
Hardware-Software Co-Development for Emerging CXL
Architectures

Roberto Gioiosa

Pacific Northwest National Laboratory

Richland, WA

roberto.gioiosa@pnnl.gov

Bo Fang

Pacific Northwest National Laboratory

Richland, WA

bo.fang@pnnl.gov

Lenny Guo

Pacific Northwest National Laboratory

Richland, WA

lenny.guo@pnnl.gov

Andres Marquez

Pacific Northwest National Laboratory

Richland, WA

lenny.guo@pnnl.gov

ABSTRACT
Modern scientific, Artificial Intelligence (AI), and graph analytics

workloads demand substantial memory resources to accommodate

their extensive datasets. While distributed systems connected via

high-performance networks have traditionally been employed to

address such challenges, Compute eXpress Link (CXL) technology

is emerging as a compelling alternative. CXL systems offer a shared

memory abstraction over physically disaggregated memory with

load/store programming semantics, simplifying the development

of applications that require large memory pools.

However, as CXL hardware is still under development, its in-

ternal mechanisms and the performance implications for critical

applications remain largely unexplored. To address this gap, we

propose a hardware-software co-development framework for future

CXL systems. Our approach combines a CXL-enabled full-system

emulator with a memory allocator (MemForge) backed by CXL

memory devices and a high-level set of Application Programming

Interface (API)s.

We demonstrate that ourmethodology supports the development

of essential kernels across High-Performance Computing (HPC),

AI, and graph analytics domains. Experimental results obtained

from two CXL hardware configurations — direct-attached memory

and memory accessed via a CXL switch — indicate minimal run-

time overhead. Additionally, we highlight the internal introspective

capabilities of our memory allocator, which facilitate profiling and

debugging.

KEYWORDS
Memory, CXL, Emulation, Rust

1 INTRODUCTION
Modern workloads are becoming increasingly complex and demand

vast computing and memory resources. While workloads across

domains may exhibit different computation and memory access pat-

terns, they also share common characteristics. In particular, there

is a growing need for larger memory pools that can be accessed

via load/store semantics within a shared-memory programming

paradigm. This trend spans domains from High-Performance Com-

puting (HPC) and scientific simulation to Artificial Intelligence

(AI) and High-Performance Data Analytics (HPDA), encompassing

scientific, commercial, and security applications.

In this context, Compute eXpress Link (CXL) is emerging as a

promising solution to interconnect compute elements and large

memory pools through fabric-attached memory [21]. CXL is an

open interconnect standard designed to improve the performance

and efficiency of disaggregated memory systems by enabling high-

speed communication among Central Processing Unit (CPU)s, mem-

ory devices, accelerators (e.g., Graphics Processing Unit (GPU)s,

Field-Programmable Gate Array (FPGA)s), and other peripherals.

Based on the Peripheral Component Interconnect Express (PCIe)

protocol, CXL offers lower latency and enhanced support for mem-

ory coherence, which is essential in modern computing environ-

ments. The CXL specification comprises three protocol layers: cxl.io
manages basic discovery, configuration, and device management;

cxl.mem allows the host CPU to directly access device-attached

memory (e.g., expansion modules); and cxl.cache enables accelera-
tors to cache host memory and maintain coherence. Additionally,

some vendors refer to cxl.accel as a shorthand for cxl.io and cxl.cache
(Type 1 accelerator device) and cxl.io, cxl.cache, and cxl.mem (Type

2 accelerator device). The protocol’s flexibility and extensibility

enable disaggregated memory to be presented to users as a uni-

fied, shared memory space, thereby simplifying programming and

system management.

As with any emerging technology, the design and implemen-

tation of CXL devices, switches, and interconnects are still evolv-

ing [10]. Although prototypes of CXL devices and switches exist,

they often support only a subset of the full protocol (typically cxl.io
and cxl.mem), and the accompanying software stack (including

firmware and system software) is limited primarily to testing and

validation. This complicates the development of applications in an-

ticipation of fully-featured CXL systems. This scenario is common

in the lifecycle of emerging technologies: by the time hardware

is ready for deployment, the corresponding software is often still

under development. Consequently, software readiness delays sys-

tem deployment. From a technical standpoint, this is problematic

because it prevents valuable feedback from being incorporated

into the hardware design, which is often finalized by that stage. Al-

though enhancements may be deferred to future hardware revisions,

this leads to a cycle in which software and hardware perpetually

attempt to catch up with each other.

1

https://orcid.org/0000-0001-9430-2656

F. Lastname et al.

We argue that a more effective strategy is the co-development

of hardware and software. This approach not only reduces time-

to-deployment, as both hardware and software can mature con-

currently, but also enables co-design opportunities. In particular,

it allows software developers to provide real-time feedback that

can inform hardware design choices, potentially improving overall

system efficiency. However, tools to support hardware-software

co-development are typically limited in scope and suitability, often

restricted to simple applications or microbenchmarks. To address

this gap, we introduce a co-development framework tailored for

future CXL systems. Our methodology integrates a CXL full-system

emulator with well-defined interfaces, a CXL-aware memory allo-

cator implemented in Rust, and a set of Application Programming

Interface (API)s for CXL system programming. This framework

enables application development that leverages device-attached

memory (both directly attached and accessed via CXL switches)

while hardware is still under design. Consequently, applications de-

veloped with our framework are immediately ready to utilize CXL

hardware once it becomes available. In essence, the full-system em-

ulator abstracts low-level hardware components, while the memory

allocator abstracts CXL protocols for end users, allowing them to

reason using familiar data structures such as lists, vectors, and ma-

trices. Furthermore, the allocator provides introspective telemetry

useful for debugging and performance tuning.

While current CXL benchmarks (e.g., STREAM) are relatively

simplistic, we demonstrate that our combined solution is capable of

running representative HPC, AI, and HPDA kernels with minimal

runtime overhead compared to conventional allocators. We also

present execution traces from our allocator that illustrate memory

fragmentation mitigation and caching strategies. Our evaluation in-

cludes comparisons across configurations involving device-attached

memory and CXL switches, and benchmarks the ease of use relative

to traditional DRAM-based allocators.

This paper makes the following contributions:

• We introduce a framework for hardware-software co-development

in the context of future CXL systems.

• We presentMemForge, a Rust-based memory allocator for

CXL-attached memory devices.

• We implement and evaluate key kernels from HPC, AI, and

graph analytics domains, demonstrating how MemForge

simplifies the use of CXL memory.

The remainder of this paper is structured as follows: Section 2

presents the CXL hardware emulator. Section 3 describes the Mem-

Forge allocator. Section 4 outlines the benchmark suite, experi-

mental setup, and results. Section 5 discusses related work. Finally,

Section 6 concludes and outlines directions for future research.

2 EMULATION SYSTEM
Our proposed emulation methodology uses QEMU [3, 19] as its core

building block. QEMU provides a universal interface for running a

wide range of guest operating systems on a host machine through

dynamic binary translation, converting guest CPU instructions into

host-compatible CPU instructions. Specifically, QEMU’s support for

CXL builds upon its well-established PCIe emulation infrastructure.

Because CXL leverages the PCIe physical layer, QEMU extends this

capability to model key components of a CXL-enabled system. This

VM CXL
MEM

(a) Memory device directly attached to host through CXL link.

VM CXL
Switch

MEM

MEM

(b) Two memory devices attached to the host through a CXL
switch.

Figure 1: QEMU can be configured to emulate CXL mem-
ory devices in several ways. In this work, we emulate direct-
attached memory devices (1a) and two CXL memory devices
attached to a CXL switch (1b).

facilitates the creation of complex virtual topologies that mimic

real-world hardware configurations.

QEMU can emulate a range of CXL hardware elements, enabling

the construction of complete virtualized CXL environments, includ-

ing:

• CXL Host Bridges: These serve as the connection point

between the host CPU and the CXL fabric. QEMU emulates

the logic required to manage and route traffic to and from

CXL devices.

• CXL Root Ports: Analogous to PCIe root ports, these vir-

tual interfaces on the host bridge link to CXL devices or

switches.

• CXL Switches: These virtual switches support complex

topologies and resource pooling by connecting multiple

CXL devices, allowing developers to test switching and

fabric management features.

• CXL Memory Devices (Type 3): These devices allow ex-

perimentation with volatile or persistent memory added to

a virtual machine—a primary use case for CXL. QEMU also

supports CXL Type 1 and Type 2 devices.

QEMU allows developers to build and test CXL-aware drivers,

system software, and applications without needing physical CXL

hardware, which is often scarce and costly. By offering a robust

and accessible virtual platform, QEMU enables complete develop-

ment, testing, and validation of CXL-aware software in parallel

with hardware development.

In this work, we emulate two configurations (Figure 1): the first

attaches a memory expander module directly to the host via a CXL

link (Figure 1a), while the second connects two memory expanders

to the host through a CXL switch (Figure 1b).

3 MEMFORGE
Our memory allocator, MemForge, is developed in Rust—a modern

programming language that emphasizes performance, safety, and

concurrency. The choice of Rust is deliberate: at scale (e.g., hundreds

2

Hardware-Software Co-Development for Emerging CXL Architectures

64 bytes

128 bytes

256 bytes

Available Split Allocated

Figure 2: MemForge’s buddy system algorithm recursively
split larger blocks of continuous memory to satisfy memory
requests. In this case, the original 256-byte memory block is
split first in two 128-byte blocks, then of the block is split
into two 64-byte blocks. One 64-byte block is allocated to
store the requested memory object.

of thousands of compute nodes connected to terabytes of disag-

gregated memory), achieving hardware-enforced consistency is

challenging. While some degree of localized hardware consistency

may be feasible, system-wide consistency will largely rely on soft-

ware. Software-level consistency, however, is notoriously difficult

to enforce and often introduces runtime overhead. By leveraging

Rust’s ownership model and compile-time borrow checker, Mem-

Forge shifts a portion of these consistency checks from runtime to

compile time, reducing associated overhead.

From an allocation perspective,MemForge implements the buddy

system algorithm [12]. This approach is well-suited for managing

contiguous blocks of memory while minimizing fragmentation.

MemForge maintains large contiguous blocks to satisfy substantial

memory requests and recursively splits them into smaller chunks

for smaller allocations. Figure 2 illustrates this process: an initial

256-byte block is recursively split to fulfill a 64-byte request. Upon

memory deallocation, MemForge attempts to merge adjacent free

blocks to recreate larger blocks, improving future allocation effi-

ciency. Internally, MemForge maintains a hierarchical list of free

blocks indexed by size and starting address. This list is protected

by a mutex, enabling safe use in multi-threaded applications.

MemForge supports multiple memory backing strategies. It can

map a regular file into memory, which is useful for development on

non-CXL systems such as laptops. Alternatively, it can use a device

file that represents a CXL-attached memory module. Applications

do not need to change between environments: the memory backing

source is controlled via the environment variable MEMFORGE_PATH.
MemForge implements the allocate() and deallocate()meth-

ods from Rust’s Allocator trait, allowing it to be used with stan-

dard library data structures such as vectors. Given an application

already developed, switching to MemForge requires only replacing

vec::with_capacity()with its internal version vec::with_capacity_in(),
which takes an allocator reference as an additional argument.

1

Tracing and logging in MemForge are user-configurable and

do not require application or allocator recompilation. Logging is

1vec::with_capacity(size) is essentially equivalent to

vec::with_capacity_in(size, Global)

built on Rust’s standard log subsystem [7] and can be enabled

via the RUST_LOG environment variable (e.g., info, debug, trace).
Instrumentation is provided using the tracing crate [5]. Key func-

tions such as allocate() and deallocate(), as well as significant
runtime events (e.g., block splits and merges), are instrumented

for observability. Trace data can be directed either to a default

subscriber (console) or to the OpenTelemetry subscriber provided

by the tracing-opentelemetry crate [6]. The latter enables trace

collection in multi-threaded and distributed environments, with

visualization support in tools such as Perfetto and Chrome Tracing.

Finally, MemForge is simple to integrate into Rust applications.

Thanks to the Cargo build system, importing MemForge automati-

cally resolves all dependencies with proper versioning.

4 EVALUATION
This Section describes our benchmarks, experimental setup, and

experimental results.

4.1 Benchmarks
GEMM. GEMM (General Matrix Multiply) is a fundamental op-

eration in linear algebra and widely used across domains such as

machine learning and scientific computing. It computes the prod-

uct of two matrices, 𝐴(𝑁,𝐾) and 𝐵(𝐾,𝑀), yielding a third matrix

𝐶 (𝑁,𝑀). The operation follows the expression 𝐶 = 𝛼𝐴𝐵 + 𝛽𝐶 ,
where 𝛼 and 𝛽 are scalars. In our experiments, we set 𝛽 = 0. Given

the significance of GEMM operations, they are heavily optimized

across various hardware platforms, including CPU, GPU, and FPGA.

Our implementation leverages the rayon crate [17] to parallelize

the outer loop using a parallel iterator. While more efficient ver-

sions are feasible, our implementation prioritizes simplicity and

clarity, making it easier to explain. Listing 1 presents our main

kernel implementation.

1 fn matrix_multiply(a: &[Vec<f32, &MemForge>], b: &[Vec<f32, &MemForge>]) ->

Vec<Vec> {↩→
2 let n = a.len();

3 let m = b[0].len();

4 let k = b.len();

5

6 (0..n).into_par_iter()

7 .map(|i| {

8 (0..m)

9 .map(|j| (0..k).map(|x| a[i][x] * b[x][j]).sum())

10 .collect()

11 })

12 .collect()

13

14 }

15

Listing 1: Parallel implementation of GEMM using Rayon.
We adopt a functional programming style to highlight Rust’s
and MemForge’s flexibility.

SpMM. SpMM (Sparse Matrix-Dense Matrix Multiplication) op-

erations are prevalent in graph analytics and Graph Neural Network

(GNN). They serve as critical building blocks in algebraic graph

3

F. Lastname et al.

1 pub struct CSRMatrix<'a> {

2 values: Vec<f64, &'a MemForge>,

3 col_indices: Vec<usize, &'a MemForge>,

4 row_pointers: Vec<usize, &'a MemForge>,

5 num_rows: usize,

6 num_cols: usize,

7 nnz: usize,

8 format: MatrixFormat,

9 field_type: MatrixType,

10 sym: MatrixSymmetry,

11 }

12

13 pub fn par_spmm(&self, dense_matrix: &[Vec]) -> Vec<Vec> {

14 let n = self.num_rows;

15 let k = dense_matrix[0].len();

16 let mut result = vec![vec![0.0; k]; n];

17

18 result

19 .par_iter_mut()

20 .enumerate()

21 .for_each(|(row, result_row)| {

22 for idx in self.row_pointers[row]..self.row_pointers[row + 1] {

23 let col = self.col_indices[idx];

24 let val = self.values[idx];

25 for dense_col in 0..k {

26 result_row[dense_col] += val * dense_matrix[col][dense_col];

27 }

28 }

29 });

30

31 result

32

33 }

Listing 2: Parallel SpMM implementation with CSR format.
The method belongs to CSRMatrix; for simplicity, the result
is stored in dense format.

Table 1: Matrix properties.

Name Rows Cols NNZ Type Domain
b1_ss 7 7 15 Real Chemistry

E40r5000 17281 17281 553956 Real 2D/3D

fs_183_1 183 183 1069 Real 2D/3D

Jgl009 9 9 50 Pattern Graph

lp_afiro 27 51 102 Real Linear Prog.

algorithms and are frequently optimized. Our implementation sup-

ports both COOrdinate (COO) and Compressed Row (CSR) sparse

matrix formats.
2
Aswith GEMM, the outer loop is parallelized using

the rayon crate. Listing 2 illustrates the CSR-based implementation.

Input matrices are drawn from the SuiteSparse Matrix Collection,

as summarized in Table 1.

Transformer Kernel. This benchmark simulates key operations in

transformer models such as attention mechanisms and feedforward

layers, used in models like BERT and GPT-3. The implementation

includes multi-head attention, feedforward layers, and layer nor-

malization. Multi-head attention computes multiple sets of queries,

keys, and values in parallel, enabling diverse focus across input

tokens. The outputs are concatenated while preserving the model

2
We use CSR in our evaluation due to its slightly better performance.

dimension (dim_model). Feedforward layers apply transformations

with intermediate dimensionality (dim_ff), typically larger than

the model dimension, and utilize ReLU activation. Layer normal-

ization ensures stable training. As dimensionality and head count

increase, the workload intensifies, allowing us to evaluate perfor-

mance in compute-intensive conditions. The core computation is a

parallel GEMM kernel, previously shown in Listing 1.

4.2 Environmental Setup
Our experiments use QEMU version 9.2.90 with CXL extensions.

3

Each virtual machine is configured with 8 x86 64-bit virtual CPUs,

8GB DRAM, and a virtual NIC. In the first configuration, a 4GB

CXL memory expander is directly attached to the host and backed

by a regular file on the host.
4
In the second configuration, two 2 GB

memory devices connect to the host through a CXL switch. Both

configurations operate in Direct Access (DAX) mode to bypass the

I/O stack.

We use Rust version 1.88.0-nightly due to required allocator

features.

4.3 Experimental Results
4.3.1 Benchmarks. QEMU is not cycle-accurate and lacks a de-

tailed timing model. Thus, absolute timing data must be interpreted

cautiously. Nevertheless, relative trends are meaningful. Figure 3

compares runtime performance of GEMM, SpMM, and LLM Trans-

former benchmarks using MemForge in both QEMU configurations

against the Rust standard allocator. In all plots, global indicates use
of the standard Rust allocator, dax refers to the configuration with

direct-attached CXL memory, and switch refers to the configuration
using a CXL switch.

Across all benchmarks, MemForge introduces no notable runtime

overhead. This is especially evident in small input sizes where allo-

cation cost is relatively high. As input sizes increase, and execution

becomes compute-dominated, the global and dax configurations ex-

hibit similar performance. The switch configuration incurs slightly

higher overhead due to increased latency from the CXL switch.

Overall, these findings support the viability of co-developing

hardware and software using our approach. While the QEMU la-

tency model is not reflective of real hardware, relative trends pro-

vide useful insight into expected behaviors.

4.3.2 Tracing. MemForge includes built-in tracing support to ana-

lyze correctness (e.g., memory leaks) and performance.With RUST_LOG=trace,
MemForge emits trace data in JSON format, compatible with tools

like Chrome Tracing and Perfetto [18].

Figure 4 shows a trace from the SpMM benchmark (Listing 2)

visualized with Perfetto. Red indicates allocate() calls; green

indicates deallocate() calls. Two waves of calls appear: the first

corresponds to allocating a COOMatrix from the parsed Matrix

Market input; the second arises from constructing the CSRMatrix.
The COOMatrix is deallocated after conversion, and the CSRMatrix
is deallocated at the benchmark’s end.

The trace reveals fine-grained timing and thread activity, aiding

performance diagnosis. Additional introspective metrics (e.g., block

3
https://gitlab.com/jic23/qemu, branch cxl-2025-03-20.

4
The emulated memory is persistent, although persistence is not utilized here.

4

Hardware-Software Co-Development for Emerging CXL Architectures

(a) Average execution time of GEMM operator on square input
matrices of dimensions 𝑁 × 𝑁 .

(b) Average execution time of SpMM operator for various sparse
matrices from the SuiteSparse Matrix Collection. Log scale used
on x-axis.

(c) Average execution time for LLM Transformer kernel across
model dimensions. The number of heads and layer dimensions
are adjusted to maintain compatibility.

Figure 3: Average execution time for tested benchmarks. Re-
sults reflect mean of 10 runs for each input. Experiments
cover the Rust standard allocator (global) and two QEMU
configurations (dax and switch).

splits/merges) are available but omitted here for brevity. We refer

readers to Perfetto’s documentation for a complete overview.

5 RELATEDWORK
CXL Emulation: Efforts to emulate CXL hardware and system

functionality have emerged as critical tools for evaluating CXL de-

signs prior to the availability of physical hardware. CXL-DMSim [26]

extends the gem5 simulator to create a software-based full-system

simulation framework. By integrating support for CXL.mem and

CXL.io protocols, it models CXL memory expanders and enables

diverse emulation scenarios, ranging frommemory allocation to OS-

level management through NUMA-compatible device drivers. Al-

though CXL-DMSim has been silicon-validated against real FPGA-

and ASIC-based designs, it is limited to x86 systems and excludes

support for CXL.cache protocols.

QEMU [3, 19], an open-source emulator, provides fundamen-

tal building blocks for emulating CXL.io configurations via host

bridges, root ports, and mailbox functionality mapped to PCIe ad-

dress spaces. Its Type-3 device emulation supports Host-Managed

Device Memory (HDM), allowing memory endpoints configuration

using either RAM or file backends. However, accelerator mem-

ory integration (HDM-D) and cache coherency—critical features of

CXL.cache—are currently unsupported in QEMU. CXLSim [11]

bridges gem5 and QEMU to introduce cache hit/miss tracking,

enabling projections of application performance under simulated

memory expander scenarios. Similarly, CXLMemSim [30] employs

a software-level approach using eBPF traces to inject memory de-

lays, providing rudimentary CXL.mem emulation for experimental

purposes. However, due to the absence of accurate timing frame-

works and latency variation support, CXLMemSim fails to capture

the nuanced characteristics of the CXL microarchitecture.

CXL Performance Optimization: Recent advances in optimiz-

ing Compute Express Link (CXL) performance span performance

characterization, modeling, and application-specific optimizations.

Several studies have focused on characterizing performance on real

CXL platforms. For instance, [23, 24] leverage genuine CXL-ready

systems to examine synchronization challenges and the broader

implications of memory expansion, while [28] explores emulated

NUMA-based layouts to replicate CXL memory pooling scenarios

on systems with varying processor-memory topologies. CXL perfor-

mance has also been studied in serverless computing environments

[4, 13, 14, 31]. These studies demonstrated CXL memory pooling

approaches using latency-insensitive virtual machines (VMs) where

entire memory allocations come from disaggregated CXL pools,

while latency-sensitive VMs dynamically split their allocations be-

tween local DRAM and remotely pooled CXL memory based on

memory predictions for untouched pages. However, these frame-

works are restricted by their limited support for CXL protocols and

lack multi-host emulation capabilities.

In addition to characterization, performance optimization tech-

niques for CXL systems have been proposed in [15, 16, 25]. These

efforts model CXL latency across hierarchical levels of the system to

mitigate memory-related bottlenecks. For instance, [15] addresses

slowdowns caused by page migration, proposing strategies such as

adaptive throttling and optimization of interleaving ratios, while

[25] devises object-level interleaving mechanisms combined with

thread assignment tuned for scalability. Together, these studies

provide foundational insights into overcoming CXL performance

limitations.

5

F. Lastname et al.

Figure 4: Execution trace of the SpMMbenchmark using b1_ss as input and CSR format. Red and green blocks denote allocate()
and deallocate() calls in MemForge, respectively.

CXL Applications: The versatility of CXL makes it applicable

across diverse domains, enabling performance gains in memory-

intensive workloads. In approximate nearest neighbor search, [9]

demonstrates how software-hardware collaborative memory disag-

gregation can accelerate billion-scale search workflows. Likewise,

CXL has been successfully employed in machine learning and data-

base systems. For distributed deep learning [2] and large-scale

training workloads [29], CXL facilitates efficient memory access,

tensor offloading, and scalability. In K-nearest neighbor search [22],

CXL-poweredmemory solutions address computational bottlenecks

by leveraging pooled disaggregated memory. The technology also

enhances database systems, with studies like [1, 8] exploring oppor-

tunities and challenges in memory expansion to support transaction

processing [27] and emerging paradigms such as Retrieval Aug-

mented Generation [20].

6 CONCLUSIONS AND FUTUREWORK
Thiswork addresses the challenge of hardware-software co-development

for future CXL systems. We emphasize the importance of devel-

oping software in tandem with hardware to foster bi-directional

feedback between development teams. To this end, we introduced a

co-development framework comprising a full-system CXL emulator

and a novel memory allocator, MemForge.

Our results demonstrate that MemForge offers a simple and

intuitive API, enabling the implementation of key kernels across

various domains, including HPC, AI, and HPDA. We evaluated two

hardware configurations—direct-attached and CXL switch-based

memory—and showed that MemForge introduces negligible run-

time overhead. Moreover, we highlighted MemForge’s introspective

capabilities for tracing and debugging.

Our experience shows that this framework provides a practical

and effective environment for developing applications and testing

CXL hardware prototypes. In future work, we plan to enhance

timing accuracy by integrating a detailed timing model for CXL

hardware. This will involve extending QEMU with support for

either cycle-accurate simulators or analytical timing models to

better assess performance characteristics of CXL-enabled systems.

We also plan to support cxl.cache, which our current setup does not

allow, and to bring under our hardware-software co-development

system accelerator devices.

REFERENCES
[1] Ahn, M., Chang, A., Lee, D., Gim, J., Kim, J., Jung, J., Rebholz, O., Pham, V.,

Malladi, K., and Ki, Y. S. Enabling cxl memory expansion for in-memory

database management systems. In Proceedings of the 18th International Workshop
on Data Management on New Hardware (2022), pp. 1–5.

[2] Arif, M., Assogba, K., Rafiqe, M. M., and Vazhkudai, S. Exploiting cxl-based

memory for distributed deep learning. In Proceedings of the 51st International
Conference on Parallel Processing (2022), pp. 1–11.

[3] Bellard, F. Qemu, a fast and portable dynamic translator. In USENIX annual
technical conference, FREENIX Track (2005), vol. 41, California, USA, pp. 10–5555.

[4] Berger, D. S., Ernst, D., Li, H., Zardoshti, P., Shah, M., Rajadnya, S., Lee, S.,

Hsu, L., Agarwal, I., Hill, M. D., et al. Design tradeoffs in cxl-based memory

pools for public cloud platforms. IEEE Micro 43, 2 (2023), 30–38.
[5] Developers, T. P. tracing - application-level tracing for rust. https://crates.io/

crates/tracing, 2024. Version 0.1.40.

[6] Developers, T. P. tracing-opentelemetry - opentelemetry integration for tracing.

https://crates.io/crates/tracing-opentelemetry, 2024. Version 0.22.0.

[7] Developers, T. R. P. log - a lightweight logging facade for rust. https://crates.

io/crates/log, 2024. Version 0.4.21.

[8] Guo, Y., and Li, G. A cxl-powered database system: Opportunities and challenges.

In 2024 IEEE 40th International Conference on Data Engineering (ICDE) (2024),
IEEE, pp. 5593–5604.

[9] Jang, J., Choi, H., Bae, H., Lee, S., Kwon, M., and Jung, M. {CXL-
ANNS}:{Software-Hardware} collaborative memory disaggregation and compu-

tation for {Billion-Scale} approximate nearest neighbor search. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23) (2023), pp. 585–600.

[10] Kim, K., Kim, H., So, J., Lee, W., Im, J., Park, S., Cho, J., and Song, H. Smt:

Software-defined memory tiering for heterogeneous computing systems with

cxl memory expander. IEEE Micro 43, 2 (2023), 20–29.
[11] Kim, S., Kang, J., Kim, K., Lee, S., and Nam, B. Cxlsim: A simulator for cxl

memory expander. In 2025 IEEE International Conference on Big Data and Smart
Computing (BigComp) (2025), IEEE, pp. 156–159.

[12] Knuth, D. E. The Art of Computer Programming, Volume 1: Fundamental Al-
gorithms, 3rd ed. Addison-Wesley, 1997. See Section 2.5: Dynamic Storage

Allocation.

[13] Li, H., Berger, D. S., Hsu, L., Ernst, D., Zardoshti, P., Novakovic, S., Shah,

M., Rajadnya, S., Lee, S., Agarwal, I., et al. Pond: Cxl-based memory pool-

ing systems for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (2023), pp. 574–587.

[14] Liu, J., Hadian, H., Wang, Y., Berger, D. S., Nguyen, M., Jian, X., Noh, S. H.,

and Li, H. Systematic cxl memory characterization and performance analysis at

6

https://crates.io/crates/tracing
https://crates.io/crates/tracing
https://crates.io/crates/tracing-opentelemetry
https://crates.io/crates/log
https://crates.io/crates/log

Hardware-Software Co-Development for Emerging CXL Architectures

scale. In Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2 (2025),

pp. 1203–1217.

[15] Liu, J., Hadian, H., Xu, H., Berger, D. S., and Li, H. Dissecting cxl memory

performance at scale: Analysis, modeling, and optimization. arXiv preprint
arXiv:2409.14317 (2024).

[16] Maruf, H. A., Wang, H., Dhanotia, A., Weiner, J., Agarwal, N., Bhat-

tacharya, P., Petersen, C., Chowdhury, M., Kanaujia, S., and Chauhan,

P. Tpp: Transparent page placement for cxl-enabled tiered-memory. In Pro-
ceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3 (2023), pp. 742–755.

[17] Matsakis, N., and the Rayon Developers. rayon - data parallelism in rust.

https://crates.io/crates/rayon, 2024. Version 1.10.0.

[18] Perfetto Development Team. Perfetto documentation. https://perfetto.dev/

docs/, 2025. Accessed: 2025-06-20.

[19] QEMU Project. Qemu emulator. https://github.com/qemu/qemu, 2024.

[20] Quinn, D., Patel, N., and Alian, M. Compute-enabled cxl memory expansion

for efficient retrieval augmented generation. IEEE Micro (2025).
[21] Sharma, D. D. Compute express link (cxl): Enabling heterogeneous data-centric

computing with heterogeneous memory hierarchy. IEEE Micro 43, 2 (2022),

99–109.

[22] Sim, J., Ahn, S., Ahn, T., Lee, S., Rhee, M., Kim, J., Shin, K., Moon, D., Kim, E., and

Park, K. Computational cxl-memory solution for accelerating memory-intensive

applications. IEEE Computer Architecture Letters 22, 1 (2022), 5–8.
[23] Suetterlein, J., Manzano, J., and Marqez, A. Synchronization for cxl based

memory. In Proceedings of the International Symposium on Memory Systems
(2024), pp. 178–185.

[24] Sun, Y., Yuan, Y., Yu, Z., Kuper, R., Song, C., Huang, J., Ji, H., Agarwal, S., Lou,

J., Jeong, I., et al. Demystifying cxl memory with genuine cxl-ready systems and

devices. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture (2023), pp. 105–121.

[25] Wang, X., Liu, J., Wu, J., Yang, S., Ren, J., Shankar, B., and Li, D. Performance

characterization of cxl memory and its use cases. In International Parallel and
Distributed Processing Symposium (2025).

[26] Wang, Y., Wu, L., Hong, W., Ou, Y., Wang, Z., Gao, S., Zhang, J., Ma, S., Dong,

D., Qi, X., et al. A comprehensive simulation framework for cxl disaggregated

memory. arXiv preprint arXiv:2411.02282 (2024).
[27] Wang, Z., Chen, Y., Li, C., Guan, Y., Niu, D., Guan, T., Du, Z., Wei, X., and

Sun, G. Ctxnl: A software-hardware co-designed solution for efficient cxl-based

transaction processing. In Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (2025), pp. 192–209.

[28] Wu, J., Liu, J., Kestor, G., Gioiosa, R., Li, D., and Marqez, A. Performance

study of cxl memory topology. In Proceedings of the International Symposium on
Memory Systems (2024), pp. 172–177.

[29] Xu, D., Feng, Y., Shin, K., Kim, D., Jeon, H., and Li, D. Efficient tensor offloading

for large deep-learning model training based on compute express link. In SC24:
International Conference for High Performance Computing, Networking, Storage
and Analysis (2024), IEEE, pp. 1–18.

[30] Yang, Y., Safayenikoo, P., Ma, J., Khan, T. A., and Quinn, A. Cxlmemsim:

A pure software simulated cxl. mem for performance characterization. arXiv
preprint arXiv:2303.06153 (2023).

[31] Zhong, Y., Berger, D. S., Waldspurger, C., Wee, R., Agarwal, I., Agarwal, R.,

Hady, F., Kumar, K., Hill, M. D., Chowdhury, M., et al. Managing memory

tiers with {CXL} in virtualized environments. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 24) (2024), pp. 37–56.

7

https://crates.io/crates/rayon
https://perfetto.dev/docs/
https://perfetto.dev/docs/
https://github.com/qemu/qemu

	Abstract
	1 Introduction
	2 Emulation System
	3 MemForge
	4 Evaluation
	4.1 Benchmarks
	4.2 Environmental Setup
	4.3 Experimental Results

	5 Related Work
	6 Conclusions and Future Work
	References

