A registers of a PU, each matrix row
must be placed in its own bank. Because most memory controllers
implement bank interleaving, where adjacent memory accesses

PIMSys: A Virtual Prototype for Processing in Memory

w[7,0:15] w[7,16:31] · · · w[7,112:127]

w[15,0:15] w[15,16:31] · · · w[15,112:127]
· · · · · · · · · · · ·

· · · · · · · · · · · ·
w[1,0:15] w[1,16:31] · · · w[1,112:127]

w[9,0:15] w[9,16:31] · · · w[9,112:127]

w[0,0:15]

w[1,0:15]

· · ·

w[7,0:15]

w[8,0:15]

· · ·

w[15,0:15]

w[0,16:31]

w[1,16:31]

· · ·

w[7,16:31]

w[8,16:31]

· · ·

w[15,16:31]

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

w[0,112:127]

w[1,112:127]

· · ·

w[7,112:127]

w[8,112:127]

· · ·

w[15,112:127]

Weight Matrix

w[0,0:15] w[0,16:31] · · · w[0,112:127]

w[8,0:15] w[8,16:31] · · · w[8,112:127]

...

Bank 0

Bank 1

. .
.

Bank 7

Bank Layout

Figure 2: Mapping of the weight matrix onto the memory
banks.

#[repr(C, align(32768))]
struct Matrix<const R: usize, const C: usize>(

[[F16x16; R]; C / 16],
);

Listing 1: Pseudo code for the definition of a PIM-enabled
FP16 matrix.

cycle between banks, the matrix must adhere to a column-major
layout. In a column-major matrix layout, the entries of a column are
stored sequentially before switching to the next column, according
to the MATRIX[R][C] C-like array notation. However, the concrete
element type of such an array is not a single FP16 element, but a
vector of 16 FP16s packed together, since this corresponds to a 32 B
memory access. This results in 16 FP16 matrix row elements being
stored sequentially before switching to the next 16 FP16 elements
in the next row of the same 16 columns, ensuring that a SIMD
processing unit always contains the data of only its associated
matrix row.

To guarantee the correct placement of the first matrix element
at the boundary of the first bank of the pCH, an alignment for the
matrix data structure of 512 B would need to be explicitly enforced.
However, when using the AAM execution mode, this is not suffi-
cient. As already mentioned in Section 3, the GRF-A and GRF-B
indices are calculated from the column and row address of the trig-
gering memory access. With an alignment of 512 B, no assumptions
can be made about the initial value of the GRF-A and GRF-B indices,
while for the execution of a complete GEMV kernel, both indices
should start with zero. Therefore, to accommodate the additional
six address bits corresponding to the indices, the weight matrix
must be aligned to a stricter requirement of 26 · 512 B = 32 768 B.
The simplified pseudo code for defining a matrix with 𝑅 rows and
𝐶 columns is given in Listing 1. It is important to note that while
the matrix itself follows a column-major layout, 16 FP16 elements
are packed together.

Following operand initialization, the host processor proceeds
to execute the PIM microkernel. It begins by transitioning to the
AB-PIM mode and subsequently issues the necessary memory RD

and WR requests through the execution of LD and ST instructions.
When executing control instructions or data movement instructions
that operate only on the register files, the RD andWR requests must
be located in a dummy region of memory where no actual data is
stored, but which must be reserved for that purpose. Further, when
data is read from or written to the memory banks, these memory
requests are issued with the correct address for the data. As half the
banks in a pCH operate at the same time, from the viewpoint of the
host processor, the data accesses occur very sparsely. In the case of
the input vector, where one 16-wide SIMD vector of FP16 elements
is repeated as often as there are banks in a pCH, a burst access must
occur every 32 B·number of banks per pCH = 512 B over the entire
interleaved input vector for a maximum of 8×. To then perform
the repeated MAC operation with the weight matrix as bank data, a
similar logic must be applied. Since each row of the matrix resides in
its own memory bank, with an interleaving of the size of a 16-wide
SIMD vector of FP16 elements, also one memory access must be
issued every 512 B. As the input address of the weight matrix grows,
the GRF-A and GRF-B indices are incremented in such a way that
the GRF-A registers are read repeatedly to multiply the weights by
the input vector, while the GRF-B registers are incremented in the
outer loop to hold the results of additional matrix rows.

Besides generating memory requests, an important task of the
software library is to maintain the data coherence of the program.
The compiler may introduce invariants with respect to the value
of the output vector, since it does not observe that the value of the
vector has changed without the host explicitly writing to it. As a
result, the compiler may make optimizations that are not obvious
to the programmer, such as reordering memory accesses, that cause
the program to execute incorrectly. To avoid this, not only between
non-AAM instructions in the microkernel, but also after initializing
the input operands and before reading the output vector, memory
barriers must be introduced to ensure that all memory accesses and
PIM operations are completed.

When performing a gem5 simulation, there are three options to
choose from: syscall emulation mode, full-system Linux mode, and
full-system bare-metal mode. Due to the added system complexity
of simulating a complete operating system, the bare-metal option
was chosen over the full-system Linux mode. A self-written kernel
provides full control for implementing a minimal example using
PIM-HBM, but some setup is required, such as initializing page
tables for memory management.

5 SIMULATIONS
Our simulations are based on the gem5 simulator and the DRAM-
Sys memory simulator. The comparison between non-PIM and PIM
architectures considers a hypothetical ARM host processor with in-
finite compute capacity. In this ideal approach, memory bandwidth
is the only limiting constraint, so only memory-bound effects are
considered. This approach provides a lower bound on the possible
speedups PIM can achieve: As the memory bound can only become
less significant, real systems will see higher speedups due to the
additional compute overhead. The configuration of HBM2 DRAM
is summarized in Table 1.

Our benchmarks are divided into two classes: vector benchmarks,
which perform level 1 BLAS-like operations, and matrix-vector

D. Christ et al.

Parameter Description Value

Number of Bank Groups Bank Groups per pCH 4
Number of Banks Banks per pCH 16
Number of pCHs pCHs per Channel 2
Number of Channels Total Number of Channels 1
Number of Columns Columns per Memory Array 128
Number of Rows Rows per Memory Array 65536
Width Width of the Data Bus 64

Table 1: The configuration of HBM2.

Level Vector GEMV DNN

X1 2M (1024 × 4096) (256 × 256)
X2 4M (2048 × 4096) (512 × 512)
X3 8M (4096 × 8192) (1024 × 1024)
X4 16M (8192 × 8192) (2048 × 2048)

Table 2: Operand dimensions.

benchmarks, which perform level 2 BLAS operations. Both classes
of benchmarks are typically memory-bound, since little or no data
is reused during the operation. For the first class of benchmarks,
two FP16 vectors are added (VADD), multiplied (VMUL), or com-
bined in a half precision 𝑎 ·𝑥 +𝑦 (HAXPY) fashion. The second class
of benchmarks performs a GEMV matrix-vector multiplication or
models a simple fully connected neural network with multiple lay-
ers and applying the activation function rectified linear unit (ReLU)
in between. The ReLU operation is executed in PIM-HBM during a
MOV instruction, by setting a specific instruction flag. Between the
network layers, control is switched back to the host, since it must
first reduce the partial sums computed by PIM-HBM to produce
the input vector of the next layer. Each benchmark is executed
with a set of different operand dimensions, called levels, which are
listed in Table 2. The column for the vector benchmark describes
the dimension of both operand vectors, while the columns for the
GEMV and DNN benchmarks describe the matrix dimensions.

The benchmarks’ focus lies on the achievable performance gain
of PIM. In each run simulation, the relative performance (speedup)
of PIM compared to non-PIM is analyzed.

6 RESULTS
The results in Figure 3 show significant speedups for all vector
benchmarks in all simulated operand dimensions, with the fol-
lowing average values: 12.7× for VADD, 10.4× for VMUL and
17.5× for HAXPY. On the other hand, the achieved speedup for
the matrix-vector simulations varies with the simulated operand di-
mensions. The GEMV benchmark achieved a speedup in the range
8.7× to 9.2× with an average value of 9.0×, while the fully con-
nected neural network layers experience a higher variance: With
a range of 0.6× to 6.0×, the DNN benchmark experiences both

X1 X2 X3 X4
0

5

10

15

20

Sp
ee
du

p

VADD VMUL HAXPY
(a) Vector Benchmarks

X1 X2 X3 X4
0

5

10

15

20

Sp
ee
du

p

GEMV DNN
(b) Matrix-Vector Benchmarks

Figure 3: Speedup of PIM compared to non-PIM.

a slowdown and an acceleration of the inference time. Therefore,
there is a break-even point between dimensions X1 and X2 where
PIM can be expected to become viable.

In addition to its own virtual prototype, Samsung used a real
hardware accelerator platform for its analysis, based on a unmodi-
fied high-end processor with 60 compute units and using real man-
ufactured PIM-HBM memory packages. Similar to the simulation
setup of this paper, Samsung has used different input dimensions
for its microbenchmarks for both its GEMV and its vector ADD
workloads. These are consistent with the previous dimension levels.

The performed ADD microbenchmark of Samsung shows an
average speedup of around 1.6× for the real system and 2.6× for
the virtual prototype. Compared to this paper, where the speedup
is approximately 12.7×, this result is almost an order of magnitude
lower. Samsung explains the low speedup by the fact the proces-
sor has to introduce memory barrier instructions between every 8
ADD instructions, resulting in a severe performance degradation.
However, this memory barrier was also implemented in our VADD
kernel. One possible explanation for the deviation could be archi-
tectural differences between the simulated ARM-based system and
Samsung’s GPU-based system. The simulated platform can specu-
latively execute instructions, which may result in better utilization
of memory bandwidth. In addition, the vector benchmarks require
more memory barriers relative to the number of arithmetic instruc-
tions, as their microkernels do not contain any loops. So the effects
of architectural differences caused by these memory barriers would
affect the vector benchmarks more than the matrix benchmarks.

The GEMV microbenchmark on the other hand shows a more
matching result with an average speedup value of 8.3× for Sam-
sung’s real system and 2.6× for their virtual prototype, while this

PIMSys: A Virtual Prototype for Processing in Memory

PIM-HBM HBM

102

103

104
Ru

nt
im

e
[s
]

VADD VMUL HAXPY GEMV DNN

Figure 4: Runtimes of the simulation workloads on the host
system.

paper achieved an average speedup of 9.0×, which is well within
the reach of the real hardware implementation.

Figure 4 shows the simulation runtimes of the various workloads
on the host system. With PIM enabled, the runtime drops by about
an order of magnitude for some workloads, indicating the reduced
simulation effort on gem5’s complex processor model, as only new
memory requests are issued by the model during operation of PIM.
Therefore, exploring the effectiveness of different PIM-enabled
workloads may be less time-consuming than traditional workloads
due to the reduced simulation complexity.

7 CONCLUSION
In this paper, we presented a virtual prototype of Samsung’s PIM-
HBM architecture for simulation and evaluation of real-world appli-
cations. Leveraging the open-source tools gem5 and DRAMSys, the
PIM-HBM implementation integrates seamlessly into sophisticated
simulation frameworks that enable the realistic exploration of a
wide-range of workloads using full-system simulation. In addition
to the hardware perspective, the analysis includes considerations
from a software point of view and identifies the necessary modifica-
tions to the data layout in applications in order to efficiently make
use of PIM-HBM. Using this simulation framework, we conducted
an analysis of the potential feasibility and effectiveness of PIM
across a range of microbenchmarks. The simulations demonstrated
a reduction in execution time by 9.2× for matrix-vector operations,
and for simplified neural network tasks, a reduction by up to a fac-
tor of 6.0×. These findings are largely consistent with the results
reported by Samsung, with the exception of a deviation observed
in the vector microbenchmarks. Furthermore, an examination of
the wallclock time for simulations comparing non-PIM and PIM
approaches showed that the decreased complexity of simulations
can lead to a reduction by up to an order of magnitude. In this work,
the first system-level virtual prototype of Samsung’s PIM-HBM is
presented, enabling the rapid exploration and feasibility analysis
of various workloads in a realistic and detailed manner. Looking
ahead, future work should focus on providing estimations on the
energy efficiency of the PIM architecture and on expanding the
software framework to a Linux implementation, enabling further
research on real-world AI applications.

FUNDING
This work was partly funded by the German Federal Ministry
of Education and Research (BMBF) under grant 16ME0934K (DI-
DERAMSys).

REFERENCES
[1] Pouya Esmaili-Dokht et al. 2024. O(𝑛) Key–Value Sort With Active Compute

Memory. IEEE Trans. Comput. 73, 5 (May 2024), 1341–1356. https://doi.org/10.
1109/TC.2024.3371773

[2] Tim Finkbeiner et al. 2017. In-Memory Intelligence. IEEE Micro 37, 4 (2017),
30–38. https://doi.org/10.1109/MM.2017.3211117

[3] Bruno E. Forlin et al. 2022. Sim 2 PIM: A Complete Simulation Framework for
Processing-in-Memory. Journal of Systems Architecture 128 (July 2022), 102528.
https://doi.org/10.1016/j.sysarc.2022.102528

[4] Juan Gómez-Luna et al. 2021. Benchmarking a New Paradigm: An Experimental
Analysis of a Real Processing-in-Memory Architecture. CoRR abs/2105.03814
(2021). arXiv:2105.03814 https://arxiv.org/abs/2105.03814

[5] Mingxuan He et al. 2020. Newton: A DRAM-maker’s Accelerator-in-Memory
(AiM) Architecture for Machine Learning. In 2020 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). IEEE, Athens, Greece,
372–385. https://doi.org/10.1109/MICRO50266.2020.00040

[6] Bongjoon Hyun et al. 2024. Pathfinding Future PIM Architectures by Demystify-
ing a Commercial PIM Technology. arXiv:2308.00846 [cs]

[7] Taeyang Jeong et al. 2024. PipePIM: Maximizing Computing Unit Utilization in
ML-Oriented Digital PIM by Pipelining and Dual Buffering. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (2024), 1–1. https:
//doi.org/10.1109/TCAD.2024.3410842

[8] Norman P. Jouppi et al. 2021. Ten Lessons From Three Generations Shaped
Google’s TPUv4i : Industrial Product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 1–14. https://doi.org/10.1109/
ISCA52012.2021.00010

[9] Yoongu Kim et al. 2016. Ramulator: A Fast and Extensible DRAM Simulator.
IEEE Computer Architecture Letters 15, 1 (Jan. 2016), 45–49. https://doi.org/10.
1109/LCA.2015.2414456

[10] Young-Cheon Kwon et al. 2021. 25.4 A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-
Level Parallelism, for Machine Learning Applications. In 2021 IEEE International
Solid- State Circuits Conference (ISSCC). IEEE, San Francisco, CA, USA, 350–352.
https://doi.org/10.1109/ISSCC42613.2021.9365862

[11] Sukhan Lee et al. 2021. Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology : Industrial Product. In 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE, Valencia,
Spain, 43–56. https://doi.org/10.1109/ISCA52012.2021.00013

[12] Shang Li et al. 2020. DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM
Simulator. IEEE Computer Architecture Letters 19, 2 (2020), 106–109. https:
//doi.org/10.1109/LCA.2020.2973991

[13] Jason Lowe-Power et al. 2020. The gem5 Simulator: Version 20.0+.
arXiv:2007.03152 [cs.AR]

[14] Sergiu Mosanu et al. 2022. PiMulator: A Fast and Flexible Processing-in-Memory
Emulation Platform. In 2022 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, Antwerp, Belgium, 1473–1478. https://doi.org/10.
23919/DATE54114.2022.9774614

[15] Netlib. 1979. BLAS (Basic Linear Algebra Subprograms).
https://www.netlib.org/blas/.

[16] P Rosenfeld et al. 2011. DRAMSim2: A Cycle Accurate Memory System Simulator.
IEEE Computer Architecture Letters 10, 1 (Jan. 2011), 16–19. https://doi.org/10.
1109/L-CA.2011.4

[17] Rust Foundation. 2015. The Rust Programming Language. https://www.rust-
lang.org/.

[18] Daniel Sanchez et al. 2013. ZSim: Fast and Accurate Microarchitectural Simula-
tion of Thousand-Core Systems. ACM SIGARCH Computer Architecture News 41,
3 (June 2013), 475–486. https://doi.org/10.1145/2508148.2485963

[19] Paulo C. Santos et al. 2021. Sim2PIM: A Fast Method for Simulating Host
Independent & PIM Agnostic Designs. In 2021 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, Grenoble, France, 226–231.
https://doi.org/10.23919/DATE51398.2021.9474104

[20] Vivek Seshadri et al. 2013. RowClone: Fast and Energy-Efficient in-DRAM
Bulk Data Copy and Initialization. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, Davis California, 185–197.
https://doi.org/10.1145/2540708.2540725

[21] Vivek Seshadri et al. 2020. In-DRAM Bulk Bitwise Execution Engine.
arXiv:1905.09822 [cs]

[22] Shin-haeng Kang et al. 2023. PIMSimulator.
https://github.com/SAITPublic/PIMSimulator.

https://doi.org/10.1109/TC.2024.3371773
https://doi.org/10.1109/TC.2024.3371773
https://doi.org/10.1109/MM.2017.3211117
https://doi.org/10.1016/j.sysarc.2022.102528
https://arxiv.org/abs/2105.03814
https://arxiv.org/abs/2105.03814
https://doi.org/10.1109/MICRO50266.2020.00040
https://arxiv.org/abs/2308.00846
https://doi.org/10.1109/TCAD.2024.3410842
https://doi.org/10.1109/TCAD.2024.3410842
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/LCA.2015.2414456
https://doi.org/10.1109/ISSCC42613.2021.9365862
https://doi.org/10.1109/ISCA52012.2021.00013
https://doi.org/10.1109/LCA.2020.2973991
https://doi.org/10.1109/LCA.2020.2973991
https://arxiv.org/abs/2007.03152
https://doi.org/10.23919/DATE54114.2022.9774614
https://doi.org/10.23919/DATE54114.2022.9774614
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1109/L-CA.2011.4
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.23919/DATE51398.2021.9474104
https://doi.org/10.1145/2540708.2540725
https://arxiv.org/abs/1905.09822

D. Christ et al.

[23] Gagandeep Singh et al. 2019. NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning. In Proceedings of the 56th Annual
Design Automation Conference 2019. ACM, Las Vegas NV USA, 1–6. https:
//doi.org/10.1145/3316781.3317867

[24] Lukas Steiner et al. 2020. DRAMSys4.0: A Fast and Cycle-Accurate SystemC/TLM-
Based DRAM Simulator. In International Conference on Embedded Computer
Systems Architectures Modeling and Simulation (SAMOS). Springer.

[25] Lukas Steiner et al. 2022. DRAMSys4.0: An Open-Source Simulation Framework
for In-depth DRAM Analyses. International Journal of Parallel Programming 50,
2 (April 2022), 217–242. https://doi.org/10.1007/s10766-022-00727-4

[26] Harold S. Stone. 1970. A Logic-in-Memory Computer. IEEE Trans. Comput. C-19,
1 (1970), 73–78. https://doi.org/10.1109/TC.1970.5008902

[27] Chirag Sudarshan et al. 2022. A Critical Assessment of DRAM-PIM Architectures
- Trends , Challenges and Solutions. In Embedded Computer Systems: Architectures,
Modeling, and Simulation, Alex Orailoglu, Marc Reichenbach, and Matthias Jung
(Eds.). Vol. 13511. Springer International Publishing, Cham, 362–379. https:
//doi.org/10.1007/978-3-031-15074-6_23

[28] KeWang et al. 2016. AnOverview ofMicron’s Automata Processor. In Proceedings
of the Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. ACM, Pittsburgh Pennsylvania, 1–3. https:
//doi.org/10.1145/2968456.2976763

[29] Xinfeng Xie et al. 2022. MPU-Sim: A Simulator for In-DRAM Near-Bank Pro-
cessing Architectures. IEEE Computer Architecture Letters 21, 1 (Jan. 2022), 1–4.
https://doi.org/10.1109/LCA.2021.3135557

[30] Sheng Xu et al. 2019. PIMSim: A Flexible and Detailed Processing-in-Memory
Simulator. IEEE Computer Architecture Letters 18, 1 (Jan. 2019), 6–9. https:
//doi.org/10.1109/LCA.2018.2885752

[31] Chao Yu et al. 2021. MultiPIM: A Detailed and Configurable Multi-Stack
Processing-In-Memory Simulator. IEEE Computer Architecture Letters 20, 1 (Jan.
2021), 54–57. https://doi.org/10.1109/LCA.2021.3061905

[32] Minxuan Zhou et al. 2021. DP-Sim: A Full-stack Simulation Infrastructure for
Digital Processing In-Memory Architectures. In Proceedings of the 26th Asia
and South Pacific Design Automation Conference. ACM, Tokyo Japan, 639–644.
https://doi.org/10.1145/3394885.3431525

https://doi.org/10.1145/3316781.3317867
https://doi.org/10.1145/3316781.3317867
https://doi.org/10.1007/s10766-022-00727-4
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1007/978-3-031-15074-6_23
https://doi.org/10.1007/978-3-031-15074-6_23
https://doi.org/10.1145/2968456.2976763
https://doi.org/10.1145/2968456.2976763
https://doi.org/10.1109/LCA.2021.3135557
https://doi.org/10.1109/LCA.2018.2885752
https://doi.org/10.1109/LCA.2018.2885752
https://doi.org/10.1109/LCA.2021.3061905
https://doi.org/10.1145/3394885.3431525

	Abstract
	1 Introduction
	2 Related Work
	3 Background DRAM-PIM
	4 PIM Virtual Platform
	5 Simulations
	6 Results
	7 Conclusion
	References

