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Abstract
Computing trends are leading high performance and enterprise

platforms to adopt memory systems with increasingly complex

architectures. As a result, many high end systems now include mul-

tiple types of memory with different capabilities and performance

or distributed memory resources connected via a fast intercon-

nect. New data management strategies are needed to exploit the

unique advantages of these diverse and distributed architectures.

As the primary generators of memory accesses, applications are

well-suited to guide and tailor memory management for optimizing

usage of these architectures. However, conventional data manage-

ment in the operating system often proceeds with little knowledge

of application intents or behaviors. This semantic gap limits op-

timization opportunities and can lead to inefficient utilization of

complex memory resources.

To address these challenges, this work proposes VMem: an ap-

plication runtime and programming interface for enabling direct

application control of physical memory resources. Designed and

developed in Linux, VMem leverages standard Linux features and

system calls to delegate key physical memory management tasks,

including the allocation and recycling of physical memory, to the

application itself. VMem does not require custom kernel code or

non-standard hardware, and through integration with the memory

allocator, can be deployed for use with many applications without

needing to update or recompile application source. Experiments

with the SPEC
®
CPU 2017 benchmarks, this work demonstrate that

many applications can use VMem to exert control over physical

memory resources with little or no overhead compared to the de-

fault software stack. Additionally, this work discusses opportunities

to improve memory utilization with VMem and demonstrate this

potential by using it to implement an optimization that uses page

replication to reduce costs associated with data migration.

CCS Concepts
• Software and its engineering→ Runtime environments; • Com-
puter systems organization→ Heterogeneous (hybrid) systems.

Keywords
Memory management, runtime systems, heterogeneous memory

systems

1 Introduction
As computing advances are increasingly relying on data-driven

analyses, including artificial intelligence (AI) and machine learn-

ing (ML), demands for high-throughput, low-latency processing

of larger and larger sets of data in memory are continuing to rise.

At the same time, the need for high-density sharing has led to the

widespread adoption of machine configurations with large amounts

of memory attached to distributed nodes and connected through

efficient networking resources. New media technologies, such as

high bandwidth memories, power-efficient and non-volatile RAMs,

and many other new accelerator options, including processing-in-

memory (PIM), and new memory interconnect options, including

the Compute Express Link (CXL), are bringing rich opportunities

to address the diverse needs of modern applications under vari-

ous cost, performance, and power constraints. In response to these

trends, most cluster and warehouse-scale computing systems now

include a heterogeneous mix of memory devices and organizations

designed to enable the combined benefits of their unique capabili-

ties and support the diverse and multi-tenant workloads deployed

in modern data centers and supercomputers.

As a result, new data management strategies are needed to capi-

talize on the different strengths of diverse and distributed memories.

Specifically, the system must be able to efficiently match applica-

tion data to the type of memory that best suits its purpose for the

optimal amount of time. Applications, as the primary generators

of memory usage, are well-suited to guide such tasks. However,

conventional data management approaches are limited in how they

use application-level information due to some divisions that have

traditionally been present during memory management. While ap-

plications control the structure and usage of program data, many

data management tasks including: the allocation and recycling of

physical memory, updates to application page tables, translations of

virtual to physical addresses, and swapping of volatile to persistent

storage; are under the purview of the operating system (OS) and

hardware. Therefore, these tasks proceed with little or no knowl-

edge of application behavior. This semantic gap limits optimization
opportunities and can lead to inefficiencies in how application data is
mapped to diverse and distributed memory architectures.

To address these shortcomings, this work proposes a new mem-

ory management framework, called VMem, that aims to reduce

the semantic gap between application-level data usage and system-

level memory management. VMem acquires and organizes physical
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memory into logical pools corresponding to divisions in the un-

derlying memory architecture. It then delegates key operations on

physical memory, including page fault handling and recycling, to

the application itself, thereby empowering the application to map,

use, and manipulate these resources for their own program data. In

this way, VMem provides an environment for researchers and engi-

neers to design and implement system-level memory management

strategies and optimizations in tight coordination with application

semantics and behavior.

To implement this functionality, VMem employs system calls and

facilities that are standard on modern Linux platforms. As a result,

VMem does not require any kernel modifications or non-standard

hardware. Moreover, its novel design supports multi-process and

multi-application usage scenarios, and in many cases, applications

can leverage features and optimizations enabled by VMem automat-

ically, and without updating program source code, by dynamically

linking a custom allocator that invokes the VMem API.

This work makes the following important contributions:

• It describes the design and implementation of VMem: a user-

level runtime and API that enables applications to direct

and fine-grain control over physical memory resources. The

VMem framework has been developed open source and will

be available for download upon publication of this work.

• It evaluates the execution time overhead and limitations of

this approach. Specifically, it characterizes the key opera-

tional costs of VMem with different page sizes on server

class Intel
®
hardware. Through experiments with the stan-

dard SPEC
®
CPU 2017 benchmark suite, it shows that many

applications can use VMem with little or no execution time

overhead compared to the default Linux memory manager.

• To demonstrate the potential of this approach to improve

efficiency on complex memory platforms, it uses VMem to

implement an optimization that leverages page replication to
reduce costs associated withmigrating data from one device

to another. The evaluation shows that this optimization

can potentially increase migration throughput by multiple

orders of magnitude (20× to over 295×) for applications
that need to move memory regions with infrequent writes.

2 Background and Related Work
Software-Directed Data Tiering: As computing trends have led

to higher demands on an increasingly complex data path, many

systems have begun to employ software-directed tiering of data in

memory to enable more flexible and effective utilization of diverse

memory hardware. Software-directed tiering empowers the OS,

sometimes with feedback from or in coordination with application

software, to assign data into different memory tiers and migrate

data between tiers as needed. Modern implementations of this ap-

proach are similar to data management on non-uniform memory

architecture (NUMA) platforms [17], with each type or tier of mem-

ory represented as its own NUMA domain. In many cases, the

system also exposes data placement controls to user-level programs

through the system call interface. For example, Linux applications

can use the mbind or move_pages system calls to request or require

that a specific range of virtual memory be backed with physical

pages from a particular memory tier. These finer-grained controls

enable applications to coordinate tier assignments with allocation

and usage patterns, potentially enabling powerful efficiencies.

Despite its advantages, software-directed data tiering is often

underutilized due to some limitations of current approaches. First,

software-directed data migration often incurs high execution time

costs due to the need to align virtual and physical memory ad-

dresses. Thus, these approaches are less adaptive than hardware-

based alternatives (e.g., caching). Some prior works have proposed

system-level techniques to reduce migration costs in NUMA or

tiered memory platforms. For example, Nimble [33] proposed a

range of optimizations, including native support for transparent

huge page migration and multi-threaded page migrations, to re-

duce migration costs on heterogeneous memory platforms. The

Carrefour algorithm [7] includes a feature that periodically (and con-

currently) replicates memory pages on different NUMA nodes. In

this way, the system can quickly “migrate” pages with an up-to-date

replica on the target node by only updating the application page

tables (i.e., additional data copies are often not necessary). While

these optimizations significantly improve migration throughput,

they are not accessible on many enterprise and scientific comput-

ing platforms because their implementations are only available as

patches to specific kernel versions. By delegating control of the

application page tables to a user-level runtime, VMem can enable

portable implementations of most memory migration optimizations.

Indeed, Section 6 of this work demonstrates and evaluates this ca-

pability with an in-memory replication optimization implemented

entirely in the VMem runtime.

Another significant hurdle for software-directed data tiering

is that the system-level routines that assign and move program

data to different memory tiers require accurate and timely knowl-

edge of memory usage patterns in order to be effective. In many

cases, applications can provide this information directly through

current interfaces, but doing so requires expert knowledge and

modifications (and recompilation) of program source.

Researchers have recently proposed a variety of tools and tech-

niques that seek to address this limitation by automating all or part

of the process of understanding how applications use memory and

using this information to guide memory tiering. For example, sev-

eral prior works have employed profiling of architectural divisions,

such as pages or cache lines, and use system-level heuristics to steer

data with recent use or frequent reuse into the faster, but smaller,

memory tiers [1, 6, 16, 31]. While these approaches are completely

transparent to application software, they are still limited by the se-

mantic gap between systems and applications because they proceed

without knowledge of logical data structures or application intents.

Some other works have attempted to bridge this gap by integrating

architectural profiling with compiler or runtime instrumentation

and then using this information to steer memory allocation and

tiering within both the application-level allocator and system-level

memorymanager [2, 8, 15, 19, 23, 26, 29, 32].While our presentwork

does not propose or evaluate any software-directed data tiering

strategies within VMem, its design facilitates further integration

of application and system-level memory management activities.

Specifically, by providing a common runtime where applications

can control the layout of objects in the virtual address space, col-

lect information regarding their own data usage, and also directly

control how their data are mapped to physical memory resources,
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VMem can potentially improve the efficiency and portability of

these existing solutions.

Microkernels and Exokernels: Systems researchers have long rec-

ognized that the semantic gap between application behavior and

system-level management limits customization opportunities and

can lead to inefficient utilization of system resources. Indeed, per-

formance is a key motivation for many alternative kernel designs,

including microkernels [9, 21, 22] and exokernels [10], that provide

applications with more direct access to memory resources. While

some of these projects, such as Dune [4] and ExtMem [13], aim to

limit OS modifications and preserve the application-system inter-

face, all of them require custom kernel patches or modules, which

can prevent their adoption for many applications and platforms.

In contrast, VMem is built upon features that are now standard on

modern Linux platforms and does not require custom operating

system code or even updates to application software, in many cases.

Other Works Leveraging Userfaultfd: This work is most closely re-

lated to other recent efforts that have relied on the Linux userfaultfd
facility to delegate some aspects of physical memory management

to application software. The UMap project leverages userfaultfd
to enable applications to customize caching, prefetching, and evic-

tion policies for different applications and backing stores [25]. In

contrast to VMem, it does not support data tiering or management

of anonymous memory regions. HeMem employs userfaultfd
to control management of application data across pools of phys-

ical memory corresponding to distinct memory device tiers [28].

However, the entire HeMem runtime links directly into a single

application process and does not support multi-process data man-

agement. Additionally, HeMem relies on an architecture specific

filesystem (DAX) to allocate persistent memory resources, and thus,

requires someminor kernel modifications to control these resources

with userfaultfd. Conversely, VMem leverages a separate process

(i.e., the VMem Server) to enable user-level memory management

for multiple concurrent processes and does not require any kernel

modifications because it allocates memory for each device using

the standard NUMA interface. Moreover, while VMem also aims to

enhance data tiering, its runtime and API are primarily designed to

enhance application control of physical memory, and thus, enable

a broader set of use cases and optimizations than HeMem.

3 The VMem Framework: Enabling Application
Control of Physical Memory

Figure 1 depicts the main components of our VMem framework. It

primarily consists of two new pieces of software:

(1) The VMem Server acquires free memory resources from the

different types of memory that are present on the platform

and organizes these pages into shared memory pools. These

pools are then used to serve thememory needs of connected

VMem processes.

(2) The VMem Runtime is a lightweight runtime that connects

an application process to the VMem server, thereby en-

abling it to participate in shared memory management with

VMem. It implements an application programming inter-

face (API) that allows applications to register virtual address

ranges with VMem and control allocation and recycling

Figure 1: Design overview of the VMem framework.

of the physical memory resources exposed by the VMem

server within these ranges.

The VMem framework is implemented on the Linux platform and

does not require any kernel modifications or non-standard configu-

ration options to enable fine-grained memory management features

for participating applications. Rather, it leverages standard Linux

system calls, including memfd_create, mmap, and userfaultfd, to
implement its core functionality. Let us next describe how these

facilities are used to implement VMem.

3.1 The VMem Server
The VMem Server provides a holistic view of the available memory

resources and exposes these resources to VMem Runtime processes

through a set of shared memory pools. To initialize the shared

memory pools, the VMem server creates an anonymous file cor-

responding to the physical memory tiers that are present on the

platform. It then maps each anonymous file into its address space as

shared memory and populates the shared mappings with physical

memory corresponding to the appropriate tier of memory. For these

operations, the current implementation of VMem employs several

standard Linux system calls, including: memfd_create to create

the anonymous files, mmap to map these files as shared memory,

and mbind to ensure that the shared ranges are populated with

physical memory corresponding to the appropriate tier of memory.

In this way, VMem can create a distinct pool of shared memory for

each device tier that is distinguished as its own NUMA node on

the underlying platform. However, it is important to note that this

design is not limited to standard NUMA divisions, and can enable

applications to manage physical memory resources corresponding

to other architectural characteristics, such as DRAM banks and row

buffers, as discussed in Section 7.



McMichael et al.

Function Name Return Value Arguments

register_vregion
int indicating void *addr, size_t len, int prot

success or failure int flags, int fd, off_t offset

release_vregion
int indicating

void *addr, size_t len
success or failure

Table 1: API for registering and unregistering virtual regions in VMem.

Next, the shared ranges are subdivided into pages, called vpages,
which are then inserted into free lists corresponding to the archi-

tectural characteristics of the underlying memory hardware. The

vpages and their associated lists are created and mapped into the

VMem Server as shared memory, which allows other processes that

link the VMem runtime to access and manipulate them directly.

In addition to metadata for their associated data structures, each

vpage maintains information about the anonymous file and offset

from which it was originally mapped. In this way, a VMem process

can allocate physical memory corresponding to a particular type of

memory by selecting a vpage from the appropriate list and mapping

its associated file and offset into its virtual address space. More-

over, VMem enables applications to coordinate vpage allocation

and recycling with system-level events and activities, including

page faults, using the userfaultfd facility, as described next.

3.2 The VMem Runtime
Along with the VMem Server, VMem includes a lightweight appli-

cation runtime, called the VMem Runtime, which is implemented

and built as a shared library (.so) file. To use VMem, applica-

tions dynamically link the VMem Runtime into their address space

prior to invoking their main execution routine (e.g., by using the

LD_PRELOAD facility in Linux). During initialization, the VMem Run-

time connects to the (previously initialized) VMem Server running

on the same platform and collects information regarding the shared

memory pools and available vpages. The application can then ac-

cess, manipulate, and map the shared resources into its own address

space by invoking facilities provided by the VMem Runtime.

To coordinate application-directed memory management with

system-level events, the VMem Runtime employs the userfaultfd
facility in Linux. Introduced in Linux v. 4.3, userfaultfd enables
the OS to delegate the handling of page fault events to user pro-

cesses. To use this feature, the application must first register the

virtual address ranges for which it wishes to control page fault han-

dling with the OS. When the OS receives a fault within a registered

range, rather than attempt to satisfy the fault itself, the OS inserts

an event describing the fault into a message queue that is shared

with the process that registered the range. Meanwhile, the VMem

Runtime attached to the application process has a separate thread

that polls this message queue and responds to each fault event as

it receives them. In this way, the VMem Runtime can map virtual

ranges to physical memory resources corresponding to vpages in

the VMem Server. Furthermore, by satisfying faults with vpages

corresponding to the appropriate device or architectural division,

this design also enables application software to control how logical

program data maps to specific hardware resources.

3.3 Managing Application Memory with VMem
The VMem Runtime includes several facilities for applications to

register and manage their own heap data automatically and with-

out requiring any updates to or recompilation of program code.

Specifically, applications that link the VMem Runtime may also

optionally link our custom memory allocator, called bkmalloc [3].

bkmalloc is a general-purpose malloc implementation with simi-

lar capabilities as other allocators, such as the GNU allocator or

jemalloc, but it includes additional features to control and optimize

memory management for certain usage scenarios. For this work,

we leverage a bkmalloc feature that enables applications to install

callback routines on allocator events, including mmap and munmap,
which expand and contract the application’s virtual address space.

For these events, we install a callback that registers all private

anonymous virtual ranges with VMem, thereby delegating faults

within these ranges to the VMem Runtime.
1

To facilitate the use and management of the virtual regions

registered with VMem, the VMem Runtime maintains its own in-

ternal data structures known as vregions. Along with address and

size information, the vregions include information regarding per-

missions and policies that may be useful for managing the data

within each region. Thus, the vregion structure is analogous to the

vm_area_struct that is used in the Linux kernel memory manager.

Similarly, the VMem Runtime maintains its own internal page table,

known as the virtual page table (or vpt)), that maps virtual pages in

the application to the shared set of vpages.

Table 1 presents the VMem API that the framework uses to reg-

ister and unregister virtual regions with VMem. Note that the inter-

face for registering and unregistering vregions is similar to the mmap
and munmap routines in Linux. In this way, the vregions capture the

relevant protections, visibility flags, and file information that are

needed to satisfy faults in the corresponding address range. This

design also allows applications to update an existing vregion with

additional information, such as NUMA preferences or management

policies, in a similar manner as mbind or mprotect updates the

vm_area_struct in Linux (e.g., consider the vmem_mbind_vregion
function described in Section 6). Moreover, by lifting the manage-

ment of physical resources from kernel to user space, VMem pro-

vides applications with portable mechanisms to share a broad range

of information for guiding memory management.

Now, when an application faults on an address that has been

registered with VMem, the host OS will catch the fault and forward

the faulting event to the application through the userfaultfd

1
While the implementation presented in this work employs bkmalloc callbacks to

register application data ranges with VMem, VMem does not strictly depend on

bkmalloc to implement its core functionalities. Applications that use the default system

allocator or an alternative allocator can still leverage VMem features by invoking its

API directly from the runtime or application itself.
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message queue. A dedicated thread within the VMem Runtime will

then process the event and determine the virtual page associated

with the faulting address. Using the page address, the runtime will

lookup the associated vregion, which may contain file or policy

information necessary to complete the fault. Next, the runtime will

query the shared free lists to find a free vpage that can be used

to satisfy the fault. If a suitable vpage is found, the runtime will

then map the in-memory file and offset associated with the selected

vpage into the virtual addresses corresponding to the page fault

using the MAP_FIXED flag with the mmap system call. In this way,

subsequent accesses to these virtual addresses will resolve to the

physical memory resources backing the selected vpage.

3.4 Limitations & Risks
3.4.1 Support for File-backed and Shared Memory Regions. Since
the current VMem implementation only supports private anony-

mous virtual regions (i.e., regions mapped with the MAP_ANON and

MAP_PRIVATE flags set), it is primarily used to manage anonymous

allocations on the application heap. However, the design can po-

tentially be extended to support file-backed and shared memory

mappings. For example, to handle faults for private file-backed

memory, one option is to remap the faulting address to vpage mem-

ory as described above and then read the appropriate file contents

into the vpage memory buffer prior to returning from the fault.

While this approach requires an additional copy from kernel file

buffers to the vpage memory buffers, it enables VMem to control

and manage both file-backed and anonymous private mappings

in a consistent way. Alternatively, VMem could relinquish some

control of non-anonymous mappings to the operating system and

attempt to manage trade-offs between fault handling overheads

and optimization opportunities.

Support for shared memory mappings requires some additional

capabilities and extensions to VMem. Since the vpage memory

buffers are also shared, these buffers can also be used to support

memory mappings that are shared among separate processes. How-

ever, new vregion fields and data structures are needed to keep

track of how shared regions are backed by the filesystem. Moreover,

since updates must be carried through to the underlying file, VMem

would need to coordinate with the operating system to implement

and enforce these updates. While support for shared memory map-

pings can potentially extend the benefits of VMem to a broader

range of applications and usage scenarios, the primary goal of this

work is to present the essential design elements of VMem and

demonstrate its potential for enabling application control and man-

agement of physical memory resources. Hence, we leave support

for shared memory mappings in VMem as future work.

3.4.2 Isolation for Multi-Process and Multi-Tenant Execution Sce-
narios. The VMem framework supports the management and usage

of shared hardware resources by mapping and exposing a subset of

physical memory on the host platform as a shared memory device.

This design choice reflects the primary objectives of VMem, which

are to enable more effective memory management on complex ar-

chitectures through increased flexibility and tighter coordination

among tasks that participate in memory usage and management.

For execution scenarios where VMem connects a set of trusted

and well-behaved (but otherwise unrelated) processes, VMem does

not impose new requirements or change how memory is viewed

by application software. Operations that map and manage shared

memory resources are always encapsulated in the VMem runtime,

which coordinates with the VMem server and other connected pro-

cesses to ensure that any shared resources that it allocates will not

be accessible in any other connected processes.

However, in scenarios where an adversarial or compromised

application connects to the VMem server, this application could po-

tentially gain access to data mapped into the address space of other

connected processes. Specifically, since the VMem server shares

vpage table and vpage data with each connected VMem runtime,

the isolation of memory resources that is typically enforced by

privileged execution in the operating system can no longer be guar-

anteed among connected VMem processes. At this stage, we view

this additional vulnerability as an acceptable tradeoff that is not

in conflict with our primary research goals. VMem can potentially

enable customized and more effective memory management for

multi-process execution scenarios as long as each process in the

group is trusted or accesses only non-sensitive data. As we take this

work forward, we plan to investigate techniques to prevent sharing

data among processes connected to the same VMem server, while

still enabling customized memory management for multi-process

execution scenarios.

3.4.3 Memory Paging and Management Overheads. While delegat-

ing page management to VMem can enable much greater flexibility

and control over how applications manage their own physical mem-

ory resources, this design’s reliance on user space polling of event

queues can introduce significant overheads into the page fault path.

Each fault now requires at least two new transfers between the sys-

tem and application: one to invoke the fault handler in the VMem

Runtime and another that invokes the system to map application ad-

dresses to the appropriate vpage file and offset. There are additional

costs to align VMem management with physical page management

in the OS, including: additional creation, splitting, and merging of

vm_area (VMA) structures as well as increased contention on VMA

locks such as the mmap_lock.
For applicationswith frequent faults, and especiallymulti-threaded

applications, these additional costs can lead to significant execution

time overheads (e.g., see Figure 2b in Section 5.2). However, the

flexibility of our design can mitigate these costs for many applica-

tions and usage scenarios. Specifically, VMem does not require the

vpage size to be equal to the host platform page size, but rather, can

optionally set the vpage size to be a multiple of the host page size.

Increasing the vpage size reduces the number of faults managed by

VMem, and thus reduces paging and management overheads. This

feature does not eliminate all the overheads associated with user

level page fault handling, and in fact, may introduce other costs in

certain cases (e.g., increased capacity or worse cache utilization).

However, for many applications and usage scenarios, increasing the
vpage size restricts VMem overheads to the point where there is little
or no noticeable impact on application performance, even if the work-
load under VMem control is running at full system scale. For these
cases, there is significant potential to improve system performance
and efficiency by leveraging optimizations and data management
strategies enabled by VMem.
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Configuration Description Write (inc. fault) Read (no fault)
per-page (𝜇s) TP (GB/s) per-page (𝜇s) TP (GB/s)

default-4KB
Default Linuxmemorymanagement software stack (ker-

nel v. 6.14.5) with 4 KB pages.

1.62 2.37 0.32 12.09

vmem-4KB-4KB
The current implementation of VMemwith 4 KB vpages

and 4 KB pages in the host Linux OS.

6.09 0.63 0.3 12.79

default-2MB
Default Linux memory management software stack

with 2 MB pages (using hugetlbfs [18]).

482.45 4.07 159.71 12.28

vmem-2MB-4KB
The current implementation of VMemwith 2MB vpages

and 4 KB pages in the host Linux OS.

600.13 3.25 145.6 13.42

vmem-2MB-2MB
The current implementation of VMemwith 2MB vpages

and 2 MB pages in the host Linux OS.

452.25 4.33 166.98 11.7

Table 2: Microbenchmark performance with VMem. The write operations include time for a 4 KB or 2 MB page fault (depending
on the page size), while the read operations show performance after the data has already been faulted in. For the vmem-2MB-4KB
configuration, the table uses the vpage size of 2MB to calculate per-page performance.

4 Experimental Setup
Before proceeding to the evaluation of the VMem framework, let

us describe our experimental platform and methodology.

Platform Details: We built and deployed VMem on an Intel
®

Linux platform (kernel v. 6.14.5) with two Xeon
®
CPU Max 9468

processors (code named Sapphire Rapids or SPR). Each processor

includes 48 physical compute cores, each with 2.1 GHz base and 3.5

GHz max clock speeds, as well as a 105 MiB shared L3 cache. Intel
®

Hyper-Threading is enabled. Hence, each processor presents 96

logical computing cores to the operating system. Each node is also

subdivided into four sub-NUMA clusters (SNCs), where each SNC

contains 12 physical computing cores (or 24 logical cores), a slice of

the L2 and L3 cache, and their own integrated memory controller.

Similar to conventional NUMA devices, applications can control

access to the cores and memory on each SNC through the Linux

NUMAAPI. The memory system on each node includes eight 32 GB,

4800 MT/s, SK Hynix DDR5 SDRAM memory modules organized

in a dual channel configuration. Hence, the system has a total of

512 GB of DRAM across the entire platform. Each computing node

accesses memory on the remote node through an Intel
®
Ultra Path

Interconnect (UPI) link that supports transfers up to 16 GT/s.

The machine also includes a set of Data Streaming Accelerator

(DSA) devices that can accelerate data movement among local and

remote memory devices. For our experiments that use the DSA in

Section 6, the system is configured so that regions that are being

copied from one node to another are divided into a set of batches of

equal size and then transferred simultaneously using the eight DSA

engines on the machine.
2
While both processors are also integrated

with 64 GB of High Bandwidth Memory (HBM) and the system is

configured in Flat (i.e., software-managed access) Mode, the HBM

devices are unused in this study. Although VMem has promise to

enable new optimizations and efficiencies for heterogeneous mem-

ory scenarios, this work focuses on the basic operational overheads

and potential for reducing data migration costs with VMem, and

thus, our experiments use only local and remote DDR5 SDRAM to

simplify presentation of results.

2
Each batch always contains up to 512 vpages, but the vpage size varies from 4 KB to

2 MB in our experiments.

Methodology: Each experimental run initializes a single instance

of the VMem Server with separate pools of memory on each server

node. For this initial study, we augmented VMem with a simple

free-list allocator that satisfies faults with free vpages in a first-in,

first-out (FIFO) fashion. Unless a vregion policy indicates other-

wise, the VMem server will service faults from the local DRAM

pool if free vpages exist, and otherwise, from the remote pool. For

the experiments with benchmark applications, we configure the

application process to link the bkmalloc allocator prior to invoking

its main routine using the LD_PRELOAD environment variable. Dur-

ing this initialization process, bkmalloc also links and invokes the

VMem Runtime to connect to the running VMem Server. Aside from

the VMem Server and application processes, all experimental runs

execute on an otherwise unoccupied machine. All results present

the mean average of five experimental runs.

5 VMem Overheads and Performance
5.1 VMem Access Latency and Bandwidth
For our first set of tests, we employ a microbenchmark that maps a

single anonymous region of size 1 GB and makes two linear passes

over the region: one to populate (i.e., write) every word in the

region with pseudorandom numeric data and a second that reads

all of the words in the region and uses them to calculate a simple

summation. Our experiments timed the performance of the write

and read operations with the five configurations shown in Table 2.

The results presented in the last four columns of Table 2 show

the performance of each configuration in terms of both per-page

latency (in 𝜇s) and throughput (in GB/s).

As expected, we find that VMem’s reliance on userfaultfd can

introduce significant overheads for operations that generate fre-

quent page faults. However, the read operations, which only access

addresses that have already been mapped to physical memory, per-

form very similarly in both the default and VMem configurations.

Moreover, the additional fault overhead can be partially or almost

entirely eliminated for applications that use larger page sizes. In

these configurations, the time to write a full page of data far out-

weighs the additional costs imposed by userfaultfd, and thus,

their impact is significantly diminished.



VMem: Enabling Application Management of Physical Memory Resources

0.6
1

1.4
1.8
2.2
2.6

50
3.b

wa
ve
s

50
7.c

ac
tuB

SS
N

50
8.n

am
d

51
0.p

are
st

51
1.p

ovr
ay

51
9.l
bm

52
1.w

rf

52
7.c

am
4

53
8.i
ma

gic
k

54
4.n

ab

54
9.f
oto

nik
3d

55
4.r
om

s

ge
om

ea
n

Ex
ec

ut
io

n 
Ti

m
e 

Re
la

tiv
e 

to
 D

ef
au

lt bkmalloc alone, 4KB pages bkmalloc alone, 2MB pages VMem, 4KB vpages, 4KB host pages
VMem, 2MB vpages, 4KB host pages VMem, 2MB vpages, 2MB host pages

(a) Single-threaded FP benchmarks (fprate).
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(b) Multi-threaded benchmarks (fpspeed + 657.xz_s). Each benchmark uses 24 threads and runs on 24 cores.

Figure 2: Execution times of the selected SPEC® CPU 2017 benchmarks with bkmalloc and VMem configurations relative to the
execution times of the default configuration with 4 KB pages (lower is better).

5.2 VMem Overheads with Real Applications
For many real applications, the faulting overhead produced by

VMem can be mostly, or entirely, overlapped with other useful ac-

tivity. To demonstrate this effect, we conducted a set of experiments

using two groups of benchmarks from SPEC CPU 2017 [5]: 1) a

group of single-threaded floating point (FP) applications (fprate)
and 2) a group of OpenMP enabled applications configured to use

one thread per core (fpspeed + 657.xz_s). To avoid NUMA effects

in the second group of tests, we spawn 24 OpenMP threads per

benchmark and restrict all of these threads to run on only one

subNUMA-cluster of our platform.

Our tests with VMem used the callback feature of the bkmalloc

allocator to dynamically register each anonymous memory region

mapped into the application’s address space with our VMem Run-

time. VMem then handled faults for these anonymous regions using

the free list allocator described in Section 4. The experiments were

configured so that VMem could satisfy all the anonymous faults

for each benchmark from the local memory pool without needing

to invoke page reclamation at any point.

Figure 2 shows the execution times of our selected benchmarks

with the different VMem configurations from Table 2 relative to

our default configuration, which uses the default system allocator

(Ubuntu GLIBC v. 2.35) and default Linux memory manager with 4

KB pages on our platform. To isolate the effects of VMem from the

bkmalloc allocator, we also include two bkmalloc configurations,
which each use the bkmalloc allocator with different page sizes, but

do not register any allocations with VMem.

We find that using VMem to manage anonymous memory re-

gions has little or no performance impact on most of the single-

threaded fprate benchamrks. In the worst cases with 4 KB pages

(i.e., with 503.bwaves and 507.cactuBSSN ), we see slowdowns of

15% and 12%, respectively, compared to the default software stack.

In contrast, many of the multi-threaded benchmarks exhibit more

substantial performance degradations when using VMem with 4

KB vpages. These workloads generate page faults much more fre-

quently than the single-threaded benchmarks, and thus, cannot

always overlap the additional costs imposed by VMem with useful

execution. However, in most cases these performance degradations

can be overcome by configuring VMem to use larger page sizes.

Of course, for some applications and platforms, larger page sizes

are impractical because they can harm cache locality or increase

internal fragmentation, and thus, raise capacity requirements. For

example, in these experiments, 503.bwaves and 507.cactuBSSN ex-

hibit significant slowdowns with larger page sizes due to much



McMichael et al.

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

60
3.b

wa
ves

60
7.c

act
uB
SS
N

61
9.l
bm

62
1.w

rf

62
7.c

am
4

62
8.p

op
2

63
8.i
ma

gic
k

64
4.n

ab

64
9.f
oto

nik
3d

65
4.r
om

s

65
7.x
z_s

ave
rag
e

Pe
ak

 R
es

id
en

t S
et

 S
ize

 (G
Bs

)

4 KB pages
2 MB pages

Figure 3: Peak resident set size (in GBs) of the multi-threaded
benchmarks with the bkmalloc alone configuration with 4
KB and 2 MB page sizes.

worse L1 and L2 cache utilization. Additionally, we found that all

of these benchmarks require some additional memory capacity

with larger page sizes, but this effect is relatively muted (< 10%) in

most cases (see Figure 3). On average, the memory capacity of these

workloads increased by about 18% with larger pages. Whether these

costs are feasible for a particular application or platform depends

on a number of factors, including data layouts and the available

memory capacity, but there are many real-world scenarios where

larger page sizes are practical and beneficial. Thus, these results are
encouraging because they demonstrate that many applications and
execution scenarios can leverage VMem without incurring prohibitive
runtime costs.

6 Leveraging VMem to Improve Memory
Migration Throughput

Data migration costs are a significant challenge for complex mem-

ory platforms. Before moving any program data from one type

of memory to another, the system must suspend any application

threads that may access the data to prevent inconsistencies due to

data races. Additionally, page tables must be updated and MMU

caches (i.e., TLBs) flushed before the suspended activities can re-

sume. On modern platforms, these costs are substantial and can

hinder the performance of applications that must adapt to diverse

or distributed memory hardware.

Some platforms, including the Intel Sapphire Rapidsmachine that

we use in this work, include architectural features, such as vector

instructions and hardware accelerators, that can increase copy

throughput in memory. Additionally, and as discussed in Section 2,

several recent projects have proposed system-level optimizations

to reduce migration costs and enable applications to adapt more

efficiently to complex memory hardware. One such optimization,

which is part of the Carrefour algorithm [7], improves migration

throughput by separating data copies from page table updates. In

this scheme, the system optimistically write-protects and copies

data to the target memory device asynchronously. If no writes to

the original data are detected, the system can then complete the

migration with only a short pause of the application threads to

synchronize with page table updates. While these architectural

features and system-level optimizations can effectively improve

migration throughput for many workloads, most Linux platforms

do not support them (even for huge page migrations) for a variety of

reasons, including increased complexity and portability concerns.

To demonstrate the potential of VMem to reduce data migration

costs, we extended the VMem Runtime and API with some addi-

tional features to enable asynchronous memory copy operations

that are separate from page table updates, as described above. Ad-

ditionally, our implementation of vregion migration in VMem uses

the memcpy routine from GLIBC (v. 2.35) to copy data in memory

from one vpage to another. On our platform, GLIBC was built and

distributed with vector instructions enabled, and thus, VMem can

potentially take advantage of these instructions during memory mi-

gration. Moreover, we extended VMem with an option (controlled

via an environment variable) to offload vpage copying from the CPU

and use our platform’s DSA devices to accelerate vpage copying.

Table 3 presents the extended VMem API that we use for this

study.
3 vmem_mbind_vregion is analogous to the mbind system

call in Linux. It instructs the VMem runtime to fill demands in the

given vregion with vpages corresponding to the specified device.

vmem_replicate_vregion_on_node creates a copy of the vpages

that have already been mapped into a given vregion using a new

set of vpages on the given node. Note that this routine does not

update the page table and that subsequent reads and writes to ad-

dresses within the vregion will resolve to the original vpages. In

contrast, vmem_migrate_vregion_to_node completes the migra-

tion operation by remapping the page table entries corresponding

to the given vregion and potentially creating a copy of its vpages

on the given node, if necessary. Specifically, this routine invokes

the munmap system call to unmap the host pages associated with

the vregion and shoot down any cached page table entries in the

processor TLBs. Next, if an up-to-date replica of the vregion already

exists, then this routine will find and map the vregion addresses

to the replicated vpages using the mmap system call. Otherwise, if

this vregion was never replicated or if the original copy has been

written since the time of replication, then it will create a copy of

the necessary vpages on the given node prior to updating the page

table. In these cases, its operation is thus similar to the Linux mbind
with the MPOL_MF_MOVE flag set.

6.1 Evaluation of Enhanced Memory Migration
with VMem

To demonstrate the potential of VMem to improvemigration through-

put, we designed a simple test program to migrate data between

NUMA nodes on our Intel Linux platform. The test program cre-

ates and initializes two anonymous memory regions of size 4 GB:

the first is initialized on the local memory node and the second

is initialized on the remote memory node. For each region, the

test program performs a simple sum over the data in the region,

migrates the data in the region to the other memory node, and

then recomputes the same sum after the data has been migrated.

Additionally, it verifies that the region was actually migrated by

3
As this work only intends to show and evaluate the potential of VMem to implement

the datamigration optimization described above, the current API only supports features

that are necessary to demonstrate this approach. The API shown here will eventually

be expanded to support additional use cases and production deployment of these

features.
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Function Name Return Value Arguments
vmem_mbind_vregion int (success or error) void *addr, size_t len, int node

vmem_replicate_vregion_on_node int (success or error) void *addr, size_t len, int node

vmem_migrate_vregion_to_node int (success or error) void *addr, size_t len, int node

Table 3: Extended VMem API for enabling data migration optimization.

measuring the time required to compute this sum, which differs

based on whether the data accesses were resolved to the local or

remote memory node.

We ran this experiment with three configurations:

(1) Linux Migrate: employs the system allocator to create mem-

ory regions and invokes the default system software stack

(i.e., using the mbind system call) to migrate data between

memory nodes.

(2) VMem Migrate: invokes vmem_migrate_vregion_to_node
to create a copy of each vpage on the other memory device

and update the page table as part of the same operation. For

this configuration, we report the throughput of performing

the data copy and page table update operations together.

(3) VMemOptimizedMigrate: invokes vmem_replicate_vregion_-
on_node to replicate the entire vregion on the target mem-

ory and then separately invokes vmem_migrate_vregion-
_to_node to update the page table. For this configuration,

we report the throughput of copying the data (VMem Data
Copy as well as the throughput of updating the page table

(VMem Page Table Update).

Additionally, we tested each configuration with both 4 KB and 2

MB page sizes as well as VMem configurations that use a 4 KB host

page size with 2 MB vpages. For each VMem configuration, we

also measured throughput with and without accelerating memory

copies with the DSA.

First, with VMem Optimized Migrate, we find that VMem can

effectively separates data copy and page table update operations.

If an application continues to access virtual addresses that have

been copied, but not remapped, these accesses will be resolved to

physical memory corresponding to the original copy. Continued

access to these addresses will resolve to the copied pages only after

the application page tables have also been remapped.

Figure 4 presents the average throughput (in GB/s) of the data

migration operations for each configuration. The results reveal sev-

eral interesting observations. First, with the default Linux software

stack, migration throughput improves with larger page sizes, but

even with 2 MB page sizes, default Linux migrates less than 3 GBs

of memory per second. With 4 KB host (Linux) pages and 4 KB

vpages, the default VMem Migrate approach is about 13% slower

than default Linux. This slowdown is attributable to the additional

transfers between the host OS and VMem runtime that are neces-

sary to complete migration operations for each vpage. However,

with larger host and vpage sizes, VMem actually improves perfor-

mance over default Linux because it can take advantage of vector

instructions in the user-level memcpy implementation. Using the

DSA within VMem can improve migration throughput even further

and yields 1.6× and 9.4× speedups compared to default Linux with

4 KB and 2 MB pages, respectively.

Lastly, the measurements from the VMem Optimized Migrate

configuration show that this approach has potential to improve

migration throughput by multiple orders of magnitude in certain

scenarios. While copy throughput is mostly similar to the default

VMem Migrate configurations that perform data copy and page ta-

ble remapping together, this optimization can overlap data copying

with other useful application activity, in many cases. The operations

that update the page tables, which do require synchronization with

the application threads, are typically much faster than the standard

migration operations. Indeed, if the replicated pages are already

available on the target node, updating the page tables with VMem

is over 1.5× faster with 4 KB pages and over 800× faster with 2

MB pages, compared to standard memory migration with default

Linux. Thus, for many workloads and execution scenarios, VMem

has significant potential to increase memory migration throughput

and enable more efficient utilization of complex memory resources.

7 Discussion & Future Work
While this work has shown that the VMem framework has potential

to enable powerful, portable optimizations for copying and moving

data in a complex memory architecture, our work with VMem is

still at an early stage. To realize the full potential of this approach,

we plan to pursue several additional avenues of future research.

Our immediate future work is to build upon the replication-based

optimization described above so that we can deploy it with real

applications in both diverse and distributed memory architectures.

While our current implementation does include features to track

whether each vpage has been modified since the time it was repli-

cated, this work only evaluates a scenario where the entire data

set is unmodified after its been copied. Our next steps will inves-

tigate opportunities to apply this approach with real applications.

Planned research tasks include: 1) identify scenarios where large

data sets are likely to be unwritten or infrequently written for sig-

nificant time intervals, 2) through automated compiler analyses or

manual updates to source code, insert VMem API instructions to

copy such data asynchronously at strategic locations within each

application, 3) extend the VMem runtime with facilities to replicate

vpages automatically when resources are available, and 4) inves-

tigate alternative memory management strategies that leverage

data replication to free up capacity constrained memory resources

quickly during periods of high demand (i.e., without needing to

copy the data when demands rise).

Additionally, we plan to exploit deeper integration between ap-

plications and physical memory management to improve utilization

of high performance memory resources with limited capacity. As

described in Section 2, several prior works have found that lever-

aging application-level information (e.g., profiling and analysis of
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Figure 4: Throughput of memory migration operations with VMem (GB/s, log scale, higher is better). Linux Migrate shows
memory migration throughput with the default Linux software stack. VMem Migrate shows the throughput of the data copy
and page table update operations performed together in VMem. VMem Data Copy and VMem Page Table Update show the
throughput of each operation separately, as done with the VMem Optimized Migrate configuration.

logical structures or objects) to help guide the process of match-

ing application data to heterogeneous memory resources can im-

prove performance significantly. By providing applications with

fine-grained controls to define custom data tiering and manage-

ment policies, VMem has potential to facilitate the discovery of

new heuristics and algorithms to improve these processes.

Moreover, while our current VMem implementation maintains

vpages corresponding to distinct NUMA nodes in separate memory

pools, there are no fundamental restrictions on how the vpages

in VMem are organized internally. In the future, we will extend

VMem with new strategies that automatically sort vpages into

distinct pools according to other microarchitectural features that

are present in the underlying architecture, including cache sets and

DRAM features, such as channels, ranks, banks, and row buffers.

There are numerous examples in the literature of techniques and

optimizations that rely on fine-grained management of these sorts

of features. Some specific examples include: application-guided

page coloring to improve cache utilization [11, 27], co-locating

data with similar reuse increase energy efficiency [14, 24], and

managing allocations across DRAM banks to improve row buffer

utilization [30] or provide bandwidth guarantees [34]. Such con-

trols are also essential for emerging processing-in-memory (PIM)

systems, where data must be structured properly within the device

to take advantage of in-memory computing [12, 20]. While previous

efforts have demonstrated the benefits of these techniques, they are

still not widely used because their implementations rely on system

features or modifications that are not available on most platforms.

By empowering applications with fine-grained and cross-platform

controls, VMem can enable more portable implementations of these

existing techniques and also facilitate the discovery of new opti-

mizations to improve utilization of modern memory hardware.

8 Conclusion
This work presents VMem: a novel runtime framework for en-

abling application control of physical memory resources. VMem

allows applications to exert direct control over system-level mem-

ory management tasks, including translation of virtual addresses,

physical memory allocation and recycling, and memory-to-memory

migration. Its Linux-based implementation provides these features

without requiring any kernel modifications, custom hardware, or

non-standard system configurations. Using microbenchmarks as

well as real applications from SPEC CPU, the evaluation charac-

terizes the performance of VMem operations and demonstrates its

potential to reduce pause times for applications that migrate data

frequently on complex architectures. Overall, this work shows there

is great opportunity in using VMem to unlock new optimizations

and efficiencies by reducing the semantic gap between system and

application software during memory management.
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