
Inter-APU Communication on AMDMI300A Systems
via Infinity Fabric: a Deep Dive

Gabin Schieffer, Jacob
Wahlgren, Ruimin Shi

{gabins,jacobwah,ruimins}@kth.se
KTH Royal Institute of Technology

Sweden

Edgar A. León, Roger Pearce,
Maya Gokhale

{leon,pearce7,gokhale2}@llnl.gov
Lawrence Livermore National

Laboratory, USA

Ivy Peng
ivybopeng@kth.se

KTH Royal Institute of Technology
Sweden

NIC

APU 6 XCDs, exposed as a single GPU

HBM3 – 128GB

CCD CCD XCD XCD XCD XCD XCD XCDCCD

… … … … … … … … …CU0

CU36

CU37

CU0

CU36

CU37

CU0

CU36

CU37

CU0

CU36

CU37

CU0

CU36

CU37

CU0

CU36

CU37

core 16

core 22

core 23

core 8

core 14

core 15

core 0

core 6

core 7

310 6332 9564 12796
memory channels >

IOD IOD IOD IOD

Shared Infinity Cache – 256MB

Infinity Fabric,
per IOD:

2×64 GB/s/dir

HBM: 5.3 TB/s

Total: 17 TB/s

HBM
128 GB

GPU
#0

CPU
#0-23

HBM
128 GB

GPU
#1

CPU
#24-47

HBM
128 GB

GPU
#2

CPU
#48-71

HBM
128 GB

GPU
#3

CPU
#72-95

APU0
(NUMA0)

APU1
(NUMA1)

NIC

KEY PCIe 4.0 ESM (50+50 GB/s)

NIC

NIC
APU3
(NUMA3)

APU2
(NUMA2)

Infinity Fabric (2 × 64+64 GB/s)

(w/ Infinity Fabric) (w/ Infinity Fabric)

PCIe 4.0 (8+8 GB/s, to storage)

Figure 1: Node Architecture (right) with four MI300A APUs, and detailed APU architecture (left). The Infinity Fabric (in blue)
interconnects the four APUs. From the user perspective, each APU is a NUMA node in this cache-coherent NUMA system.

Abstract
The ever-increasing compute performance of GPU accelerators
drives up the need for efficient data movements within HPC appli-
cations to sustain performance. Proposed as a solution to alleviate
CPU-GPU data movement, AMD MI300A Accelerated Processing
Unit (APU) combines CPU, GPU, and high-bandwidth memory
(HBM) within a single physical package. Leadership supercomput-
ers, such as El Capitan, group four APUs within a single compute
node, using Infinity Fabric Interconnect. In this work, we design
specific benchmarks to evaluate direct memory access from the
GPU, explicit inter-APU data movement, and collective multi-APU
communication. We also compare the efficiency of HIP APIs, MPI
routines, and the GPU-specialized RCCL library. Our results high-
light key design choices for optimizing inter-APU communication
on multi-APU AMDMI300A systems with Infinity Fabric, including
programming interfaces, allocators, and data movement. Finally,
we optimize two real HPC applications, Quicksilver and CloverLeaf,
and evaluate them on a four MI300A APU system.

Keywords
GPU, MI300, AMD APU, Inter-GPU Communication, Infinity Fabric

1 Introduction
Multi-GPU nodes have become prevalent in leadership supercom-
puters and High-performance Computing (HPC) systems. Starting

from pre-exascale machines, where nodes feature four to six power-
ful GPUs, a compute node today can be unprecedentedly powerful
in providing computing capacity that used to require hundreds
and even thousands of CPU-only nodes. Recently, two exascale
supercomputers, El Capitan (No. 1) and Frontier (No. 2), have their
compute nodes based on multiple AMD GPUs [18, 7]. In particu-
lar, ORNL’s Frontier supercomputer consists of four AMD Instinct
MI250X GPUs per node, and two Graphics Compute Dies (GCD) per
GPU, presenting as an eight-GPU node to users. LLNL’s El Capitan
supercomputer features four AMD MI300A Accelerated Processing
Units per node, each APU combines a CPU part and a GPU part on
the same package. Although integrated CPU and GPU are not new
to the mobile and laptop markets, HPC and data centers mainly use
discrete GPUs. In fact, the AMD MI300A APU is the first integrated
CPU and GPU that specifically targets HPC. This work provides a
timely understanding of data movement mechanisms and strategies
for efficient communication on multi-APU systems.

Even before the emergence of multi-APU nodes, programming
and utilizing multi-GPU systems efficiently has been a challenge [7,
11, 12]. In HPC applications, two main programming paradigms are
used: the first one uses a single process in the shared-memorymodel
and leverages NUMA-aware thread binding to schedule tasks into
multiple GPUs; the second one continues the MPI-based distributed-
memory model to have a separate process mapped for each GPU.
Efficient data movement on multi-GPU systems has been identified

as a critical optimization aspect. For that, recent vendors have in-
troduced high-performance cache-coherent interconnects, such as
Nvidia NVLink-C2C and AMD Infinity Fabric to connect GPUs [12,
30]. The complex meshes of GPUs could result in multiple data
paths being usable to transfer data between two GPU endpoints,
and consequently, different hardware engines along routes may be
utilized for acceleration [9, 10].

This work provides an in-depth understanding of data move-
ment and communication on the emerging multi-APU systems
and optimization strategies for preparing HPC applications. Since
GPU-accelerated applications are often constrained by how fast the
data can be supplied to GPU for computation, efficient APU-APU
communication becomes increasingly important to fully exploit
the system potential. We base our study on the recently imple-
mented multi-APU node, exemplified by El Capitan supercomputer.
The large number of GPU and CPU dies connected with Infinity
Fabric interconnects create a complex node-level mesh [30], as il-
lustrated in Figure 1. To ensure a representative coverage of the
study, we start with a taxonomy of communication mechanisms
on multi-APU nodes, classifying them into four categories – direct
GPU kernel access, explicit memory transfer, point-to-point and
collective inter-process communication.

Guided by this taxonomy, we design a set of micro-benchmarks
for dissecting and quantifying the performance of data movement
using available software interfaces and compare the obtained per-
formance with the peak hardware capacity. In addition to the bench-
marking results on MI300A systems, we also provide a compari-
son with those on previous generation MI250X systems. Different
from discrete GPUs, on APU, CPU and GPU share the same physi-
cal memory, and thus memory management on APU may impact
communication. Therefore, we expand the study to evaluate the
impact of memory allocation methods and CPU or GPU first-touch
strategies on data movement. Moreover, we assess the effective-
ness of specialized hardware units, namely System Direct Memory
Access (SDMA) engines, the XNACK mechanism, and interaction
with Linux’s Heterogeneous Memory Management (HMM) sys-
tem. Finally, we conduct two case studies using the Quicksilver
and CloverLeaf applications. By optimizing their communication
bottlenecks, we achieve up to 2.15× speedup in communication.

We made the following contributions in this work:
• We provide a taxonomy of communication strategies on multi-
APU systems, including direct access, explicit transfer, point-to-
point, and collective communication;

• We propose a methodology for benchmarking communication
and the impact of data paths, programming interfaces, and allo-
cators;

• Weprovide the first quantitative characterization of AMDMI300A-
based multi-APU systems and identify key optimization insights
for efficient APU-APU communication;

• We evaluate in two HPC applications Quicksilver and Clover-
Leaf the effectiveness of inter-APU communication optimization
strategies.

2 AMD MI300A based Multi-APU Systems
Starting with El Capitan supercomputer, multi-APU nodes with
integrated CPU and GPU parts become accessible to HPC appli-
cations. This section introduces APU, interconnects, and memory
management on multi-APU nodes.

2.1 Accelerated Processing Unit
The AMD MI300A is an Accelerated Processing Unit (APU), which
combines a CPU and a GPU on the same package, sharing a sin-
gle physical memory region. More details on its unified physical
memory between CPU and GPU are described in [34]. This unified
physical memory design contrasts with the one taken for the Nvidia
Grace Hopper Superchip, where two physical memory spaces are
still used, but interconnected by cache-coherent NVLink-C2C in-
terconnect [27]. While APUs have been widely used in consumer
electronics for a long time, the introduction of such system in HPC
is recent. AMD MI300A APU is built on the principle of chiplets. In
the manufacturing process, chiplets are design blocks with a well-
defined set of functionalities, which can be reused and combined
to design more complex hardware. The inset of Figure 1 highlights
the hardware characteristics at a high level.

MI300A APUs are composed of a combination of Core Complex
Dies (CCDs), which implement CPU cores; Accelerator Complex
Dies (XCDs), which form a GPU; memory dies, which use the HBM3
technology; and Input/Output dies, which implement memory-side
caching and IO abilities for the attached processors, XCDs and
CCDs. On each APU, three CCDs are used; each CCD exposes eight
AMD Zen 4 CPU cores, for a total of 24 CPU cores per APU. On the
GPU side, the MI300A APU features six XCDs, with 38 compute
units (CU) per XCD, totaling 228 compute units over the entire
APU. In the simplest configuration, the six XCDs are exposed to
the user as a single GPU, with no explicit control of the mapping
of GPU kernels to XCDs.

On the GPU side, the compute units implement the CDNA3
microarchitecture [30]. The L1 data cache is 32 KB per CU, with
a cacheline size of 128 bits, L1 instruction cache is 64 KB, shared
between pairs of two CUs. The L2 cache is shared between all CUs
of a single XCD, with 4MB per XCD. All memory traffic to/from the
XCD is coalesced in the L2 cache, where cache-coherence is also
enforced with the rest of the APU. On the CPU-side, the CPU cores
implement the Zen 4 microarchitecture. The L1 data cache is 32 KB,
and the L1 instruction cache is 32 KB. Each CPU core has 1 MB of
L2 cache. All cores of a CCD share a 32 MB L3 cache.

A key particularity of this system is the Infinity Cache, which
is last-level cache (LLC), shared between all XCDs and CCDs, and
implemented on the memory side. The entire LLC is 256 MB, dis-
tributed into 128 slices of 2 MB each. Each slice is paired with
exactly one of the 128 memory channels [30]. This cache is im-
plemented as part of the Input Output Die (IOD). In total, each
APU features 128 GB of HBM3 memory. The physical memory is
distributed across eight HBM stacks, with two stacks attached to
each IOD. This configuration leads to a total of 512 GB of HBM3
memory over the entire quad-APU compute node.

2

2.2 Infinity Fabric Interconnect
At a higher level, MI300A HPC systems are built from a four-APU
node architecture, where four MI300A are grouped onto a single
board composing an HPC node. Notably, this configuration is fea-
tured on the El Capitan supercomputer and is the focus of this work.
Figure 1 presents this architecture.

The key element in this system is the Infinity Fabric (IF) intercon-
nect that connects the four APUs on each node. This interconnect
implements the xGMI 3 interface (Inter-chip Global Memory Inter-
connect 3), also used in other categories of AMD products [4]. A
single IF link is 16 bit-wide and operates at a transaction rate of
32 GT/s on the node, giving 64 GB/s per direction. Each pair of APUs
is connected with two IF links, supporting 128 GB/s bandwidth per
direction. This symmetric architecture is depicted in Figure 1.

For each APU, the IF links are implemented as part of the IODs.
Each IOD connects to one IF link, and one configurable link, used
for either Infinity Fabric or PCIe 5.0. With four IODs per APU, each
APU has a total of six IF links to connect to its peer APUs, with two
links dedicated for each peer. In addition, on El Capitan, on each
APU, one x16 PCIe 4.0 ESM (Extended Speed Mode) link connects
to the Network Interface Controller (NIC), with a bandwidth of
50 GB/s per direction. Additionally, on one of the four APUs in the
system, a PCIe 4.0 connects the compute node to the near-node
storage, with a bandwidth of 8 GB/s per direction.

While the Infinity Fabric interconnect on MI300A system shared
similarities with the previous generation, featured on MI250X sys-
tems, the Infinity Fabric mesh on MI300A system is significantly
simpler. First, on MI300A system, each APU is directly connected
to all peers, whereas on MI250X system, a GPU may need up to two
hops to reach other GPUs. In addition, while IF links on MI250X sys-
tems have varying bandwidth values for various pairs of GPUs [26,
11], on MI300A systems, all pairs of APUs are connected with the
same link bandwidth.

2.3 Memory Management on Multi-APU Nodes
From the user perspective, a multi-APU node is a Cache Coherent
NUMA (non-Uniform memory Access) system, where each APU
is exposed as a NUMA node, grouping the GPU, the 24 CPU cores,
and the 128 GB of HBM3 memory. Node-level memory coherence
is managed transparently for the programmer, so that updates to
one APU’s memory by any processor (either CPU or GPU) are
reflected in all cached copies of the data. Depending on whether
the data is accessed by GPU or CPU, memory coherence may be
ensured at either hardware or software level. Coherence between
each CPU with the rest of the system is achieved through the use of
probe filters at hardware level, while coherence between GPU and
other GPUs and CPUs in the system is ensured through software
support [30].

On each APU, CPU and GPU maintain their respective page
tables, similar to the previous generation of AMD MI250X GPUs.
The GPU page table is distinct from the CPU page table despite
sharing the same physical memory space. When the GPU performs
a memory operation on a virtual address that is not mapped in
the GPU page table, a page fault occurs. In general, a page fault
in a GPU kernel terminates the kernel with an error. On AMD
MI300A, such a failed memory access will be replayed by leveraging

Data movements

Direct Access

in-kernel
d[i] = a[i];

Explicit data
movements

Generic: libc
memcpy

GPU-centric: HIP
hipMemcpy

MPI/RCCL
send, recv

Collectives

MPI/RCCL
e.g. AllReduce

C
at
eg
or
ie
s

In
te
rf
ac
es

Figure 2: A taxonomy of communication on multi-APU sys-
tems, associated data movement categories, programming
interfaces and libraries.

a hardware feature called XNACK, which can be enabled by setting
the environment variable HSA_XNACK=1. When XNACK is enabled,
together with Linux’s HeterogeneousMemoryManagement (HMM)
system, GPU kernels can access system-allocated memory allocated
with, e.g., malloc. This approach contrasts with the one taken
with the Nvidia Grace Hopper superchip [27], where two distinct
physical memory regions, CPU and GPU memory, can be managed
with a single system-wide page table, without the need for HMM.

3 A Taxonomy of multi-APU Communication
In this section, we present a taxonomy of communication on emerg-
ing multi-APU nodes, represented by the El Capitan supercom-
puter. Figure 2 presents the taxonomy, including data movement
approaches and available programming interfaces.

3.1 Direct Access
In GPU applications, memory accesses are performed within GPU
kernel code, using load and store instructions. Such access offers
the lowest latency and highest bandwidth when performed on local
GPU memory, physically residing on the GPU where it is accessed
from. However, modern GPU hardware and software provide the
ability to access data located remotely, either in the host’s physi-
cal memory or in another GPU’s physical memory. Direct access
provides the highest level of granularity compared to other data
movement approaches, as only the data being accessed is trans-
ferred to the accessing processor. This can be beneficial, for example,
in applications with complex communication patterns, where the
exact extent of the data to be accessed is unknown at runtime,
e.g. in graph processing application. However, as the data remain
remotely-resident, direct access is not suitable for applications with
well-known communication patterns, or performing repeated ac-
cesses.

3.2 Explicit Data Movement
Explicit data movement refers to an approach where data are ex-
plicitly copied or moved to the memory attached to the processor
where it is used. GPU applications are heavily reliant on this prin-
ciple for several reasons. First, as previous generations of GPUs
did not support direct access to remote-located memory, data were
necessarily resident in local GPU memory before a GPU kernel

3

could be executed. Second, explicit data movement is advised for
performance considerations, as direct data access to remote mem-
ory is limited by the available bandwidth of the interconnect, with a
theoretical limit 128 GB/s for MI300A, which is dramatically lower
than the bandwidth of the local high bandwidth GPU memory, with
a theoretical value of 5.6 TB/s on MI300A. In addition, GPUs feature
hardware units that are specialized in data copy and do not use
the compute capabilities of the Compute Units. These hardware
units, referred to as SDMA engines (System Direct Memory Access
engines) in AMD’s terminology, can perform copy operations in
parallel with kernel execution. Therefore, explicit data movement
offers the opportunity to overlap communication and computation
at a high level and for large memory regions instead of relying
solely on the instruction pipelining abilities of GPU compute units.

3.2.1 C standard library’s memcpy. The C standard library provides
a memory copy function, memcpy, which performs a copy between
two buffers. The actual implementation of memcpy is compiler-
dependent. While the GNU C Compiler implements memcpy as
a while loop performing a series of C load-and-assign operations,
Clang’s implementation of memcpy is platform-dependent.

3.2.2 GPU-centric APIs. HIP [3] runtime exposes APIs to perform
explicit data movement, namely hipMemcpy, originally designed
for host-to-device and device-to-host data movement, but now sup-
ports any type of data movement, and hipMemcpyPeer, which is
dedicated to inter-GPU peer-to-peer data movement. On AMD hard-
ware, hipMemcpyPeer is a thin wrapper around hipMemcpy [1].
We note here that HIP APIs rely on lower-level APIs, HSA [2] mem-
ory management APIs, to execute actual copy operations. Directly
using such lower-level APIs offers the opportunity for hardware-
tailored performance optimizations. However, as their portability is
limited and their use in real-world applications remains marginal,
they fall out of the scope of this work.

3.2.3 Multi-process Point-to-Point Communication. The use of Mes-
sage Passing Interface (MPI) is ubiquitous in HPC applications, to
distribute computations across several processes. The MPI stan-
dard defines routines to send and receive data across processes,
MPI_Send and MPI_Recv, respectively. From the application per-
spective, those routines are semantically equivalent to an explicit
data copy operated with, e.g., memcpy. A notable difference is that
instead of copying data between buffers allocated by the same pro-
cess, data are transferred between buffers belonging to different
processes, located on distinct processes on potentially distinct com-
pute nodes. Naturally, such operation is more complex than for
intra-process explicit data movement.

While MPI is the de facto standard in HPC, AMD’s ROCm Collec-
tive Communication Library (RCCL), which is a collective commu-
nication library specialized for GPU communication, also provides
point-to-point communication routines, similar to the ones defined
in the MPI standard. For single-process applications, RCCL can be
utilized by itself without any other dependency, while for multi-
process applications, RCCL is used in conjunction with MPI.

3.3 Collective Communication
Collective operations are a category of communication that involves
all communicating endpoints. Collective operations often consist of

several communication processes. Such a communication pattern
is heavily relied upon in HPC and distributed machine learning
workloads. While collective communication routines are underly-
ingly implemented with a series of point-to-point communications,
they also include computations on the collaborating processors. In
HPC, the use of MPI is ubiquitous for collective communication.
However, the RCCL library also appears as a strong alternative,
which offers comparable capabilities, and is specialized for GPU-
GPU communications, this library is notably used in distributed
machine learning applications.

4 Methodology
In this section, we describe the benchmarking design for character-
izing each communication category in the taxonomy in Section 3.
We also introduce two real-world applications used for case study
and the testbed environments.

4.1 Benchmark Design
4.1.1 Direct Access. To evaluate the performance of direct data ac-
cess on quad-MI300A system, we use a GPU variant of the STREAM
benchmark, where two buffers are allocated and initialized in one
APU’s memory, using the hipMalloc allocator. A GPU kernel is then
executed on another APU. This kernel reads data from and stores
data to the buffers allocated on the peer APU. By measuring the
bandwidth of the copy operation, we can evaluate the achievable
copy bandwidth over an APU-APU Infinity Fabric link.

To evaluate the unidirectional bandwidth of the Infinity Fabric
link between two APUs, we rely on the hipMemcpy API. In the
default configuration, this API uses dedicated GPU hardware units
to perform a copy operation and does not rely on GPU kernels.
By setting the environment variable HSA_ENABLE_SDMA=0, we over-
ride this behaviour and force the hipMemcpy API to use highly
optimized copy kernels, referred to as “blit” kernels, which directly
implement a copy operation using load-store instructions executed
on the GPU’s compute units [6], instead of relying on dedicated
hardware units. We use this approach to measure the peer-to-peer
copy bandwidth, achievable with direct data access. In addition,
with a pointer-chasing approach we measure the latency of local
memory accesses and remote memory accesses over Infinity Fabric.

4.1.2 Explicit Data Movements. We develop a bandwidth measure-
ment benchmark to evaluate the performance of explicit data move-
ment APIs. We construct our benchmark with Google’s benchmark
framework library [13]. We define three phases: allocation, first-
touch, and data movement. The benchmark measures the band-
width of the copy operation in the data movement phase; a warm-
up phase is included, and measurements are repeated 10 times.
The benchmark allows changing the underlying interface used
in each of the three phases. For the allocation phase, four allo-
cators can be used: the system allocator malloc, the HIP GPU-
centric allocator hipMalloc, the HIP managed memory allocator
hipMallocManaged, and the HIP host-memory allocator. The sec-
ond phase, first-touch, refers to the initialization, which can be done
either by a CPU thread or the GPU. For CPU first-touch, we use
libc’s memset function. The data movement phase uses either the
memcpy function or HIP hipMemcpy API call. We observed that both
hipMemset and hipMemcpy fail with "invalid argument" when called

4

on a non-HIP allocated buffer. For hipMemset, we work around the
issue by implementing a simple GPU kernel to initialize the mem-
ory. For hipMemcpy, registering the malloc-allocated memory with
hipHostRegister allows calling hipMemcpy on the allocation. To
control the location of the source and destination buffers, we set the
locality of CPU threads with numa_run_on_node, which constrains
a CPU thread to execute on a specific NUMA node, that is, APU.
For HIP-related APIs, we ensure execution on the desired GPU by
using hipSetDevice.

4.1.3 MPI/RCCL Point-to-Point Communication. We use the OSU
micro-benchmark suite (OMB) [22] to evaluate the bandwidth and
latency of point-to-point send and receive operations. We com-
pare MPI routines, widely used in HPC applications, with routines
provided as part of ROCm Communication Collectives Library
(RCCL), which are specialized for GPU-GPU communication. Un-
derlyingly, these routines use system-specific APIs, similar to hip-
Memcpy or memcpy, to perform the actual data movement. We use
the benchmarks osu_bw and osu_lat for MPI, osu_xccl_bw and
osu_xccl_lat for RCCL. The latency benchmarks execute a ping-
pong latency measurement. The bandwidth benchmark initiates
a series of fixed-size back-to-back MPI messages with MPI_ISend
from a sender process and receives those messages on another pro-
cess using matching MPI_Recv operations. The wall-clock time of
10,000 MPI_ISend and the corresponding MPI_Recv operations are
measured.

TheMPI implementation in use, CrayMPICH, dynamically changes
its underlying communication paths depending on message sizes,
e.g., it uses shared memory CPU buffers for intra-node commu-
nication of messages no larger than 1024 bytes and uses SDMA-
accelerated direct peer-to-peer GPU communication for larger mes-
sages. Therefore, we use two configurations for MPI. First, we en-
force direct peer-to-peer GPU-GPU inter-process communication
by setting MPICH_GPU_IPC_THRESHOLD to 0, denoted as GPU direct.
Second, we enable CPU staging by setting MPICH_GPU_IPC_ENABLED
to 0, denoted as CPU staging. In addition, we ensure that GPU-
aware capabilities are enabled in the MPI implementation by setting
MPICH_GPU_SUPPORT_ENABLED to 1. We further evaluate several
combinations of allocators for the source and destination buffers to
evaluate the ability of the MPI implementation to map copy opera-
tions to actual hardware capabilities, in various circumstances.

4.1.4 MPI/RCCL Collective Communications. We measure the la-
tency of common collective operations using both the RCCL and
MPI benchmarks provided as part of the OSU micro-benchmark
suite [22], for various message sizes and numbers of GPUs.

4.2 HPC Applications
We select two real-world GPU-acceleratedHPC applications –Quick-
silver [16] and Cloverleaf [20], for the use case study. Quicksilver
is a dynamic Monte Carlo particle transport code that represents
the Mercury workload, this workload exhibits unbalanced commu-
nication and irregular access pattern. Cloverleaf is a Lagrangian-
Eulerian hydrodynamics application, which exhibits a balanced
communication pattern with regular access pattern. Both appli-
cations have GPU kernels implemented in HIP and rely on MPI
for inter-process communication. To demonstrate the effectiveness

Table 1: Main node characteristics of testbeds.

MI300A Testbed MI250X Testbed
NUMA domains 4 (one per APU) 4 (partitioned CPU memory)

CPU 24-core AMD Zen 4 64-core AMD Trento EPYC
GPU 6 XCDs exposed as 1 GPU 2 GCDs exposed as 2 GPUs

Infinity Fabric 512 Gb/s links 288 Gb/s and 400 Gb/s links
Memory 128 GB HBM3 128 GB DDR4, 128 GB HBM2

of communication optimization on multi-APU systems, we adapt
their allocation sites and communication interfaces only, and com-
pare them with the original version. In our evaluation, Quicksilver
used the CORAL2 Problems 1 and 2 with 2M to 42M particles while
CloverLeaf used the bm2028_short problem with 61440×30720 cells.

4.3 Testbed
We use two testbeds in our study, namely an MI300A system as our
main testbed and an MI250X testbed for comparison. Table 1 sum-
marizes their main node characteristics. On the MI300A testbed,
each node is equipped with four AMD MI300A APUs. We use
the Cray Programming Environment 24.11 and the hipcc compi-
lation toolchain from ROCm 6.2.1. For point-to-point and collec-
tive communication experiments, we use RCCL 2.20.5 and Cray
MPICH 8.1.31 (based on ANL MPICH 8.4a2).

5 Multi-APU Single-Process Communication
5.1 Direct Kernel-level Access
We use a GPU-variant of the STREAM benchmark to evaluate the
performance of in-kernel direct remote access. In this benchmark,
the arrays are allocated on one APU, using hipMalloc, and a GPU
copy kernel is executed on another APU, reading from a peer GPU,
and writing back to it. Figure 4 presents the results of the copy
kernel of the GPU variant of the STREAM benchmark, with a ker-
nel executed on APU0 and data located on APU1, APU2, or APU3,
for array sizes from 2 MB to 8 GB. Across all data placements, we
observe a bandwidth of 103-104 GB/s, those homogeneous values
are consistent with the node topology, where all APUs are directly
connected to all other APUs with the same link bandwidth. The
measured bandwidth represents 81% of the theoretical bandwidth
of the Infinity Fabric link. We compare the results with the same
benchmark executed on MI250X GPUs, with two data placements,
based on the non-balanced node topology on MI250X, where Infin-
ity Fabric bandwidth is 50 GB/s for GCD0-GCD2, and 100 GB/s for
GCD0-GCD6. In this situation, we reach 82% and 81% of the theoret-
ical link bandwidth for GCD0-GCD2 and GCD0-GCD6, respectively.
The values of link utilization are similar to values obtained on the
newer MI300A.

We measure the latency of direct access to local and remote
memory using a pointer-chasing approach, adapted from Google’s
multi-chase benchmark. For local access, memory is allocated with
hipMalloc on the same APU as the pointer-chasing kernel; for
remote access, memory is allocated with hipMalloc on a neighbour
APU to the one executing the pointer-chasing kernel. Figure 3
presents the results of this pointer-chasing approach for CPU and
GPU, with increasing data size. The latency for local access to HBM
memory is 240 ns for CPU, and 346 ns for GPU. For remote data

5

2
0

2
4

2
8

2
12

2
16

2
20

2
24

2
28

2
32

2
36

size (bytes)

0

100

200

300

400

500

600

700

la
te

nc
y

(n
s)

L1
 C

P
U

L1
 G

P
U

L2
 C

P
U

L2
 G

P
U

L3
 C

P
U

In
fin

ity
 C

ac
he

0

50

100

CPU local CPU remote GPU local GPU remote

Figure 3: CPU and GPU latency of direct access to local mem-
ory, or remote memory (dashed line), located on a neighbor-
ing APU. Cache sizes are represented as vertical lines.

0

20

40

60

80

100

120

140

2M 8M 32M 128M 512M 2G 8G

ba
nd

w
id

th
 (G

B/
s)

array size (bytes)

MI300A: APU0 <> APU1 MI300A: APU0 <> APU2 MI300A: APU0 <> APU3
MI250X: GCD0<>GCD2 MI250X: GCD0<>GCD6 MI300A theoretical

MI300A theoretical (128 GB/s)

Figure 4: Bidirectional direct access bandwidth obtained with
the STREAM Copy kernel, executed on APU0 with data
placed on peer APUs. Results on AMD MI250X are obtained
by executing on GCD0 with data placed on neighbor GCDs.

access, the latency increases to 500 ns for CPU access, and 690 ns
for GPU access.

Observation 1: Direct GPU kernel access to local and remote
APU’s HBM has 500 ns and 690 ns latency, higher than CPU’s
direct access of 240 ns and 346 ns latency. GPU kernel can directly
access data on remote APU at 103 GB/s.

5.2 Explicit Data Movement
In this section, we evaluate the performance of explicit data move-
ment APIs. For this purpose, we compare hipMemcpy and memcpy
operations. On the previous generation of AMDGPU, AMDMI250X,
the SDMA engines were documented to be unable to fully utilize
the Infinity Fabric link bandwidth due to their initial design being
optimized for communication on PCIe speeds [5].

5.2.1 Low Transfer Sizes. For hipMalloc-allocated memory, Fig-
ure 5 presents the latency of memcpy and hipMemcpy operations
for low transfer sizes. We observe that memcpy outperforms hip-
Memcpy for low transfer sizes, up to 512 KB. This is due to the
nature of memcpy, which is implemented as a series of load and
store instructions, which can operate on cache levels of the system.
Therefore, the measured latency is below 100 ns for transfers up
to 16 KB. In contrast, hipMemcpy operations are more complex,
as they are delegated to the Heterogeneous System Architecture

1

10

100

1000

10000

100000

1000000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

la
te

nc
y (

ns
)

buffer size (bytes)

hipMemcpy
memcpy

Figure 5: Latency of hipMemcpy and memcpy for an APU-
APU transfer on hipMalloc-allocated buffers with CPU first-
touch.

(HSA) runtime, resulting in higher latency. For transfer sizes be-
tween 1 byte and 128 KB, a hipMemcpy call represents 1 𝜇s.

Observation 2: For transfer sizes below 512 KB, memcpy ex-
hibit lower latency compared to hipMemcpy, due to its ability to
leverage the various cache levels in the system.

5.2.2 CPU-side memcpy. We measure the bandwidth of CPU-side
memcpy operation to copy large buffer from APU0 to APU1, we
evaluate various allocators, both the system allocator malloc, and
the HIP allocators hipMalloc, hipHostMalloc, and hipMallocMan-
aged. We use the compiler-implemented memcpy.

In this experiment, we ensure that physical memory is allocated
to both source and destination buffers. For this purpose, we initialize
both buffers with an arbitrary value. For the CPU-side first-touch,
we use memset, which performs initialization of each of the buffer’s
elements within a loop. For GPU-side initialization, the hipMemset
API cannot be called on a memory region untracked by the GPU
driver, e.g., allocated with malloc, resulting in an invalid argument
error; instead, we use a GPU kernel for this purpose.

Figure 6 presents the achieved bandwidth for memcpy, when
one thread performs a copy operation from APU0 to APU1, with
a buffer size of 8 GB. For all allocators and first-touch locations,
the copy bandwidth is below 20 GB/s. We suggest that this low
bandwidth compared to the theoretical limit of 128 GB/s is due to
the nature of the memcpy implementation, which relies on a loop to
copy memory from the source buffer to the destination buffer, using
load and store instructions. This implementation only leverages one
CPU core and, therefore, cannot utilize the full bandwidth offered
by the link between APUs. For hipMalloc and malloc allocators,
with GPU first-touch, copy bandwidth is significantly lower than for
other allocator/first-touch combinations, on the order of 10 GB/s.

5.2.3 GPU-centric hipMemcpy. The hipMemcpy API, provided as
part of the ROCm runtime, is designed for data copy in a hetero-
geneous CPU-GPU system. We measure the copy bandwidth for
a data copy from APU0 to APU1, performed with hipMemcpy be-
tween two 8 GB buffers. We use the same initialization strategy as
for memcpy, where either CPU or GPU performs the first-touch.

6

0

5

10

15

20

25

hipMalloc hipHostMalloc hipMallocManaged malloc

ba
nd

w
id

th
 (G

B/
s)

allocator

GPU first-touch
CPU first-touch

Figure 6: The impact of allocators and first-touch on the
maximum bandwidth (GB/s) achieved by memcpy.

0

20

40

60

80

100

120

140

hipMalloc
(MI250X)

hipMalloc hipHostMalloc hipMallocManaged malloc

ba
nd

w
id

th
 (G

B/
s)

allocator

hipMemcpy hipMemcpy (no SDMA) memcpy theoreticalCopy interface:

Figure 7: The achieved explicit data copy bandwidth from us-
ing hipMemcpy ormemcpy for copying data betweenMI300A
APUs.

For hipMemcpy, data movement is performed using System Di-
rect Memory Access (SDMA) engines by default, which are hard-
ware units for copying data across the system and bypassing com-
pute units, enabling overlap of the copy operation with kernel
execution. On MI250X GPUs systems, however, the use of SDMA
engines causes under-utilization of the GPU-GPU link.

Figure 7 presents the achieved bandwidth for explicit data copy
between two APUs with hipMemcpy. We observe that hipMemcpy
only exhibits the highest copy bandwidth for hipMalloc-allocated
buffers, with 90 GB/s. Other allocators are not able to fully leverage
the bandwidth of the link and only reach values of bandwidth
comparable to those obtained with memcpy. Upon inspection of
the hipMemcpy implementation code [1], we suggest that these
copy operations fall back on standard memcpy calls, executed as
single-threaded CPU-side copies.

In addition, we do not observe any significant difference in band-
width comparing copy operations using SDMA engines, which is
the default behavior, or using direct GPU copy kernels by explicitly
disabling SDMA engines. This contrasts with previous generations
of AMD GPUs, embodied by the MI250X GPU, where copy opera-
tions that rely on SDMA engines are not able to fully leverage the
available Infinity Fabric bandwidth [26]. This is due to the SDMA
engines on this generation being tuned for PCIe speeds and, there-
fore, cannot leverage the full link bandwidth offered by Infinity
Fabric [5]. Our results demonstrate that this limitation has been
lifted on AMD MI300A, where copy operations using SDMA en-
gines can reach the same level of bandwidth as for direct copy
kernels.

1

10

100

1000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

la
te

nc
y (

µs
)

message size (bytes)

RCCL
MPI - GPU-GPU (direct)
MPI - GPU-GPU (CPU staging)

← in MPI, default threshold for choice of CPU staging/direct

Figure 8: The latency of MPI and RCCL for point-to-point
GPU-GPU communication at increased message sizes.

Observation 3: For inter-APU copy operations above 512 KB,
hipMemcpy outperforms memcpy, due to its ability to offload
the operation to SDMA engines or GPU copy kernels, thereby
enabling the use of the full Infinity Fabric bandwidth.

6 Multi-APU Multi-Process Communication
In this section, we compare point-to-point and collective communi-
cation routines between MPI and RCCL. Moreover, we study the
impact of different memory allocators on leveraging the Infinity
Fabric link bandwidth.

6.1 Point-to-Point Communication
6.1.1 Latency. Our latency measurement results indicate that MPI
point-to-point routines with CPU staging achieve the lowest latency.
Figure 8 presents the inter-APU ping-pong latency measured on
hipMalloc-allocated communication buffers at various message
sizes. For small message size below 128 bytes, MPI routines with
CPU staging have a latency as low as 1.9 𝜇s, while direct peer-
to-peer MPI communication exhibits a 4.8 𝜇s latency. In contrast,
the latency of RCCL is significantly higher than that of MPI for
small messages, with a lowest latency of 20 𝜇s, that is, 10× higher
than MPI routines. For direct MPI GPU-GPU communication, we
observe a jump in the measured latency when increasing message
size from 4 KB to 8 KB.We suggest that this jump indicates a change
of behavior in the MPI implementation for messages above 4 KB.
However, due to the proprietary nature of the implementation, we
were not able to pinpoint the exact cause. Overall, compared to the
latency of direct GPU kernel access and memcpy in Section 5.2, point-
to-point communication has a significantly higher latency for small
messages. This increased latency is induced by the complex nature
of a point-to-point operation, where not only data must be copied,
but also expensive inter-process communication is performed.

6.1.2 Bandwidth. Figure 9 presents the bandwidth of point-to-
point routines in MPI and RCCL with hipMalloc-allocated buffers
between APUs. We observe that for message sizes above 8 KB, the
bandwidth of RCCL matches the one obtained with direct GPU-
GPU MPI communication. We observe that the CPU staging option
in MPI outperforms the peer-to-peer GPU-GPU communication for
message sizes of 1024 KB or smaller. This is due to the overhead of
requesting transfer with SDMA engines in the case of direct peer-
to-peer GPU-GPU communication, compared to the low overhead
of performing a CPU-side copy between two APUs. As shown in

7

0.0001

0.001

0.01

0.1

1

10

100
1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

ba
nd

w
id

th
 (G

B/
s)

message size (bytes)

RCCL
MPI - GPU-GPU (direct)
MPI - GPU-GPU (CPU staging)

Figure 9: The measured bandwidth of MPI direct GPU-GPU
communication, MPI GPU-GPU communication with CPU
staging, and RCCL. Destination and source buffers are allo-
cated with hipMalloc.

0100
4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128Mb a n d w i

message size (bytes)
hipMalloc → hipMalloc hipMalloc → malloc malloc → hipMalloc malloc → mallocAllocator: src → dst

0

20

40

60

80

100

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

ba
nd

w
id

th
 (G

B/
s)

message size (bytes)

(a) MPI

0

20

40

60

80

100

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

ba
nd

w
id

th
 (G

B/
s)

message size (bytes)

(b) RCCL

Figure 10: The impact of different allocators for the source
and destination buffers on point-to-point bandwidth with
SDMA enabled.

Figure 9, RCCL point-to-point communication routines achieved
a maximum bandwidth of 88 GB/s, which is comparable to the
bandwidth measured with hipMemcpy APIs.

6.1.3 Impact of Memory Allocators. We evaluate the impact of the
allocator on point-to-point bandwidth in MPI and RCCL. For MPI,
Figure 10a shows that when the source buffer is allocated with
malloc, the maximum bandwidth measured for MPI send/receive
operation is 11.7 GB/s. This is comparable to the values obtained
with a single-threaded memcpy operation, presented in Section 5.2.
When both buffers are allocated with hipMalloc, the measured band-
width is 82 GB/s, which matches the values reported in Section 5.2,
obtained with hipMemcpy. This indicates that the GPU-aware MPI
implementation can efficiently leverage the available inter-APU
bandwidth, when using hipMalloc for both source and destina-
tion buffers. In contrast, when the source buffer is allocated with
hipMalloc and the destination buffer is allocated with malloc, the
bandwidth drops to 54 GB/s. We hypothesize that in such scenario,
both GPU-only and system page tables are involved in the copy op-
eration. This causes significant overhead. For RCCL, the bandwidth
measured under point-to-point routines, presented in Figure 10b,
appears to be insensitive to the choice of allocator. This highlights
the ability of RCCL to map the execution of point-to-point routines
to the most efficient hardware interface.

malloc hipMalloc
dst

m
al

lo
c

hi
pM

al
lo

csr
c

12.5 12.3

58.2 87.9

SDMA enabled

malloc hipMalloc
dst

12.3 12.2

90.3 87.5

SDMA disabled

0

25

50

75

ba
nd

wi
dt

h
(G

B/
s)

Figure 11: The peak MPI p2p bandwidth using different allo-
cators for source and destination buffers and SDMA settings.

Observation 4: RCCL point-to-point routines can efficiently
leverage the full Infinity Fabric bandwidth, independent of the
choice of allocator. MPI point-to-point routines only achieve the
full Infinity Fabric bandwidth when both source and destination
buffers are allocated with hipMalloc.

6.1.4 The impact of SDMA engines. We further evaluate the impact
of SDMA engines on the bandwidth of MPI send/receive opera-
tions between two APUs. Our results in Section 5.2 demonstrate
that SDMA engines on MI300A APUs can fully utilize the Infin-
ity Fabric link. Therefore, for MPI and RCCL, we expect similar
bandwidth when disabling SDMA engines. We set the environment
variable HSA_ENABLE_SDMA=0 to measure the bandwidth with dis-
abled SDMA engines. When SDMA is disabled, data movement
relying on the HSA runtime will use direct GPU-executed copy
kernels to perform data copy. We present the measured bandwidth
in Figure 11, when using either hipMalloc or malloc to allocate
source and destination buffers.

In MPI, when the source buffer is allocated with malloc, the state
of SDMA engines does not impact the bandwidth, measured at
12 GB/s. This is expected, as the copy mechanism in this situation
appears to not rely on GPU’s HSA runtime but instead on CPU-side
mempcy, which never relies on SDMA engines. When the source
buffer is allocated with hipMalloc, and the destination buffer is
allocated with malloc, the bandwidth measured with SDMA en-
gines disabled is 90.3 GB/s. This is significantly higher than the
58.2 GB/s bandwidth measured with SDMA engines enabled. For
RCCL, we conduct the identical measurements. Our results indicate
that SDMA engine state has little impact on RCCL point-to-point
bandwidth.

Figure 12 presents the point-to-point bandwidth measured with
different SDMA settings. The results for a source buffer allocated
with malloc are omitted, as they were not influenced by the state of
SDMA engines in our experiments.When copying from a hipMalloc-
allocated buffer to a malloc-allocated buffer, disabling SDMA en-
gines brings a significant bandwidth improvement for all message
sizes. For the largest message size, the bandwidth increases from
58.2 GB/s to 90.3 GB/s. When both source and destination buffers
are allocated with hipMalloc, the bandwidth evolution exhibits a
different pattern. For message sizes below 1 MB, disabling SDMA
engines achieves a higher bandwidth than with SDMA enabled.
In contrast, above 1 MB, disabling SDMA has a detrimental ef-
fect on bandwidth. However, at the largest message size, the same
bandwidth is observed for either SDMA state.

8

0
10
20
30
40
50
60
70
80
90

100

4K 8K
16K

32K
64K

128K
256K

512K 1M 2M 4M 8M
16M

32M
64M

128M

ba
nd

w
id

th
 (G

B/
s)

message size (bytes)

hipMalloc → malloc (SDMA) hipMalloc → hipMalloc(SDMA)
hipMalloc → malloc (no SDMA) hipMalloc → hipMalloc(no SDMA)

Allocator: src → dst

Figure 12: Bandwidth of MPI back-to-back send operations,
measured with OSUmicro-benchmark, for various allocators
for source and destination buffers. Dashed lines indicate that
SDMA engines are explicitly disabled.

Observation 5: Bandwidth of MPI point-to-point routines de-
pends on SDMA engine status and allocator choice, with hip-
Malloc yielding highest bandwidth; RCCL fully utilizes Infinity
Fabric link in all evaluated circumstances.

6.2 Collective Communication
We first investigate the scalability of one widely-used collective
operation, AllReduce, at increased message sizes, in Figure 14. For
all message sizes up to 4 KB, MPI outperforms RCCL. However,
beyond 4 KB, RCCL routines start to exhibit lower latency than
MPI. Moreover, RCCL latency scales linearly with the message
size, as plotted in the dashed line in Figure 14. In MPI, such a
linear trend is only observed above 256 KB. This indicates that
the runtime of MPI is less predictable than RCCL, likely due a
change in the underlying communication interface used by the MPI
implementation, depending on buffer size. For instance, by default
MPI uses CPU-staging for messages smaller than 1024 bytes, as
discussed in Section 6.1.

Figure 13 presents the latency of RCCL and MPI collectives with
two to four APUs participating in the collective. We make the same
observation as for AllReduce, where for small messages (Figure 13a),
MPI outperforms RCCL. This is expected, as we observed that RCCL
point-to-point communication routines exhibited a baseline ~20 𝜇s
ping-pong latency. For larger messages (e.g., 16 MB in Figure 13b),
RCCL collectives outperform MPI routines. As demonstrated ear-
lier, RCCL implementations can leverage the bandwidth of Infinity
Fabric links more efficiently than MPI, resulting in higher perfor-
mance for bandwidth-bound communication, e.g., large messages.
ReduceScatter is commonly used in distributed machine learning
workloads. For large message sizes, RCCL exhibits a significant
advantage of 20-38× speedup over MPI ReduceScatter.

Observation 6: For messages larger than 4 KB, RCCL collectives
lead to 5 − 38× lower latency than MPI. For messages smaller
than 1024 bytes, MPI collectives have the lowest latency.

7 HPC Applications
In this section, we present two case studies in real-world HPC appli-
cations to demonstrate the strategy of optimizing multi-APU com-
munication as identified according to our characterization study.

7.1 QuickSilver
QuickSilver is a multi-process MPI application for dynamic Monte
Carlo particle transport problems. As a Monte Carlo code, it uses
a large number of particles in simulations, and these particles are
spread across the whole domain, which is divided across MPI pro-
cesses. Thus, communicating particles across processes becomes
one time-consuming task of the application. For this purpose, a
class MC_Particle_Buffer is used, to hold information on particle
buffers, and to expose methods to control the exchange of particle
data across processors. In the original version, these particle com-
munication buffers are allocated using the system allocator malloc
and are exchanged using MPI point-to-point routine MPI_Isend.

Our profiling results of QuickSilver communication pattern in-
dicate that many small messages are used for communication. As
identified in Section 6, RCCL point-to-point communication rou-
tines have higher latency than MPI routines for small messages,
thus, they will not be used for point-to-point communication. Also,
from the characterization, disabled SDMA has positive impacts
on the bandwidth of MPI point-to-point communication on all
message sizes. Therefore, we disable the SDMA engines for opti-
mization. For experiments, we compile Quicksilver to produce a
binary supporting any XNACK state, and change the environment
variable HSA_XNACK at runtime. Finally, we adapt the allocator for
communication buffers from malloc to hipMalloc because our
characterization study indicated that malloc-allocated buffers do
not reach the maximum link bandwidth in MPI point-to-point rou-
tines. In Quicksilver, this is achieved by adapting the Allocate
method of MC_Particle_Buffer.

Figure 15 details the runtime of the six Quicksilver test cases,
evaluated with XNACK enabled or disabled, using either hipMalloc
or malloc for the allocation of buffers used in point-to-point MPI
routines. With XNACK enabled, for any fixed problem, the runtime
in Quicksilver is insensitive to the selected allocator for allocating
communication buffers. However, when XNACK is disabled, we
observe the speedup from 5% to 11% on the end-to-end execution
time. This confirms that the selected optimization is effective for
further running Quicksilver simulations on multi-APU systems.

We demonstrate in Section 6 that only hipMalloc-allocated buffers
can be communicated at full link bandwidth when using MPI. How-
ever, when replacing malloc by hipMalloc, the communication time
reported by Quicksilver decreases only for the largest test case,
Problem 1 with 42M particles, from 6.8 s down to 5.9 s. The reason
is that for low transfer sizes, the benefit of using hipMalloc-allocated
buffers for communication is outweighed by the overhead of trans-
ferring data to those buffers before the actual communication.

7.2 CloverLeaf
Cloverleaf is a Lagrangian-Eulerian hydrodynamics application.
Solvers in such applications heavily rely on send and receive oper-
ations. This application exhibits balanced communication, with

9

0

5

10

15

20

25

30

MPI RCCL MPI RCCL MPI RCCL MPI RCCL MPI RCCL

Reduce Broadcast Allreduce Allgather ReduceScatter

la
te

nc
y (

us
)

2 GPUs 3 GPUs 4 GPUs

(a) 4 bytes

0

200

400

600

800

1000

1200

MPI RCCL MPI RCCL MPI RCCL MPI RCCL

Reduce Broadcast Allreduce Allgather

la
te

nc
y (

us
)

2 GPUs 3 GPUs 4 GPUs

0

1000

2000

3000

4000

RCCLMPI

ReduceScatter

la
te

nc
y (

us
)

(b) 16 MB

Figure 13: Themeasured latency of MPI and RCCL collective operations for 4 bytes and 16MBmessages, with 2 to 4 participating
MI300 APUs. ReduceScatter for 16 MB messages uses a separate y-axis.

1

10

100

1000

10000

4 16 64 256 1K 4K 16K 64K 256K 1M 4M 16M

la
te

nc
y (

us
)

size (bytes)

MPI, 2 GPUs MPI, 3 GPUs MPI, 4 GPUs
RCCL, 2 GPUs RCCL, 3 GPUs RCCL, 4 GPUs

Figure 14: Latency of AllReduce collective operation, with
2 to 4 APUs in the same node participating in the collective.
Linear trends are plotted as dashed lines.

0

100

200

300

400

500

600

hi
pM

al
lo

c

m
al

lo
c

hi
pM

al
lo

c

m
al

lo
c

hi
pM

al
lo

c

m
al

lo
c

hi
pM

al
lo

c

m
al

lo
c

hi
pM

al
lo

c

m
al

lo
c

hi
pM

al
lo

c

m
al

lo
c

P1_3M P1_21M P1_42M P2_2M P2_13M P2_27M

to
ta

l t
im

e
(s

)

XNACK enabled (HSA_XNACK=1)
XNACK disabled (HSA_XNACK=0)

Figure 15: End-to-end runtime measured in Quicksilver for
all input problems, comparing the impact of XNACK settings
and allocators.

regular memory access pattern. The baseline HIP implementa-
tion supports managed memory, allocated with hipMallocMan-
aged. We preserve MPI calls for smaller message communication
operations, such as process synchronization. We add support for
system-allocated memory, where the allocation with malloc must
be combined with hipHostRegister, to allow hipMemcpy operations.
We adapt to use RCCL point-to-point routines for send and receive
operations, implemented as part of the clover_exchange function.
The application is compiled with generic XNACK support. How-
ever, executing the RCCL implementation with XNACK disabled

23.8

32.6 32.4

24.2

33.3

38.5

24.1

34.2 34.0

0

10

20

30

40

50

hipMalloc managed malloc
to

ta
l t

im
e

(s
)

RCCL MPI (XNACK) MPI (no XNACK)

** * * *

(a) Total time

×1.47

×1.87
×2.15

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

hipMalloc managed malloc

co
m

m
un

ic
at

io
n

tim
e

(s
)

MPI RCCL

* * * *

(b) Communication time

Figure 16: The total runtime (a) and communication time (b)
of CloverLeaf. “*” indicates our adapted versions, “×” indi-
cates speedup over MPI.

caused the program to exit due to errors in the RCCL internal code.
Thus, the results are obtained with XNACK enabled.

Figure 16a presents the end-to-end runtime of CloverLeaf using
MPI or RCCL communication interface and various allocators. For
the original implementation, the default hipMalloc-allocated ver-
sion provides the lowest end-to-end runtime compared to hipMal-
locManaged and the malloc system allocator. This is consistent with
our benchmarking results, presented in Section 5.2, which show
that for MPI, only hipMalloc-allocated buffers can be exchanged be-
tween APUs at high bandwidth. We show that the original MPI ver-
sion has 15% higher runtime when using malloc+hipHostRegister,
compared to the hipMallocManaged version.

To understand how communication optimizations affect the end-
to-end runtime, we utilize the internal CloverLeaf timers to quantify
improvements in communication time. These timersmeasure the ex-
ecution time of theMPIHalo Exchange function (clover_exchange),
which implements the core of the application’s data movement. Fig-
ure 16b presents the communication time in Cloverleaf, for the
three evaluated allocators. The reported time is averaged over five
trails. We observe that the communication time in the MPI im-
plementation is highly sensitive to the allocator, with values of
1.01 s for hipMalloc, 1.50 s for malloc, and 1.55 s for hipMallocMan-
aged. This is consistent with our characterization results for MPI
explicit data transfers. However, the 0.54 s communication time
difference observed between the best-performing hipMalloc and
hipMallocManaged in the MPI version cannot by itself explain the
9.1 s difference in end-to-end runtime. This observation highlights
that while the choice of allocators impacts the communication time

10

between APUs, other factors must be considered, including GPU
kernel performance and performance of copy operations within a
single APU’s physical memory space, with e.g., hipMemcpy ormem-
cpy. For RCCL, the communication time exhibits limited variability
across the three allocators, with 0.69 s for hipMalloc and malloc,
and 0.83 s for hipMallocManaged. This is also consistent with our
benchmarking results and demonstrates how RCCL can achieve
efficient communication, with limited impact from the allocator
used for the communicated buffers.

In all tested cases in CloverLeaf, the communication-optimized
implementation outperforms the original version, with a 1.5× speedup
for hipMalloc, 1.9× for hipMallocManaged, and 2.2× for malloc.
These results highlight the inefficiency of using non-hipMalloc
buffers for MPI point-to-point communication routines. Further-
more, this demonstrates how the use of RCCL enables developers
to opt for best-performing allocator for their respective use case or
depending on application-specific constraints, while still achieving
the highest level of bandwidth for inter-APU communication.

8 Discussions
Allocators. Depending on the data movement interface in use, the
choice of allocator might affect the performance of data movement.
In our experiments, hipMalloc is the only allocator for which the
highest bandwidth of the Infinity Fabric interconnect could be
reached consistently across all scenarios. In details, for hipMemcpy,
using hipMalloc is required and MPI point-to-point routines are
only able to achieve the maximum bandwidth for buffers allocated
with hipMalloc. This is due to the MPI runtime delegating the
copy operations performed on hipMalloc-allocated buffers to GPU
hardware, either with SDMA engines or using GPU copy kernel,
therefore achieving maximum bandwidth. For other choices of
allocators, RCCL is the only programming interface that can utilize
the full Infinity Fabric bandwidth, independent of the allocator,
appearing as a solution to operate high-bandwidth data movement
when the choice of allocator is constrained. Other factors, such as
allocation time, which is higher with hipMalloc than with malloc,
might be taken into account.

Programming Interfaces. For each data movement scenario
presented in the taxonomy Section 3, Figure 17 presents the optimal
interface depending on various message sizes. In general, for ex-
plicit and collective data movement at small messages, CPU-centric
interfaces, namely memcpy and MPI with CPU-staging, provide
the highest performance. This is a consequence of the high la-
tency observed for GPU-centric interfaces, which is detrimental on
small message sizes, which are typically latency-bound. However,
those GPU-centric interfaces are able to leverage GPU hardware
to perform data movement, namely SDMA engines and GPU copy
kernels. They can therefore leverage the full Infinity Fabric band-
width, making them suitable for larger message sizes. In contrast,
this is not possible with memcpy and MPI with CPU-staging, due
to those interfaces utilizing solely CPU resources to perform data
movement.

Communication Patterns. Our evaluation of HPC applications
focuses on two applications with explicit data movement, which
rely on explicit inter-process communication routines, including
point-to-point and collective operations. Other applications might

Direct access

hipMemcpy

RCCL

memcpy

MPI
(CPU staging)

MPI
(direct) MPI (direct)

MPI RCCL

Message Size
(Bytes)8 K1 K

Collective

Direct
Access

Explicit

D
at

a
m

ov
em

en
t t

yp
e

intra-
process

inter-
process

512 K

Figure 17: A summary of best-performing interface for inter-
APU communication at various message sizes and data move-
ment types, targeting to high bandwidth for explicit and
direct access and low latency for collective operations. As-
sume buffers are allocated with hipMalloc.

have unpredictable communication patterns, where the extent of
the accessed data is unknown at runtime, such as graph processing
applications. On the AMD MI300A tightly-coupled system, those
applications can benefit from direct data access from GPU ker-
nel, which provides granular access to remotely-located data. We
demonstrated that such access strategy achieves full utilization of
the Infinity Fabric bandwidth, with approximately twice the latency
of local access.

9 Related Works
AMD MI250X and MI300A. Vijayaraghavan et al. [33] described
the concept of APU, integrating CPU, GPU andmemorywithin a sin-
gle package, for exascale computing, later implemented as MI300A.
Smith et al. [30] reported the technical details on the MI300A APU
and key manufacturing insights. On this APU, the study of the
unified CPU-GPU physical memory system has been conducted
by Wahlgren et al. [34]. Porting and evaluation of HPC applica-
tions to one MI300A APU have been proposed through OpenMP’s
unified memory model [8, 32]. The previous generation of AMD
GPUs, AMDMI250X, has previously been studied from various per-
spectives, including its Infinity Fabric interconnect [23] and Matrix
Cores [25]. Our work focuses on the study of infinity Fabric Inter-
connect, connecting several APUs within a multi-MI300A node,
which is the building block of the latest leadership HPC systems.

Evaluation of GPU-GPU Interconnects. GPU-GPU intercon-
nects have beenwidely studied, includingNvidia’s NVLink intercon-
nect [17], and previous generations of Infinity Fabric interconnect,
with AMDMI100 and MI250X GPUs [11, 15, 24]. De Sensi et al. [11]
evaluated GPU-GPU communication at large scale on three super-
computers, using both inter- and intra-node benchmarks. The simi-
larity and difference on several interconnect characteristics have
also been explored, in particular AMD MI250X-based systems [29,
11]. Atchley et al. [7] provided a large-scale evaluation of the Fron-
tier supercomputer, including intra-node and inter-node evaluation.
Khorassani et al. [15] evaluated Slingshot-interconnected nodes
based on AMD MI100 GPUs. Hidayetoglu et al. [14] focused on the
multiple hierarchies in supercomputer interconnects. Schieffer et
al. [26] characterized point-to-point and collective communication
and memory allocation strategies on multi-GPUs MI250X-based

11

supercomputers. In this work, we focus on the Infinity Fabric inter-
connected multi-MI300A compute nodes.

Multi-GPU Optimizations. Distributed multi-GPU systems
are used ubiquitously on HPC systems and Data centers to acceler-
ate a wide range of applications, including large language models,
quantum computer simulations, and database query processing. In
multi-GPU applications, understanding data movement patterns
and bottlenecks is critical for performance. Such analysis was con-
ducted on, e.g, Graph Neural Networks (GNN) applications [9]
and Convolutional Neural Networks (CNN) [31, 28]. To tackle the
GPU-GPU communication bottleneck, several solutions have been
proposed, including efficient workload partitioning using CUDA
features [21] and leveraging multiple path or CPU-GPU intercon-
nects [19]. Young et al. [35] quantified the multi-GPU interconnect
bottleneck with NUMA-aware software solutions like work schedul-
ing, page placement, page migration, page replication, and caching
remote data; and proposed co-design optimization strategies. Our
work, especially the characterization results on multi-APU systems,
provides a strong foundation for optimizing these applications and
workloads on the emerging HPC systems and data centers.

10 Conclusions
In this work, we evaluated inter-APU communication on Infinity
Fabric on AMD MI300A systems. We quantified the peak hardware
capacity and evaluated performance efficiency for various commu-
nication patterns, including CPU-GPU, point-to-point GPU-GPU,
and GPU collectives. Our results quantified the impact of memory
allocators and programming interfaces for data movement. Finally,
we applied the optimization strategy on GPU-GPU communication
in Quicksilver and CloverLeaf on four MI300A APUs, achieving a
2.15× speedup in communication.

Acknowledgments
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Con-
tract DE-AC52-07NA27344. LLNL-CONF-2004814. This research is
supported by the Swedish Research Council (no. 2022.03062) and
LLNL LDRD project 24-ERD-047. This work has received funding
from the European High Performance Computing Joint Undertak-
ing (JU) and Sweden, Finland, Germany, Greece, France, Slovenia,
Spain, and Czech Republic under grant agreement No 101093261.

References
[1] AMD. 2024. Compute language runtimes (clr) implementation, hipmemcpy

implementation. https://github.com/ROCm/clr/blob/rocm-6.2.1/hipamd/src
/hip_memory.cpp. (2024).

[2] AMD. 2024. Heterogeneous system architecture (hsa) documentation. https://r
ocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.2.1/. (2024).

[3] AMD. 2024. Heterogeneous-computing interface for portability (hip) documen-
tation. https://rocm.docs.amd.com/projects/HIP/en/docs-6.2.1/index.html.
(2024).

[4] AMD. 2024. Mi300a system optimization guide. https://instinct.docs.amd.com
/projects/amdgpu-docs/en/latest/system-optimization/mi300a.html. (2024).

[5] AMD. 2024. Rocm documentation, gpu memory. https://rocm.docs.amd.com/e
n/docs-6.2.1/conceptual/gpu-memory.html. (2024).

[6] AMD. 2024. Rocr runtime source code. https://github.com/ROCm/ROCR-Runt
ime/blob/rocm-6.2.1/src/core/runtime/blit_shaders/blit_copyAligned.s. (2024).

[7] Scott Atchley et al. 2023. Frontier: exploring exascale. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, 1–16.

[8] Carlo Bertolli, Thorsten Blass, Lynd Stringer, Nicole Aschenbrenner, Jan-
Patrick Lehr, Doru Bercea, Dhruva Chakrabarti, Lawrence Meadows, and Ron
Lieberman. 2024. Performance analysis of runtime handling of zero-copy for
openmp programs on mi300a apus. In SC24-W: Workshops of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
IEEE, 1420–1429.

[9] Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. 2021.
Dgcl: an efficient communication library for distributed gnn training. In Pro-
ceedings of the Sixteenth European Conference on Computer Systems, 130–144.

[10] Sangjin Choi, Taeksoo Kim, Jinwoo Jeong, Rachata Ausavarungnirun, Myeong-
jae Jeon, Youngjin Kwon, and Jeongseob Ahn. 2022. Memory harvesting in
Multi-GPU systems with hierarchical unified virtual memory. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), 625–638.

[11] Daniele De Sensi et al. 2024. Exploring gpu-to-gpu communication: insights
into supercomputer interconnects. In SC24: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–15.

[12] Luigi Fusco, Mikhail Khalilov, Marcin Chrapek, Giridhar Chukkapalli, Thomas
Schulthess, and Torsten Hoefler. 2024. Understanding data movement in tightly
coupled heterogeneous systems: a case study with the grace hopper superchip.
arXiv preprint arXiv:2408.11556.

[13] Google. 2016. Google benchmark library. https://github.com/google/benchmar
k. (2016).

[14] Mert Hidayetoglu et al. 2024. Commbench: micro-benchmarking hierarchical
networks with multi-gpu, multi-nic nodes. In Proceedings of the 38th ACM
International Conference on Supercomputing, 426–436.

[15] Kawthar Shafie Khorassani, Chen-Chun Chen, Bharath Ramesh, Aamir Shafi,
Hari Subramoni, and Dhabaleswar K Panda. 2023. High performance mpi over
the slingshot interconnect. Journal of Computer Science and Technology, 38, 1,
128–145.

[16] Lawrence Livermore National Laboratory. 2017. https://asc.llnl.gov/codes/pro
xy-apps/quicksilver. (2017).

[17] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan Tallent, and Kevin
Barker. 2018. Tartan: evaluating modern gpu interconnect via a multi-gpu
benchmark suite. In 2018 IEEE International Symposium on Workload Charac-
terization (IISWC). IEEE, 191–202.

[18] Gabriel H Loh et al. 2023. A research retrospective on amd’s exascale computing
journey. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, 1–14.

[19] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump up the volume: processing large data on gpus with fast intercon-
nects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 1633–1649.

[20] Simon McIntosh-Smith, Michael Boulton, Dan Curran, and James Price. 2014.
On the performance portability of structured grid codes on many-core com-
puter architectures. In Supercomputing: 29th International Conference, ISC 2014,
Leipzig, Germany, June 22-26, 2014. Proceedings 29. Springer, 53–75.

[21] Krzysztof M Ocetkiewicz, Cezary Czaplewski, Henryk Krawczyk, Agnieszka G
Lipska, Adam Liwo, Jerzy Proficz, Adam K Sieradzan, and Paweł Czarnul. 2024.
Multi-gpu unres for scalable coarse-grained simulations of very large protein
systems. Computer Physics Communications, 298, 109112.

[22] 2001. Osu micro-benchmarks. (2001). http://mvapich.cse.ohio-state.edu/bench
marks/.

[23] Carl Pearson. 2023. Interconnect bandwidth heterogeneity on amd mi250x and
infinity fabric. arXiv preprint arXiv:2302.14827.

[24] Carl Pearson, I-Hsin Chung, Zehra Sura, Wen-Mei Hwu, and Jinjun Xiong.
2018. Numa-aware data-transfer measurements for power/nvlink multi-gpu
systems. In International Conference on High Performance Computing. Springer,
448–454.

[25] Gabin Schieffer, Daniel Araújo De Medeiros, Jennifer Faj, Aniruddha Marathe,
and Ivy Peng. 2024. On the rise of amd matrix cores: performance, power
efficiency, and programmability. In 2024 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 132–143.

[26] Gabin Schieffer, Ruimin Shi, Stefano Markidis, Andreas Herten, Jennifer Faj,
and Ivy Peng. 2024. Understanding data movement in amd multi-gpu systems
with infinity fabric. In SC24-W: Workshops of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 567–576.

[27] Gabin Schieffer, Jacob Wahlgren, Jie Ren, Jennifer Faj, and Ivy Peng. 2024.
Harnessing integrated CPU-GPU system memory for HPC: a first look into
Grace Hopper. In Proceedings of the 53rd International Conference on Parallel
Processing, 199–209.

[28] Shaohuai Shi, Qiang Wang, and Xiaowen Chu. 2018. Performance modeling
and evaluation of distributed deep learning frameworks on gpus. In 2018 IEEE
16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf
on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology Congress. IEEE, 949–957.

[29] Christopher M Siefert, Carl Pearson, Stephen L Olivier, Andrey Prokopenko,
Jonathan Hu, and Timothy J Fuller. 2023. Latency and bandwidth microbench-
marks of us department of energy systems in the june 2023 top 500 list. In

12

https://github.com/ROCm/clr/blob/rocm-6.2.1/hipamd/src/hip_memory.cpp
https://github.com/ROCm/clr/blob/rocm-6.2.1/hipamd/src/hip_memory.cpp
https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.2.1/
https://rocm.docs.amd.com/projects/ROCR-Runtime/en/docs-6.2.1/
https://rocm.docs.amd.com/projects/HIP/en/docs-6.2.1/index.html
https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300a.html
https://instinct.docs.amd.com/projects/amdgpu-docs/en/latest/system-optimization/mi300a.html
https://rocm.docs.amd.com/en/docs-6.2.1/conceptual/gpu-memory.html
https://rocm.docs.amd.com/en/docs-6.2.1/conceptual/gpu-memory.html
https://github.com/ROCm/ROCR-Runtime/blob/rocm-6.2.1/src/core/runtime/blit_shaders/blit_copyAligned.s
https://github.com/ROCm/ROCR-Runtime/blob/rocm-6.2.1/src/core/runtime/blit_shaders/blit_copyAligned.s
https://github.com/google/benchmark
https://github.com/google/benchmark
https://asc.llnl.gov/codes/proxy-apps/quicksilver
https://asc.llnl.gov/codes/proxy-apps/quicksilver
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

Proceedings of the SC’23 Workshops of the International Conference on High
Performance Computing, Network, Storage, and Analysis, 1298–1305.

[30] Alan Smith et al. 2024. Realizing the amd exascale heterogeneous processor vi-
sion: industry product. In 2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA). IEEE, 876–889.

[31] Nathan R Tallent, Nitin A Gawande, Charles Siegel, Abhinav Vishnu, and
Adolfy Hoisie. 2018. Evaluating on-node gpu interconnects for deep learning
workloads. In High Performance Computing Systems. Performance Modeling,
Benchmarking, and Simulation: 8th International Workshop, PMBS 2017, Denver,
CO, USA, November 13, 2017, Proceedings 8. Springer, 3–21.

[32] Suyash Tandon, Leopold Grinberg, Gheorghe-Teodor Bercea, Carlo Bertolli,
Mark Olesen, Simone Bna, and Nicholas Malaya. 2024. Porting hpc applications
to amd instinct™ mi300a using unified memory and openmp®. In ISC High

Performance 2024 Research Paper Proceedings (39th International Conference).
Prometeus GmbH, 1–9.

[33] Thiruvengadam Vijayaraghavan et al. 2017. Design and analysis of an apu for
exascale computing. In 2017 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 85–96.

[34] Jacob Wahlgren, Gabin Schieffer, Ruimin Shi, Edgar Leon, Roger Pearce, Maya
Gokhale, and Ivy Peng. 2025. Dissecting CPU-GPU unified physical memory
on AMD MI300A APUs. In 2025 IEEE International Symposium on Workload
Characterization (IISWC). IEEE.

[35] Vinson Young, Aamer Jaleel, Evgeny Bolotin, Eiman Ebrahimi, David Nellans,
and Oreste Villa. 2018. Combining hw/sw mechanisms to improve numa per-
formance of multi-gpu systems. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 339–351.

13

	Abstract
	1 Introduction
	2 AMD MI300A based Multi-APU Systems
	2.1 Accelerated Processing Unit
	2.2 Infinity Fabric Interconnect
	2.3 Memory Management on Multi-APU Nodes

	3 A Taxonomy of multi-APU Communication
	3.1 Direct Access
	3.2 Explicit Data Movement
	3.3 Collective Communication

	4 Methodology
	4.1 Benchmark Design
	4.2 HPC Applications
	4.3 Testbed

	5 Multi-APU Single-Process Communication
	5.1 Direct Kernel-level Access
	5.2 Explicit Data Movement

	6 Multi-APU Multi-Process Communication
	6.1 Point-to-Point Communication
	6.2 Collective Communication

	7 HPC Applications
	7.1 QuickSilver
	7.2 CloverLeaf

	8 Discussions
	9 Related Works
	10 Conclusions
	Acknowledgments

