Hardware-Software Co-Development for Emerging CXL
Architectures

Roberto Gioiosa
Pacific Northwest National Laboratory
Richland, WA
roberto.gioiosa@pnnl.gov

Lenny Guo
Pacific Northwest National Laboratory
Richland, WA
lenny.guo@pnnl.gov

ABSTRACT

Modern scientific, Artificial Intelligence (AI), and graph analytics
workloads demand substantial memory resources to accommodate
their extensive datasets. While distributed systems connected via
high-performance networks have traditionally been employed to
address such challenges, Compute eXpress Link (CXL) technology
is emerging as a compelling alternative. CXL systems offer a shared
memory abstraction over physically disaggregated memory with
load/store programming semantics, simplifying the development
of applications that require large memory pools.

However, as CXL hardware is still under development, its in-
ternal mechanisms and the performance implications for critical
applications remain largely unexplored. To address this gap, we
propose a hardware-software co-development framework for future
CXL systems. Our approach combines a CXL-enabled full-system
emulator with a memory allocator (MemForge) backed by CXL
memory devices and a high-level set of Application Programming
Interface (API)s.

We demonstrate that our methodology supports the development
of essential kernels across High-Performance Computing (HPC),
Al and graph analytics domains. Experimental results obtained
from two CXL hardware configurations — direct-attached memory
and memory accessed via a CXL switch — indicate minimal run-
time overhead. Additionally, we highlight the internal introspective
capabilities of our memory allocator, which facilitate profiling and
debugging.

KEYWORDS
Memory, CXL, Emulation, Rust

1 INTRODUCTION

Modern workloads are becoming increasingly complex and demand
vast computing and memory resources. While workloads across
domains may exhibit different computation and memory access pat-
terns, they also share common characteristics. In particular, there
is a growing need for larger memory pools that can be accessed
via load/store semantics within a shared-memory programming
paradigm. This trend spans domains from High-Performance Com-
puting (HPC) and scientific simulation to Artificial Intelligence
(AI) and High-Performance Data Analytics (HPDA), encompassing
scientific, commercial, and security applications.

Bo Fang
Pacific Northwest National Laboratory
Richland, WA
bo.fang@pnnl.gov

Andres Marquez
Pacific Northwest National Laboratory
Richland, WA
lenny.guo@pnnl.gov

In this context, Compute eXpress Link (CXL) is emerging as a
promising solution to interconnect compute elements and large
memory pools through fabric-attached memory [21]. CXL is an
open interconnect standard designed to improve the performance
and efficiency of disaggregated memory systems by enabling high-
speed communication among Central Processing Unit (CPU)s, mem-
ory devices, accelerators (e.g., Graphics Processing Unit (GPU)s,
Field-Programmable Gate Array (FPGA)s), and other peripherals.
Based on the Peripheral Component Interconnect Express (PCle)
protocol, CXL offers lower latency and enhanced support for mem-
ory coherence, which is essential in modern computing environ-
ments. The CXL specification comprises three protocol layers: cxLio
manages basic discovery, configuration, and device management;
cxl.mem allows the host CPU to directly access device-attached
memory (e.g., expansion modules); and cxlcache enables accelera-
tors to cache host memory and maintain coherence. Additionally,
some vendors refer to cxl.accel as a shorthand for cxLio and cxl.cache
(Type 1 accelerator device) and cxLio, cxl.cache, and cxl.mem (Type
2 accelerator device). The protocol’s flexibility and extensibility
enable disaggregated memory to be presented to users as a uni-
fied, shared memory space, thereby simplifying programming and
system management.

As with any emerging technology, the design and implemen-
tation of CXL devices, switches, and interconnects are still evolv-
ing [10]. Although prototypes of CXL devices and switches exist,
they often support only a subset of the full protocol (typically cxl.io
and cxl.mem), and the accompanying software stack (including
firmware and system software) is limited primarily to testing and
validation. This complicates the development of applications in an-
ticipation of fully-featured CXL systems. This scenario is common
in the lifecycle of emerging technologies: by the time hardware
is ready for deployment, the corresponding software is often still
under development. Consequently, software readiness delays sys-
tem deployment. From a technical standpoint, this is problematic
because it prevents valuable feedback from being incorporated
into the hardware design, which is often finalized by that stage. Al-
though enhancements may be deferred to future hardware revisions,
this leads to a cycle in which software and hardware perpetually
attempt to catch up with each other.

https://orcid.org/0000-0001-9430-2656

We argue that a more effective strategy is the co-development
of hardware and software. This approach not only reduces time-
to-deployment, as both hardware and software can mature con-
currently, but also enables co-design opportunities. In particular,
it allows software developers to provide real-time feedback that
can inform hardware design choices, potentially improving overall
system efficiency. However, tools to support hardware-software
co-development are typically limited in scope and suitability, often
restricted to simple applications or microbenchmarks. To address
this gap, we introduce a co-development framework tailored for
future CXL systems. Our methodology integrates a CXL full-system
emulator with well-defined interfaces, a CXL-aware memory allo-
cator implemented in Rust, and a set of Application Programming
Interface (API)s for CXL system programming. This framework
enables application development that leverages device-attached
memory (both directly attached and accessed via CXL switches)
while hardware is still under design. Consequently, applications de-
veloped with our framework are immediately ready to utilize CXL
hardware once it becomes available. In essence, the full-system em-
ulator abstracts low-level hardware components, while the memory
allocator abstracts CXL protocols for end users, allowing them to
reason using familiar data structures such as lists, vectors, and ma-
trices. Furthermore, the allocator provides introspective telemetry
useful for debugging and performance tuning.

While current CXL benchmarks (e.g., STREAM) are relatively
simplistic, we demonstrate that our combined solution is capable of
running representative HPC, Al, and HPDA kernels with minimal
runtime overhead compared to conventional allocators. We also
present execution traces from our allocator that illustrate memory
fragmentation mitigation and caching strategies. Our evaluation in-
cludes comparisons across configurations involving device-attached
memory and CXL switches, and benchmarks the ease of use relative
to traditional DRAM-based allocators.

This paper makes the following contributions:

o Weintroduce a framework for hardware-software co-development
in the context of future CXL systems.

e We present MemForge, a Rust-based memory allocator for
CXL-attached memory devices.

e We implement and evaluate key kernels from HPC, Al, and
graph analytics domains, demonstrating how MemForge
simplifies the use of CXL memory.

The remainder of this paper is structured as follows: Section 2
presents the CXL hardware emulator. Section 3 describes the Mem-
Forge allocator. Section 4 outlines the benchmark suite, experi-
mental setup, and results. Section 5 discusses related work. Finally,
Section 6 concludes and outlines directions for future research.

2 EMULATION SYSTEM

Our proposed emulation methodology uses QEMU [3, 19] as its core
building block. QEMU provides a universal interface for running a
wide range of guest operating systems on a host machine through
dynamic binary translation, converting guest CPU instructions into
host-compatible CPU instructions. Specifically, QEMU’s support for
CXL builds upon its well-established PCle emulation infrastructure.
Because CXL leverages the PCle physical layer, QEMU extends this
capability to model key components of a CXL-enabled system. This

F. Lastname et al.

)
VM
—

(a) Memory device directly attached to host through CXL link.

CXL
MEM

oxL MEM
VM Switch
\) MEM

(b) Two memory devices attached to the host through a CXL
switch.

Figure 1: QEMU can be configured to emulate CXL mem-
ory devices in several ways. In this work, we emulate direct-
attached memory devices (1a) and two CXL memory devices
attached to a CXL switch (1b).

facilitates the creation of complex virtual topologies that mimic
real-world hardware configurations.

QEMU can emulate a range of CXL hardware elements, enabling
the construction of complete virtualized CXL environments, includ-
ing:

o CXL Host Bridges: These serve as the connection point
between the host CPU and the CXL fabric. QEMU emulates
the logic required to manage and route traffic to and from
CXL devices.

e CXL Root Ports: Analogous to PCle root ports, these vir-
tual interfaces on the host bridge link to CXL devices or
switches.

e CXL Switches: These virtual switches support complex
topologies and resource pooling by connecting multiple
CXL devices, allowing developers to test switching and
fabric management features.

o CXL Memory Devices (Type 3): These devices allow ex-
perimentation with volatile or persistent memory added to
a virtual machine—a primary use case for CXL. QEMU also
supports CXL Type 1 and Type 2 devices.

QEMU allows developers to build and test CXL-aware drivers,
system software, and applications without needing physical CXL
hardware, which is often scarce and costly. By offering a robust
and accessible virtual platform, QEMU enables complete develop-
ment, testing, and validation of CXL-aware software in parallel
with hardware development.

In this work, we emulate two configurations (Figure 1): the first
attaches a memory expander module directly to the host via a CXL
link (Figure 1a), while the second connects two memory expanders
to the host through a CXL switch (Figure 1b).

3 MEMFORGE

Our memory allocator, MemForge, is developed in Rust—a modern
programming language that emphasizes performance, safety, and
concurrency. The choice of Rust is deliberate: at scale (e.g., hundreds

Hardware-Software Co-Development for Emerging CXL Architectures

1
' 256 bytes

128 bytes

64 bytes

[Available -} Split [Allocated

Figure 2: MemForge’s buddy system algorithm recursively
split larger blocks of continuous memory to satisfy memory
requests. In this case, the original 256-byte memory block is
split first in two 128-byte blocks, then of the block is split
into two 64-byte blocks. One 64-byte block is allocated to
store the requested memory object.

of thousands of compute nodes connected to terabytes of disag-
gregated memory), achieving hardware-enforced consistency is
challenging. While some degree of localized hardware consistency
may be feasible, system-wide consistency will largely rely on soft-
ware. Software-level consistency, however, is notoriously difficult
to enforce and often introduces runtime overhead. By leveraging
Rust’s ownership model and compile-time borrow checker, Mem-
Forge shifts a portion of these consistency checks from runtime to
compile time, reducing associated overhead.

From an allocation perspective, MemForge implements the buddy
system algorithm [12]. This approach is well-suited for managing
contiguous blocks of memory while minimizing fragmentation.
MemForge maintains large contiguous blocks to satisfy substantial
memory requests and recursively splits them into smaller chunks
for smaller allocations. Figure 2 illustrates this process: an initial
256-byte block is recursively split to fulfill a 64-byte request. Upon
memory deallocation, MemForge attempts to merge adjacent free
blocks to recreate larger blocks, improving future allocation effi-
ciency. Internally, MemForge maintains a hierarchical list of free
blocks indexed by size and starting address. This list is protected
by a mutex, enabling safe use in multi-threaded applications.

MemForge supports multiple memory backing strategies. It can
map a regular file into memory, which is useful for development on
non-CXL systems such as laptops. Alternatively, it can use a device
file that represents a CXL-attached memory module. Applications
do not need to change between environments: the memory backing
source is controlled via the environment variable MEMFORGE_PATH.

MemForge implements the allocate() and deallocate () meth-
ods from Rust’s Allocator trait, allowing it to be used with stan-
dard library data structures such as vectors. Given an application
already developed, switching to MemForge requires only replacing

vec: :with_capacity() withits internal version vec: :with_capacity_ia{}l(a

which takes an allocator reference as an additional argument.!
Tracing and logging in MemForge are user-configurable and
do not require application or allocator recompilation. Logging is

lvec: :with_capacity(size) is
vec::with_capacity_in(size, Global)

essentially equivalent to

built on Rust’s standard log subsystem [7] and can be enabled
via the RUST_LOG environment variable (e.g., info, debug, trace).
Instrumentation is provided using the tracing crate [5]. Key func-
tions such as allocate() and deallocate(), as well as significant
runtime events (e.g., block splits and merges), are instrumented
for observability. Trace data can be directed either to a default
subscriber (console) or to the OpenTelemetry subscriber provided
by the tracing-opentelemetry crate [6]. The latter enables trace
collection in multi-threaded and distributed environments, with
visualization support in tools such as Perfetto and Chrome Tracing.

Finally, MemForge is simple to integrate into Rust applications.
Thanks to the Cargo build system, importing MemForge automati-
cally resolves all dependencies with proper versioning.

4 EVALUATION

This Section describes our benchmarks, experimental setup, and
experimental results.

4.1 Benchmarks

GEMM. GEMM (General Matrix Multiply) is a fundamental op-
eration in linear algebra and widely used across domains such as
machine learning and scientific computing. It computes the prod-
uct of two matrices, A(N, K) and B(K, M), yielding a third matrix
C(N, M). The operation follows the expression C = aAB + fiC,
where « and f are scalars. In our experiments, we set § = 0. Given
the significance of GEMM operations, they are heavily optimized
across various hardware platforms, including CPU, GPU, and FPGA.
Our implementation leverages the rayon crate [17] to parallelize
the outer loop using a parallel iterator. While more efficient ver-
sions are feasible, our implementation prioritizes simplicity and
clarity, making it easier to explain. Listing 1 presents our main
kernel implementation.

1 fn matrix_multiply(a: &[Vec<f32, &MemForge>], b: &[Vec<f32, &MemForge>]) ->
< Vec<Vec> {
let n = a.len();
let m = b[0].1len();
let k = b.1len();

.map(|i| {
(0..m)
-map(|j| (0..k).map(|x| alillx] * b[xI[3I).sum())
10 .collect()
1 B
12 .collect()

2
3
4
5
6 (0..n).into_par_iter()
7
8
9

Listing 1: Parallel implementation of GEMM using Rayon.
We adopt a functional programming style to highlight Rust’s
’‘MemForge’s flexibility.

SpMM. SpMM (Sparse Matrix-Dense Matrix Multiplication) op-
erations are prevalent in graph analytics and Graph Neural Network
(GNN). They serve as critical building blocks in algebraic graph

pub struct CSRMatrix<'a> {

2 values: Vec<f64, &'a MemForge>,
col_indices: Vec<usize, &'a MemForge>,
row_pointers: Vec<usize, &'a MemForge>,

num_cols: usize,

nnz: usize,

format: MatrixFormat,

field_type: MatrixType,
10 sym: MatrixSymmetry,
1}

1
2
3
4
5 num_rows: usize,
6
7
8
9

13 pub fn par_spmm(&self, dense_matrix: &[Vecl) -> Vec<Vec> {
14 let n = self.num_rows;

15 let k = dense_matrix[0].len();

16 let mut result = vec![vec![0.0; k]; nl;

18 result

19 .par_iter_mut()

20 .enumerate()

21 .for_each(|(row, result_row)| {

22 for idx in self.row_pointers[row]..self.row_pointersfrow + 1] {
23 let col = self.col_indices[idx];

24 let val = self.values[idx];

25 for dense_col in 0..k {

26 result_row[dense_col] += val * dense_matrix[col][dense_col];
27 3

28 3

29 s

30

31 result

32

33 3}

Listing 2: Parallel SpMM implementation with CSR format.
The method belongs to CSRMatrix; for simplicity, the result
is stored in dense format.

Table 1: Matrix properties.

Name Rows | Cols NNZ | Type Domain
bl_ss 7 7 15 | Real Chemistry
E40r5000 | 17281 | 17281 | 553956 | Real 2D/3D
fs_183_1 183 183 1069 | Real 2D/3D
Jgloo9 9 9 50 | Pattern | Graph
Ip_afiro 27 51 102 | Real Linear Prog.

algorithms and are frequently optimized. Our implementation sup-
ports both COOrdinate (COO) and Compressed Row (CSR) sparse
matrix formats.? As with GEMM, the outer loop is parallelized using
the rayon crate. Listing 2 illustrates the CSR-based implementation.
Input matrices are drawn from the SuiteSparse Matrix Collection,
as summarized in Table 1.

Transformer Kernel. This benchmark simulates key operations in
transformer models such as attention mechanisms and feedforward
layers, used in models like BERT and GPT-3. The implementation
includes multi-head attention, feedforward layers, and layer nor-
malization. Multi-head attention computes multiple sets of queries,
keys, and values in parallel, enabling diverse focus across input
tokens. The outputs are concatenated while preserving the model

2We use CSR in our evaluation due to its slightly better performance.

F. Lastname et al.

dimension (dim_model). Feedforward layers apply transformations
with intermediate dimensionality (dim_ff), typically larger than
the model dimension, and utilize ReLU activation. Layer normal-
ization ensures stable training. As dimensionality and head count
increase, the workload intensifies, allowing us to evaluate perfor-
mance in compute-intensive conditions. The core computation is a
parallel GEMM kernel, previously shown in Listing 1.

4.2 Environmental Setup

Our experiments use QEMU version 9.2.90 with CXL extensions.>

Each virtual machine is configured with 8 x86 64-bit virtual CPUs,
8GB DRAM, and a virtual NIC. In the first configuration, a 4GB
CXL memory expander is directly attached to the host and backed
by a regular file on the host.* In the second configuration, two 2 GB
memory devices connect to the host through a CXL switch. Both
configurations operate in Direct Access (DAX) mode to bypass the
1/0O stack.

We use Rust version 1.88.0-nightly due to required allocator
features.

4.3 Experimental Results

4.3.1 Benchmarks. QEMU is not cycle-accurate and lacks a de-
tailed timing model. Thus, absolute timing data must be interpreted
cautiously. Nevertheless, relative trends are meaningful. Figure 3
compares runtime performance of GEMM, SpMM, and LLM Trans-
former benchmarks using MemForge in both QEMU configurations
against the Rust standard allocator. In all plots, global indicates use
of the standard Rust allocator, dax refers to the configuration with
direct-attached CXL memory, and switch refers to the configuration
using a CXL switch.

Across all benchmarks, MemForge introduces no notable runtime
overhead. This is especially evident in small input sizes where allo-
cation cost is relatively high. As input sizes increase, and execution
becomes compute-dominated, the global and dax configurations ex-
hibit similar performance. The switch configuration incurs slightly
higher overhead due to increased latency from the CXL switch.

Overall, these findings support the viability of co-developing
hardware and software using our approach. While the QEMU la-
tency model is not reflective of real hardware, relative trends pro-
vide useful insight into expected behaviors.

4.3.2 Tracing. MemForge includes built-in tracing support to ana-

lyze correctness (e.g., memory leaks) and performance. With RUST_LOG=trace,

MemForge emits trace data in JSON format, compatible with tools
like Chrome Tracing and Perfetto [18].

Figure 4 shows a trace from the SpMM benchmark (Listing 2)
visualized with Perfetto. Red indicates allocate() calls; green
indicates deallocate() calls. Two waves of calls appear: the first
corresponds to allocating a COOMatrix from the parsed Matrix
Market input; the second arises from constructing the CSRMatrix.
The COOMatrix is deallocated after conversion, and the CSRMatrix
is deallocated at the benchmark’s end.

The trace reveals fine-grained timing and thread activity, aiding
performance diagnosis. Additional introspective metrics (e.g., block

Shttps://gitlab.com/jic23/qemu, branch cx1-2025-03-20.
“The emulated memory is persistent, although persistence is not utilized here.

Hardware-Software Co-Development for Emerging CXL Architectures

—e— Global (Baseline)
DAX
—e— Switch

100

50

Average Execution Time (s)

0 500 1000 1500 2000 2500 3000 3500 4000
Matrix Dimension N (for NxN matrices)

(a) Average execution time of GEMM operator on square input
matrices of dimensions N X N.

—e— Global (Baseline)
DAX

84 —e— Switch
o}
o
£
-6
c
L
=1
5
o
%4
]
o
=)
jud
$2
<

0

10t 10? 10° 104 10°

Number of Non-Zero Elements (NNZ)

(b) Average execution time of SpMM operator for various sparse
matrices from the SuiteSparse Matrix Collection. Log scale used
on x-axis.

40

—e— Global (Baseline)
DAX

35 4 —e— switch

Average Execution Time (s)
EoR NN w
s . S5 & 8

«

500 1000 1500 2000 2500 3000 3500 4000
Model Dimension

(c) Average execution time for LLM Transformer kernel across
model dimensions. The number of heads and layer dimensions
are adjusted to maintain compatibility.

Figure 3: Average execution time for tested benchmarks. Re-
sults reflect mean of 10 runs for each input. Experiments
cover the Rust standard allocator (global) and two QEMU
configurations (dax and switch).

splits/merges) are available but omitted here for brevity. We refer
readers to Perfetto’s documentation for a complete overview.

5 RELATED WORK

CXL Emulation: Efforts to emulate CXL hardware and system
functionality have emerged as critical tools for evaluating CXL de-
signs prior to the availability of physical hardware. CXL-DMSim [26]
extends the gem5 simulator to create a software-based full-system
simulation framework. By integrating support for CXL.mem and
CXL.io protocols, it models CXL memory expanders and enables
diverse emulation scenarios, ranging from memory allocation to OS-
level management through NUMA-compatible device drivers. Al-
though CXL-DMSim has been silicon-validated against real FPGA-
and ASIC-based designs, it is limited to x86 systems and excludes
support for CXL.cache protocols.

QEMU [3, 19], an open-source emulator, provides fundamen-
tal building blocks for emulating CXL.io configurations via host
bridges, root ports, and mailbox functionality mapped to PCle ad-
dress spaces. Its Type-3 device emulation supports Host-Managed
Device Memory (HDM), allowing memory endpoints configuration
using either RAM or file backends. However, accelerator mem-
ory integration (HDM-D) and cache coherency—critical features of
CXL.cache—are currently unsupported in QEMU. CXLSim [11]
bridges gem5 and QEMU to introduce cache hit/miss tracking,
enabling projections of application performance under simulated
memory expander scenarios. Similarly, CXLMemSim [30] employs
a software-level approach using eBPF traces to inject memory de-
lays, providing rudimentary CXL.mem emulation for experimental
purposes. However, due to the absence of accurate timing frame-
works and latency variation support, CXLMemSim fails to capture
the nuanced characteristics of the CXL microarchitecture.

CXL Performance Optimization: Recent advances in optimiz-
ing Compute Express Link (CXL) performance span performance
characterization, modeling, and application-specific optimizations.
Several studies have focused on characterizing performance on real
CXL platforms. For instance, [23, 24] leverage genuine CXL-ready
systems to examine synchronization challenges and the broader
implications of memory expansion, while [28] explores emulated
NUMA-based layouts to replicate CXL memory pooling scenarios
on systems with varying processor-memory topologies. CXL perfor-
mance has also been studied in serverless computing environments
[4, 13, 14, 31]. These studies demonstrated CXL memory pooling
approaches using latency-insensitive virtual machines (VMs) where
entire memory allocations come from disaggregated CXL pools,
while latency-sensitive VMs dynamically split their allocations be-
tween local DRAM and remotely pooled CXL memory based on
memory predictions for untouched pages. However, these frame-
works are restricted by their limited support for CXL protocols and
lack multi-host emulation capabilities.

In addition to characterization, performance optimization tech-
niques for CXL systems have been proposed in [15, 16, 25]. These
efforts model CXL latency across hierarchical levels of the system to
mitigate memory-related bottlenecks. For instance, [15] addresses
slowdowns caused by page migration, proposing strategies such as
adaptive throttling and optimization of interleaving ratios, while
[25] devises object-level interleaving mechanisms combined with
thread assignment tuned for scalability. Together, these studies
provide foundational insights into overcoming CXL performance
limitations.

X = Y Default Workspace Vo F
main 0

¢ Current Selection

Slice allocate

Details

Name allocate

Category memforge

Start time 00:00:00.000 000 000
v Duration 16us 334ns

Thread main [0]

Process 1

sSqQLID slice[0] ~

F. Lastname et al.

T v

Contextual Options ~

Figure 4: Execution trace of the SpMM benchmark using b1_ss as input and CSR format. Red and green blocks denote allocate()

and deallocate() calls in MemForge, respectively.

CXL Applications: The versatility of CXL makes it applicable
across diverse domains, enabling performance gains in memory-
intensive workloads. In approximate nearest neighbor search, [9]
demonstrates how software-hardware collaborative memory disag-
gregation can accelerate billion-scale search workflows. Likewise,
CXL has been successfully employed in machine learning and data-
base systems. For distributed deep learning [2] and large-scale
training workloads [29], CXL facilitates efficient memory access,
tensor offloading, and scalability. In K-nearest neighbor search [22],
CXL-powered memory solutions address computational bottlenecks
by leveraging pooled disaggregated memory. The technology also
enhances database systems, with studies like [1, 8] exploring oppor-
tunities and challenges in memory expansion to support transaction
processing [27] and emerging paradigms such as Retrieval Aug-
mented Generation [20].

6 CONCLUSIONS AND FUTURE WORK

This work addresses the challenge of hardware-software co-development

for future CXL systems. We emphasize the importance of devel-
oping software in tandem with hardware to foster bi-directional
feedback between development teams. To this end, we introduced a
co-development framework comprising a full-system CXL emulator
and a novel memory allocator, MemForge.

Our results demonstrate that MemForge offers a simple and
intuitive API, enabling the implementation of key kernels across
various domains, including HPC, Al, and HPDA. We evaluated two
hardware configurations—direct-attached and CXL switch-based
memory—and showed that MemForge introduces negligible run-
time overhead. Moreover, we highlighted MemForge’s introspective
capabilities for tracing and debugging.

Our experience shows that this framework provides a practical
and effective environment for developing applications and testing
CXL hardware prototypes. In future work, we plan to enhance
timing accuracy by integrating a detailed timing model for CXL
hardware. This will involve extending QEMU with support for
either cycle-accurate simulators or analytical timing models to

better assess performance characteristics of CXL-enabled systems.
We also plan to support cxl.cache, which our current setup does not
allow, and to bring under our hardware-software co-development
system accelerator devices.

REFERENCES

[1] Ann, M., CHANG, A, LEE, D, Gim, J., Kim, J., JUNG,]., REBHOLZ, O., PHAM, V.,
Marrapr, K., AND K1, Y. S. Enabling cxl memory expansion for in-memory
database management systems. In Proceedings of the 18th International Workshop
on Data Management on New Hardware (2022), pp. 1-5.

[2] Arir, M., AssoGBa, K., RAFIQUE, M. M., AND VAZHKUDAL S. Exploiting cxl-based
memory for distributed deep learning. In Proceedings of the 51st International
Conference on Parallel Processing (2022), pp. 1-11.

[3] BErLaRrD, F. Qemu, a fast and portable dynamic translator. In USENIX annual
technical conference, FREENIX Track (2005), vol. 41, California, USA, pp. 10-5555.

[4] BERGER, D.S., ErRnsT, D., L1, H., ZARDOSHTI, P., SHAH, M., RAJADNYA, S., LEE, S.,
Hsu, L., AGARWAL, I, HiLL, M. D, ET AL. Design tradeoffs in cxl-based memory
pools for public cloud platforms. IEEE Micro 43, 2 (2023), 30-38.

[5] DEevELoPERs, T. P. tracing - application-level tracing for rust. https://crates.io/
crates/tracing, 2024. Version 0.1.40.

[6] DEeveLopERs, T.P. tracing-opentelemetry - opentelemetry integration for tracing.
https://crates.io/crates/tracing-opentelemetry, 2024. Version 0.22.0.

[7] DEevEeLopErs, T.R. P. log - a lightweight logging facade for rust. https://crates.
io/crates/log, 2024. Version 0.4.21.

[8] Guo, Y., aNDLL G. A cxl-powered database system: Opportunities and challenges.
In 2024 IEEE 40th International Conference on Data Engineering (ICDE) (2024),
IEEE, pp. 5593-5604.

[9] Jang, J., Cuor, H., Bag, H., Lk, S., KwoN, M., AND Jung, M. {CXL-
ANNS}:{Software-Hardware} collaborative memory disaggregation and compu-
tation for {Billion-Scale} approximate nearest neighbor search. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23) (2023), pp. 585-600.

[10] Kim, K., Kim, H,, So, J., LEg, W,, Im, J., PARK, S., CHO, J., AND SoNG, H. Smt:
Software-defined memory tiering for heterogeneous computing systems with
cxl memory expander. IEEE Micro 43, 2 (2023), 20-29.

[11] Kim, S., KaNG, J., Kim, K., LEE, S., AND Nam, B. Cxlsim: A simulator for cxl
memory expander. In 2025 IEEE International Conference on Big Data and Smart
Computing (BigComp) (2025), IEEE, pp. 156-159.

[12] KnuTH, D. E. The Art of Computer Programming, Volume 1: Fundamental Al-
gorithms, 3rd ed. Addison-Wesley, 1997. See Section 2.5: Dynamic Storage
Allocation.

[13] Ly H., BERGER, D. S, Hsu, L., ERNsT, D., ZARDOSHTI, P., NOVAKOVIC, S., SHAH,
M., RAJADNYA, S., LEE, S., AGARWAL, L, ET AL. Pond: Cxl-based memory pool-
ing systems for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (2023), pp. 574-587.

[14] Livu, J., Hap1AN, H.,, WANG, Y., BERGER, D. S., NGUYEN, M,, JiaN, X., Nos, S. H,,
AND L1, H. Systematic cxl memory characterization and performance analysis at

https://crates.io/crates/tracing
https://crates.io/crates/tracing
https://crates.io/crates/tracing-opentelemetry
https://crates.io/crates/log
https://crates.io/crates/log

Hardware-Software Co-Development for Emerging CXL Architectures

[15]

[16]

[17]

[18

[19]
[20]

[21

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

scale. In Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2 (2025),
pp. 1203-1217

Liv, J., Hap1aN, H.,, Xu, H., BERGER, D. S., AND L1, H. Dissecting cxl memory
performance at scale: Analysis, modeling, and optimization. arXiv preprint
arXiv:2409.14317 (2024).

Marur, H. A, WaNG, H., DHANOTIA, A., WEINER, J., AGARWAL, N., BHAT-
TACHARYA, P., PETERSEN, C., CHOWDHURY, M., KANAUJIA, S., AND CHAUHAN,
P. Tpp: Transparent page placement for cxl-enabled tiered-memory. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (2023), pp. 742-755.
MartsaAkis, N., AND THE RAYON DEVELOPERS. rayon - data parallelism in rust.
https://crates.io/crates/rayon, 2024. Version 1.10.0.

PERFETTO DEVELOPMENT TEAM. Perfetto documentation. https://perfetto.dev/
docs/, 2025. Accessed: 2025-06-20.

QEMU ProjecT. Qemu emulator. https://github.com/qemu/qemu, 2024.
QUINN, D., PATEL, N., AND ALIAN, M. Compute-enabled cx] memory expansion
for efficient retrieval augmented generation. IEEE Micro (2025).

SHARMA, D. D. Compute express link (cxl): Enabling heterogeneous data-centric
computing with heterogeneous memory hierarchy. IEEE Micro 43, 2 (2022),
99-109.

Sim, J., AHN, S., AHN, T., LEE, S., RHEE, M., KM, J., SHIN, K., MooN, D., Kim, E., AND
PARK, K. Computational cxl-memory solution for accelerating memory-intensive
applications. IEEE Computer Architecture Letters 22, 1 (2022), 5-8.
SUETTERLEIN, J., MANZANO, J., AND MARQUEZ, A. Synchronization for cxl based
memory. In Proceedings of the International Symposium on Memory Systems
(2024), pp. 178-185

SuN, Y, Yuan, Y., Yu, Z., KupEgr, R, Song, C., HuaNg, J., J1, H., AcarRwaAL, S., Lou,
J..JEONG, L, ET AL. Demystifying cx] memory with genuine cxl-ready systems and
devices. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture (2023), pp. 105-121.

WANG, X., L1y, J., Wy, J., YANG, S., REN,]J., SHANKAR, B., AND L1, D. Performance
characterization of cx] memory and its use cases. In International Parallel and
Distributed Processing Symposium (2025).

WAaNG, Y., Wu, L., Hong, W., Ou, Y., WANG, Z., GAo, S., ZHANG, J., Ma, S., DoONG,
D., Q1, X., ET AL. A comprehensive simulation framework for cxl disaggregated
memory. arXiv preprint arXiv:2411.02282 (2024).

WanGgG, Z., CHEN, Y., L1, C., GuaN, Y., N1u, D, GuaNn, T, Du, Z., WE1, X., AND
SuN, G. Ctxnl: A software-hardware co-designed solution for efficient cxl-based
transaction processing. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (2025), pp. 192-209.

Wu,], L1u, J., KESTOR, G., G1o108A, R., L1, D., AND MARQUEZ, A. Performance
study of cxl memory topology. In Proceedings of the International Symposium on
Memory Systems (2024), pp. 172-177.

Xu, D, FENG, Y., SHIN, K., KM, D., JEoN, H., AND L1, D. Efficient tensor offloading
for large deep-learning model training based on compute express link. In SC24:
International Conference for High Performance Computing, Networking, Storage
and Analysis (2024), IEEE, pp. 1-18.

YANG, Y., SAFAYENIKOO, P., Ma, J., KHAN, T. A., AND QUINN, A. Cxlmemsim:
A pure software simulated cxl. mem for performance characterization. arXiv
preprint arXiv:2303.06153 (2023).

ZHONG, Y., BERGER, D. S., WALDSPURGER, C., WEE, R., AGARWAL, I., AGARWAL, R.,
Habpy, F., KuMAR, K, H1LL, M. D., CHOWDHURY, M., ET AL. Managing memory
tiers with {CXL} in virtualized environments. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24) (2024), pp. 37-56.

https://crates.io/crates/rayon
https://perfetto.dev/docs/
https://perfetto.dev/docs/
https://github.com/qemu/qemu

	Abstract
	1 Introduction
	2 Emulation System
	3 MemForge
	4 Evaluation
	4.1 Benchmarks
	4.2 Environmental Setup
	4.3 Experimental Results

	5 Related Work
	6 Conclusions and Future Work
	References

