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Abstract
In HPC applications, memory access behavior is one of the main
factors affecting performance. Improving an application’s memory
access behavior requires studying spatial-temporal data locality. Ex-
isting data locality analyses focus on single locations. We introduce
locality metrics between pairs of memory locations that quantify
three dimensions of spatial-temporal affinity: temporal access prox-
imity, forward access correlation, and nearby access correlation. We
describe methods for distinguishing between potential vs. realized
affinity and for reasoning about affinity (or friendship) at multiple
resolutions (4D, 3D, 2D, 1D). Finally, we construct spatial-temporal
affinity signatures that classify memory behavior and are used to
reason about changes in software (data relayout, code refactoring)
or hardware (caching, prefetching). We describe methods for sig-
nature visualization, interpretation, and quantitative comparison
of signatures. We evaluate our methodology using applications
with variants that contrast data structures, data layouts and algo-
rithms. We show that spatial-temporal affinity analysis provides
novel insights and enables predictive reasoning about application
performance.

Keywords
Data locality, spatial-temporal affinity, memory access patterns,
affinity signature, application performance

1 Introduction
In current HPC applications, the memory system is frequently a
significant source of performance bottlenecks [29, 44] that affects
nearly all machine platforms such as CPUs, GPUs or a heteroge-
neous combination [8]. Addressing memory system bottlenecks
requires tools for diagnosing memory bottlenecks, characterizing
application-platform suitability and evaluating memory systems
and designs. An open problem in data locality analysis is how to
concisely represent locality in a way that both predicts performance
and distinguishes between classes of behavior such as access pat-
terns, cache utilization and hardware prefetching.

∗Work performed while at Pacific Northwest National Laboratory.
†This material is based in part upon work supported by (while serving at) the National
Science Foundation.

Prior work on data locality includes metrics such as access fre-
quency, reuse distance and footprint [28, 45, 46]. These metrics
are defined with respect to a single memory location. Multiple ef-
forts [4, 11, 12, 19, 27] have reported on the limitations of these
metrics, such as their focus on temporal locality and their inability
to capture access patterns and guide layout optimizations. Oth-
ers [4, 11, 12, 27] explore capturing spatial-temporal locality to
address the limitations of reuse distance by adding analyses at
multiple granularities.

We argue that answering the more general question “What lo-
cation 𝑗 is likely to be accessed within the vicinity of an access to
location 𝑖?” provides a precise and comprehensive view of the appli-
cation’s spatial-temporal locality. Though previous efforts attempt
to answer this question, they take different approaches by limit-
ing the problem to specific temporal windows to pack correlated
objects into a cache line. Reference affinity [26, 47–49] pairs/splits
arrays and structures using similarities in their reuse distance val-
ues. Miucin and Fedorova [30] classify objects and object fields into
communities based on correlation in access patterns. A limitation
in these methods is that by using a single metric, it may be difficult
to distinguish when it is more important to prioritize optimizations
that improve caching vs. those that improve prefetching.

We introduce spatial-temporal affinitymetrics that quantify spatial-
temporal locality between pairs of memory locations. The three
metrics — interval, anticipation, and density — highlight different
dimensions of pair-wise locality, respectively: temporal access prox-
imity, forward reference correlation (cf. prefetching), and nearby
reference correlation (cf. caching). We describe intuitive rules that
guide optimizations based on these spatial-temporal affinity metrics.
Affinity metrics enable the identification of friendship or affinity
clusters of related memory locations or data objects that guide deci-
sions on object allocation, data layouts, code refactoring, caching,
or prefetching.

Affinity analysis has similarities to both statistical correlation
and market basket analysis used in recommender systems. As a
kind of correlation, naive affinity analysis based on pair-wise com-
parisons requires quadratic space and time. Therefore, narrowing
the space of interesting possibilities is important. We develop effi-
cient location-based, multi-resolution zooming to find hot memory
regions by access density and access frequency. As a result, our
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affinity analysis considers a small fraction of the possible combi-
nations. Other forms of pattern analysis [2, 5, 7, 25] can be used
to find correlated memory locations, but they use fundamentally
different techniques with large time and space requirements.

We evaluate spatial-temporal affinity analysis using several rep-
resentative applications. We show that affinity metrics are more
informative and predictive of memory behavior when contrasted
with several existing locality metrics; and demonstrate that the sig-
natures are predictive of memory performance. Our contributions
are as follows:

• We introduce novel measures (§3) of spatial-temporal affin-
ity between pairs of memory locations that characterize the
degree of temporal access proximity, forward reference corre-
lation, and nearby reference correlation.

• We describe methods (§4) for distinguishing between potential
vs. realized affinity and for reasoning about affinity at multi-
ple resolutions (4D, 3D, 2D, 1D). We also present interpretive
guidelines and comparison methods.

• We develop the MemFriend tool (memory friendship; § 5
and 6), a new module for MemGaze [18, 20]. MemFriend con-
structs spatial-temporal affinity signatures that classify mem-
ory behavior and are more predictive of expected performance
than single-location reuse analysis.

• Weevaluate spatial-temporal affinity (§7) by comparing against
state-of-the-art metrics for several benchmarks with varying
(only) 1) data structures, 2) data layouts, or 3) algorithms.

2 Motivating Multiple Affinity Relations
In this paper, we develop multiple metrics to answer the question
“What location 𝑗 is likely to be accessed within the vicinity of an
access to location 𝑖?” As shown in Figure 1, each of the three metrics
highlights a different dimension of pair-wise locality: interval or
temporal reference (access) proximity; anticipation or forward ref-
erence correlation (cf. prefetching); and density or nearby reference
correlation (cf. caching). Spatial-temporal affinity can therefore be
viewed as a 3-tuple on 3 axes. Spatial interval is the distance of a
reference interval. Spatial anticipation and density can be thought
of as two different measures of the conditional probability of block
𝑗 occurring given block 𝑖 , computed as a ratio of 𝑗 to 𝑖 . Thus, we
usually adopt the syntax ( 𝑗 |𝑖). We call 𝑖 the reference location and
𝑗 the affinity location.

We provide the following guidelines for using spatial-temporal
affinity to reason about different situations and performance op-
portunities.

1. We expect high performance when a block and its spatially
contiguous blocks have (a) good temporal proximity, i.e., low values
of interval(𝑖, 𝑗) and (b) good correlation, i.e., high anticipation( 𝑗 |𝑖)
and/or density( 𝑗 |𝑖).

2. There are opportunities for data relayout when a block 𝑖 and its
correlated 𝑗 have unfavorable spatial separation with good temporal
proximity, i.e., (a) low interval(𝑖, 𝑗) for large positive 𝑗 or small/large
negative 𝑗 and (b) good reference correlation, i.e., high values of
anticipation( 𝑗 |𝑖) and/or density( 𝑗 |𝑖). Specifically, these conditions
identify when a block pair’s logical spatial locality is not aligned
with the actual spatial locality.
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Figure 1: (Left) Affinitymetrics and their interpretation. Both
anticipation and density adopt the syntax of conditional
probability. (Right) Two examples of 1D affinity signatures,
specifically affinity vectors are shown as radar plots.

3. There is potential for code refactoring, such as bringing two
time-separated statements together, to exploit latent locality (long-
distance reuse) when there are (a) hot blocks with (b) poor temporal
proximity, i.e., high interval(𝑖, 𝑗) and (c) poor reference correlation,
i.e., low anticipation( 𝑗 |𝑖) and density( 𝑗 |𝑖).

4. There is potential to insert impactful software prefetching
(to preload 𝑗 , after access to 𝑖) when there is (a) poor temporal
proximity, i.e., high interval(𝑖, 𝑗) to permit a sufficient interval for
the prefetching distance window and (b) high correlation between
accesses to 𝑖 and 𝑗 , i.e., high anticipation( 𝑗 |𝑖).

5. There is potential for increasing reuse when a block 𝑖 has (a)
poor temporal proximity to itself, i.e., high interval(𝑖, 𝑖) and (b) poor
nearby reference correlation, i.e., low value of density(𝑖 |𝑖).

3 Spatial-Temporal Affinity
This section defines three location-centric spatial affinity metrics—
interval, anticipation, and density—that can be applied at different
resolutions.

3.1 Preliminaries
We use the following well known memory access metrics.

Accesses, A(𝑏). Access total for block 𝑏.
Access intensity, AI(𝑏). Normalized access fraction (in [0, 1])

of block 𝑏. Given accesses to blocks in a region 𝑟 , let Amax (𝑏) be
the maximum. Then, AI(𝑏) = A(𝑏)

Amax (𝑏) .
Reuse distance, RD(𝑏). Number of unique blocks accessed

between consecutive accesses to block 𝑏, is equal to the average
RD for block 𝑏.

Reuse interval, RI(𝑏). Number of expected accesses encoun-
tered before the reuse of a block 𝑏, is equal to the average RI (in
non-unique accesses) of block 𝑏.

We introduce and use the following two definitions:
Affinity block pair, (𝑖, 𝑗). Affinity is between reference block 𝑖 ,

and affinity blocks 𝑗 .
Lifetime, L(𝑏). Number of (non-unique) accesses between the

first and last access to block 𝑏.

3.2 Spatial interval
Spatial interval is a generalization of block reuse interval that mea-
sures temporal access proximity, where a memory access sequence
is an abstract form of time. Spatial interval is important because
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spatial locality is most beneficial when it occurs within small time
windows. Whether it is accessing all elements of a cache line, two
distinct cache blocks, or locations with a DRAM module that can
be indexed together, the time window must be short enough to be
beneficial.

Spatial interval is an integer. Smaller is generally better as it
means that block 𝑗 is accessed more quickly after 𝑖 .

Definition. For memory block pair (𝑖, 𝑗), the spatial interval
SI1 (𝑖, 𝑗) is number of accesses (≥ 0) between an access to block 𝑗

and the first previous access to block 𝑖 . The interval is directional
in that accesses progress forward from block 𝑖 to 𝑗 according to
program execution. (When determining interval size, we exclude
the access to 𝑖 and 𝑗 .)

Usually, it is more convenient to average affinity interval.
Definition. For a memory access sequence and a pair of memory

blocks, letSI(𝑖, 𝑗) represent the set of access intervals that partition
the sequence. That is, each element 𝛼 = (𝑎, 𝑏) in SI(𝑖, 𝑗) is an
interval SI1 (𝑖, 𝑗) with access indices 𝑎 and 𝑏, where 𝑎 and 𝑏 access
blocks 𝑖 and 𝑗 , respectively. Then, average spatial interval SI(𝑖, 𝑗)
is

SI(𝑖, 𝑗) =
∑
𝛼 ∈SI(𝑖, 𝑗) SI1 (𝛼𝑖 , 𝛼 𝑗 )

|SI(𝑖, 𝑗) | (1)

3.3 Spatial anticipation
Spatial anticipation SA( 𝑗 |𝑖) captures directional spatial locality or
the probability that 𝑗 is accessed after 𝑖 . It is a real number within
[0, 1), where higher is better.

Definition. For block pair (𝑖, 𝑗), spatial anticipation is the ratio
of a) the number of intervals in the spatial interval set SI(𝑖, 𝑗) and
b) A(𝑖).

SA( 𝑗 |𝑖) = |SI(𝑖, 𝑗) |
A(𝑖) (2)

As SA( 𝑗 |𝑖) defines anticipation of 𝑗 to 𝑖 , intuitively it is attributed
to prefetching (both measure and preload).

3.4 Spatial density
Spatial density emphasizes the hotness of 𝑗 over the lifetime of 𝑖 . It
is the probability of accessing block 𝑗 between accesses to block 𝑖 .
It is a real number within [0, 1), where higher is better.

Definition. For block pair (𝑖, 𝑗), spatial density SD( 𝑗 |𝑖) is the
ratio of a) accesses to 𝑗 within b) the self-spatial interval of 𝑖:

SD( 𝑗 |𝑖) = avg
𝛼 ∈SI(𝑖,𝑖)

A𝛼 ( 𝑗)
SI𝛼 (𝑖, 𝑖)

(3)

≈ A( 𝑗)∑
𝛼 SI𝛼 (𝑖, 𝑖)

=
A( 𝑗)∑
𝛼 L𝛼 (𝑖)

(4)

≈ A( 𝑗)
L(𝑖) (5)

where A𝛼 ( 𝑗) represents number of 𝑗 within interval 𝛼 .
Equation (5) approximates Eq. (3) in two ways. First, the sum of

fractions in Eq. (3) is converted into separate sums in the numerator
and denominator. Second, it approximates the denominator in Eq. (4)
with lifetime of 𝑖 , which is equal to A(𝑖) + ∑

𝛼 SI𝛼 (𝑖, 𝑖).
SD( 𝑗 |𝑖) defines nearby reference correlation of 𝑗 to 𝑖 , and is used

to measure caching with the assumption of a fully associative cache.
Note that, footprint [45, 46] as a metric adequately analyzes caching

and associativity. But, footprint by definition uses time windows,
whereas SD( 𝑗 |𝑖) is defined w.r.to accesses to location 𝑖 and includes
spatial locality.

3.5 Weighted affinity
In practice, it is most important to understand spatial affinity for
memory blocks that are frequently accessed.

Definition. For memory block pair (𝑖, 𝑗), we define a weighting
factor (between (0, 1]) based on access intensity AI(𝑖) (normalized
access frequency) within memory region 𝑟 .

We represent weighted SA and SD by scaling the respective
metric in an obvious manner: AI(𝑖) · SA( 𝑗 |𝑖) or AI(𝑖) · SD( 𝑗 |𝑖).

Note that the weighting factor applies to the reference location
(𝑖) only.

The resulting weighted affinities have desirable properties. For
example, if spatial anticipation SA is large, but 𝑖 is cold, weighted
SA will be small, which is correct. Alternatively, if 𝑖 is hot but SA is
small, weighted SA will be small, which again is correct.

If spatial density SD is large, but 𝑖 is cold, weighted SD will be
small, which is correct. Alternatively, if 𝑖 is hot but SD is small,
weighted SD will be small, which again is correct.

4 Spatial Affinity Scores
As previously observed (§2), relating spatial interval with each
of spatial anticipation and density yields powerful interpretive
insights. For example, good spatial anticipation is more impactful
when spatial interval is also good. To quantify these insights, we
develop affinity scores SD∗ and SA∗ that coordinate the strengths
of each of these affinity relations. For example, SD∗ ( 𝑗 |𝑖) captures
pair-wise SD( 𝑗 |𝑖) and ‘goodness’ of SI(𝑖, 𝑗) with a single metric.

4.1 Scores
To define scores, we characterize the goodness of spatial intervals
with a coefficient 𝛾 (𝑖, 𝑗), based on the observation that smaller SI is
generally better. The coefficient maps smaller intervals to higher
values. We then define affinity scores with respect to an affinity
block pair (𝑖, 𝑗) and its 𝛾 (𝑖, 𝑗).

Definition. For each affinity pair (𝑖, 𝑗) spatial anticipation score
SA∗ ( 𝑗 |𝑖) is

SA∗ ( 𝑗 |𝑖) = 𝛾 (𝑖, 𝑗)SA( 𝑗 |𝑖) (6)

Definition. Similarly, for each location 𝑖 and its affinity block 𝑗 ,
SD∗ ( 𝑗 |𝑖) is

SD∗ ( 𝑗 |𝑖) = 𝛾 (𝑖, 𝑗)SD( 𝑗 |𝑖) (7)

The goodness coefficient is based on the goodness rank 𝑔(𝑖, 𝑗) for
the spatial interval SI(𝑖, 𝑗). The rank ranges from 1 to 𝑛r (lower is
better); we often choose 𝑛r = 5 to cover interval values in each
sample of memory access sequences in the trace. Since a smaller SI
is better, we define the rank as:

𝑔(𝑖, 𝑗) = min
(
𝑛r,

⌊
SI(𝑖, 𝑗)
𝑛si

+ 1
⌋)

(8)

We suggest two ways to set 𝑛si that are independent of workload.
One is relative to the load queue size (loads in flight). Another is
loads to fill some fraction of cache lines. Our experiments use 1/4
the load queue size.
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The goodness coefficient 𝛾 (𝑖, 𝑗) maps better ranks to higher
values in (0, 1]:

𝛾 (𝑖, 𝑗) = 𝑛r − 𝑔(𝑖, 𝑗) + 1
𝑛r

(9)

4.2 Multi-resolution scores
To facilitate top-down analysis using scores, we extend scores to
multiple resolutions, enabling both rapid high-level comparisons
and detailed understanding. We aggregate the affinities for each
individual reference block as a weighted sum, and then aggregate
that for a region of blocks.

For each reference block 𝑖 in region 𝑟 , the aggregate spatial
anticipation and density scores are, respectively, SA∗ (𝑖) and SD∗ (𝑖):

SA∗ (𝑖) =
∑︁
𝑗

AI(𝑖) · SA∗ ( 𝑗 |𝑖) ∀ 𝑖 ≠ 𝑗 (10)

SD∗ (𝑖) =
∑︁
𝑗

AI(𝑖) · SD∗ ( 𝑗 |𝑖) (11)

where AI(𝑖) is the affinity weight (§3.5).
The corresponding scores for region 𝑟 are:

SA∗𝑟 =
∑︁
𝑖

∑︁
𝑗

AI(𝑖) · SA∗ ( 𝑗 |𝑖) (12)

SD∗
𝑟 =

∑︁
𝑖

∑︁
𝑗

AI(𝑖) · SD∗ ( 𝑗 |𝑖) (13)

4.3 Potential vs. realized score
We distinguish between potential and realized affinity to focus on
possible candidates for data layout optimizations. Realized repre-
sents affinity in the current layout, and potential indicates affinity
that could be realized with changes to access order or data layout.
For a reference location 𝑖 , realized score includes a subset of affinity
locations ( 𝑗 ) such as hot-lines and ‘relevant contiguous locations’
only (SA∗: +1, +2 offsets; SD∗: −1, +1 offsets, and ‘self’), whereas
potential score includes all affinity locations.

5 Affinity Signatures
We develop affinity signatures that concisely represent spatial-
temporal affinity in accesses, enable the use of our diagnostic rules
to reason about likely performance, and compare between variants
and/or different data structures of applications.

5.1 Affinity heatmap
For a given affinity metric, an affinity heatmap is a matrix that
represents three affinity dimensions: reference location 𝑖 , affinity
location 𝑗 , and the affinity value for the pair (𝑖, 𝑗). A signature can
include heatmaps for multiple metrics and is thus 4D.

Consider the affinity matrix in Fig. 2(a). Matrix columns denote
reference locations (𝑖), rows denote affinity locations ( 𝑗 ), and each
(𝑖, 𝑗) cell represents a metric value. Matrix rows for 𝑗 are organized
into two bands. The lower band shows contiguous locations that
are spatially related to block 𝑖 , and demonstrate locality within
contiguous locations. An upper band shows other blocks that high-
light opportunities for reorganization, for example, hot blocks in
execution, pages or regions.
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Figure 2: Affinity heatmap visualization and signature. Given
(a) memory layout and affinitymatrix, (b) visualization trans-
forms 𝑗 indices. Contiguous blocks 𝑏0 - 𝑏3 are converted to
relative offsets (+/- from 𝑖, 𝑏1 is +1 for 𝑏0, and 𝑏1 is -1 for 𝑏2)
shown at the bottom, and hot blocks without a spatial rela-
tion to reference blocks are shown at the top.MemFriend ’s
heatmaps display sampled offset locations within a range (+/-
256) and hot lines in execution. Affinity signature (c) com-
bines heatmaps for all three metrics SD, SA and SI. Each (𝑖, 𝑗)
pair has fixed position (aligned) in all three heatmaps.

Fig. 2(b) shows the transformation into a heatmap. Note that in
this example, the cell (colors) represents the transformation rather
than the normal values. The heatmap’s affinity locations in the lower
band are transformed to relative addresses, i.e., offset (+/-) locations.
Blocks 𝑏0 - 𝑏3 that are spatially contiguous are represented by
relative offset locations (𝑏1 is +1 for 𝑏0, and 𝑏1 is -1 for 𝑏2). Hot
blocks 𝑟1 and 𝑟2 are shown as absolute locations.

Figure 2(c) shows the signature, a combination of three heatmaps.
MemFriend’s visualization shows SD, SA and SI heatmaps sepa-
rately rather than combined scores because it allows a) quick es-
timation of spatial-temporal locality based on SI and b) preserves
the qualifying distinction implied by SI for both SD∗ and SA∗. The
signature includes the affinity value dimension, resulting in a 4D
figure.

Each of the three heatmaps (SD, SA and SI) in Fig. 2c shows ref-
erence locations that are sampled based on hotness and ordered by it,
and affinity locations that are sampled to capture most affinity pairs.
Each (𝑖, 𝑗) pair has a fixed location across the three heatmaps. Affin-
ity locations show hot-lines in upper band with absolute locations.
Hot-lines are a subset of the hottest (cache-line sized) blocks in the
application and highlight temporal locality and also opportunities
for reorganization.

5.2 Comparing affinity signatures
It is important to compare signatures between variants of an appli-
cation. To compare signatures, we introduce an alternative 3D/4D
representation along with methods for condensing signatures into
lower dimensional representations.

5.2.1 Affinity signal. An affinity signal shows the same three di-
mensions as the affinity matrix but changes the grouping. Figure 5
shows a signal plot with four subplots. The top three subplots show
the most important affinity locations ( 𝑗 ), i.e., relative offsets that
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are essential to study reuse and the impact of prefetching. These
subplots show scores SD∗ and SA∗ that integrate SI for each (𝑖, 𝑗)
pair (§4). The fourth subplot shows the access frequency of 𝑖 to
focus on access distribution between blocks. These plots show affin-
ity values for all observed reference locations and are ordered by
address locations.

5.2.2 Affinity histogram. To give a high level perspective, an affin-
ity histogram shows the distribution of affinity values. To compare
impacts, we focus on affinity scores and prefer a continuous proba-
bility density function (PDF). Figure 6 shows a histogram as a PDF
for each spatial affinity score. The result condenses three dimen-
sions in the signature, namely the range of affinity metrics and both
affinity dimensions (the reference and affinity axes).

For example, if the SD∗ value for pair (2, 3) is 0.3, it is represented
in the histogram bin for SD∗ 0.3. To pinpoint critical affinity rela-
tions, histograms focus on the hot-cluster section in the heatmap
that covers significant reference locations (hot subset of 𝑖), and all
its affinity locations. Both SD∗ and SA∗ are real numbers, with high
values indicating better affinity; hence higher number of block pairs
in the high-valued score bins indicates better locality.

5.2.3 Affinity vector. An affinity vector represents each affinity
score as a scalar, where each scalar compresses a single histogram.
The scalar includes the importance of 𝑖 , as defined in weighted
affinity (§3.5).

6 Affinity Analysis and Zooming
As a pair-wise analysis, naive affinity analysis requires quadratic
space and time𝑂 (𝐴2), where𝐴 represents uniquememory blocks in
a trace. This type of analysis, which views addresses at a single res-
olution, is only practical when address blocks are large, i.e., objects
(regions) or pages. For efficient analysis at smaller levels of memory
blocks, i.e., word or cache line, we use multi-resolution analysis that
focuses on smaller but significant (hot) segments within regions of
interest that are identified using location-based zooming.

6.1 Multi-resolution analysis & complexity
Fig. 3(a) shows single resolution and Fig. 3(b) showsmulti-resolution
analysis. Within the entire memory region (𝐴 blocks) single resolu-
tion analysis is applicable at the region level for regions of interest
shown in red boxes. Within the regions of interest, multi-resolution
analysis chooses hot sub-region (𝑅 blocks) marked in a blue box in
Fig. 3(a), and applies (cache-line sized) block level resolution.

Multi-resolution analysis significantly reduces analysis complex-
ity in practice. The number of blocks𝐴 in the entire memory region
is far greater than the blocks 𝑅 in sub-regions. Blocks in excluded
regions are consolidated into segments that cover the region and are
considered as significant locations in the analysis. For a sub-region
with 𝑅 blocks, time and space complexity for multi-resolution anal-
ysis is 𝑂 (𝑁𝑅), where 𝑁 includes 𝑅 and other significant locations.

6.2 Zooming
To find regions of interest in the memory access trace, we use zoom-
ing as shown in Fig. 3(c). Zooming uses a recursive tree structure.
First, the entire memory region is divided into heap and stack. The
heap segment is chosen as the root node for further examination.
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A

A11A12 A21 A22

B C

A1 A2 C1

Refined 
regions

Region zoom

C11 C19…

..b1..b1b2..b1..b2...b2b3b2..b3…b1.

..A21A1..A21..A21A1A22A1...A21A1...
Accesses to A1 and A2 over time

Accesses to blocks in A21

H11 H21

H1 H2

Hot-contiguous 
region

Hot-access 
region

A : Addresses (blocks) 
R : Sub-region (blocks)

A >> N > R

R
R

Reference i (A options)

j (
A 

op
tio

ns
)

Time & Space : O(A2)

Time & Space: O(NR)

(a) Single resolution analysis

(b) Multi-resolution analysis

Af
fin

ity
 b

lo
ck

s
j (

N
 o

pt
io

ns
)

i (R options) Segments for analysis (i, j) :
Single resolution: A1, A2, C1, H1, H2
Multi resolution: b1b2b3… in A21 and 

     significant locations

Hot 
sub-region R

Si
gn

ifi
ca

nt
 

lo
ca

tio
ns

(c) Location zooming

Figure 3: Affinity analysis methods and location zooming.
(a) Single resolution focuses on regions of interest in red
boxes for region level analysis. (b) Multi-resolution analysis
chooses a hot sub-region within regions of interest (marked
in a blue box in (a)) for block level analysis. (c) Location
zooming shows recursive filtering for finding regions of in-
terest 𝐴1, 𝐴2, 𝐶1, 𝐻1 and 𝐻2. Sample access sequence shows
expanded access to blocks 𝑏1, 𝑏2 and 𝑏3 in sub-region 𝐴21.
Single-resolution analyzes affinity between𝐴1, 𝐴2, 𝐶1, 𝐻1 and
𝐻2. Multi-resolution analyzes affinity between blocks in sub-
region 𝐴21 and significant locations.

Zooming proceeds top-down and counts access frequencies at each
level. Zooming identifies two types of hot regions: hot-contiguous
and hot-access.

To find hot-contiguous regions, each examined segment is divided
into fixed-size (𝑠𝑐 ) chunks. Contiguous chunks with an aggregated
access frequency of at least 𝑡% of the parent’s access are identi-
fied as sub-regions, e.g., 𝐴, 𝐵, and 𝐶 . 𝑡 is a controllable parameter;
we typically use 10 based on empirical evidence. Sub-regions are
analyzed at further levels using recursively reduced sizes for 𝑠𝑐 .
Zooming ends when 𝑠𝑐 reaches a specific size (configurable). The
final hot-contiguous regions in Fig. 3(c) are 𝐴1, 𝐴2, and 𝐶1.

To find hot-access regions, regions with high access counts are
identified by filtering hot instructions and their associated regions
from the trace. Qualifying sub-regions 𝐻1 and 𝐻2 with size 𝑠𝑐 are
identified using the same access frequency policy, where segments
with 𝑡% of the parent’s access qualify as a child.

The final regions of interest are𝐴1, 𝐴2, 𝐶1, 𝐻1, and𝐻2. From these
regions, multi-resolution analysis is applied to blocks in sub-region
𝐴21, and significant locations can include 𝐴1, 𝐴2, 𝐶1, 𝐻1, and 𝐻2.

7 Evaluation
We evaluate spatial affinity metrics using a set of representative
HPC application benchmarks that vary data structures, storage
formats, data layouts and algorithms.We describe the novel insights
gained from affinity analysis. As a baseline, we compare against
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reuse distance (RD) and show the effectiveness of affinity metrics
in distinguishing application performance.

Benchmarks. We study variants (OpenMP implementations) in
the benchmarks listed below.

• Reordering of sparse tensors using HiParTI-HICOO [24]
• Sparse matrix storage formats using SpMM kernel in HiParTI-
HICOO [23]

• Graph clustering using miniVite [10]
• Large-language models (transformers) via Alpaca.cpp [9]
• Particle transport algorithm using XSBench [41]

Trace collection. We conduct experiments on an Intel Core i9-
12900KF (Alder Lake hybrid) with 8 Performance-cores and 8 Efficient-
cores. Binaries are instrumented using open-sourcedMemGaze [20]
framework to capture memory access trace based on Processor Trac-
ing hardware. A mapping table for translating instrumented binary
to the original is used to attribute regions to data objects.

Trace consists of samples of access sequences (~250) and includes
instruction address, memory address and sample IDs. The length of
sequences in a sample as well as trace sizes depend on sampling rate.
The sampling rate varies between benchmarks: miniVite uses 5M,
HiParTI-HICOO uses 4M, and XSBench uses 5M. Trace collection
imposes overheads from 2.5× to 6×. Trace files for HiParTI-HICOO
matrix variants with 220 K to 4.7 M access sequences have sizes
from 11 MB to 233 MB.

Analysis Overhead. Affinity analysis time depends on the number
of sub-regions considered for multi-resolution analysis and trace
size. In the case of HiParTI-HICOO matrix variants with trace sizes
from 11 MB to 233 MB, and 10 sub-regions, analysis runtime ranges
from 2 seconds to 20 seconds. Signature visualization of heatmaps,
histograms, and signals take ~20 seconds.

7.1 HiParTI-HICOO
To study sparse matrix storage formats and tensor data layouts, we
choose the HiParTI suite [22]. In HiParTI, SpMM kernels incorpo-
rate matrix storage formats such as compressed sparse row (CSR),
coordinate (COO), and HICOO [23]. It also includes multiple tensor
reordering variants [24]. HICOO is a compressed block storage for-
mat for sparse tensors and matrices; it derives from and improves
upon the COO format.

7.1.1 Tensor reordering variants. For computational efficiency, sparse
tensor data is generally reordered (indices relabeled) to improve
data access locality. We analyze locality patterns of tensor reorder-
ing variants: Default (no reorder), Random (random order), BFS
(breadth first search-like heuristic approach) and Lexi (lexicograph-
ical order) [24]. All variants are integrated in an MTTKRP kernel
implementation with HICOO storage format. Benchmark is run
with nell-2 [35], a third-order tensor with 77M nonzeroes and a
density of 2.4 × 10−5.

Aff. Heatmap. Figure 4 shows affinity heatmaps for the hottest
memory region. The region includes two objects factor matrices &
output. Heatmaps for the variants show different affinity patterns
across reference locations (horizontal axis) for each variant. We
make four important observations from the heatmaps.

Table 1: HiParTI-HICOO tensor reordering variants: Data
locality and affinity vector.

Region Variant Run A RD Realized Potential
time SA∗

𝑟 SD∗
𝑟 SA∗

𝑟 SD∗
𝑟

factor Default 9.5 s 1.83M 2.53 0.3 0.15 0.4 0.2
matrices Random 9.0 s 1.81M 2.67 0.4 0.2 0.5 0.2
& BFS 4.4 s 1.84M 5.07 2.9 0.5 3.5 0.5
output Lexi 3.4 s 1.81M 3.24 3.3 0.7 5.3 0.8

First, consider the SD metric. Figures 4a and 4b show Default
and Random variants. In these signatures notice that (a) the shaded
box in the SD heatmap shows sparse and irregular affinity, (b) the
shaded box in the SI heatmap for the same locations shows low
(good) values, and (c) 1○ shows a large range of contiguous affinity
locations (offsets on the vertical axis, +61 to -7 for Default and
+42 to -15 for Random) that extend beyond the shaded box. These
observations point that distant affinity locations are accessed at
closer intervals and there is minimal correlation between accesses
to a block and its neighbors. Hence the two variants have no spatial-
temporal locality. Figures 4c and 4d show BFS and Lexi variants. In
these signatures, observe that (a) the shaded box in the SD heatmap
shows high affinity to closely located offset locations, (b) the shaded
box in the SI heatmap for the same locations shows increasing SI
values with the increase in offset distance, and (c) affinity neigh-
borhood in 1○ shows a smaller range (+5 to -4 for BFS, and +7 to
-7 for Lexi). This pattern with high affinity to adjacent locations
and good intervals in BFS and Lexi, exhibits good spatial-temporal
locality and complies with guideline §2.1 for good performance.

Second, consider SD∗ for self. 2○ combines values from SD and
SI heatmaps, and shows that SD∗ is low across all variants. Though
BFS and Lexi have slightly better SD∗, the improvement is small.
This suggests that although temporal reuse increases (along with
caching opportunities) in BFS and Lexi, the impact will be minor.

Third, consider the SA metric. Figures 4a and 4b show Default
and Random variants. In these signatures notice that (a) the shaded
box in the SA heatmap shows sparse SA values, (b) SI heatmap for
the same locations shows low (good) values, and (c) 1○ shows that
both SA and SI extend to a wider range of affinity locations. SA
values are scattered between affinity locations with minimal access
proximity between neighbors, suggesting that the access pattern is
irregular and spatially sparse in Default and Random. In contrast,
in Figs. 4c and 4d for BFS and Lexi notice that (a) the shaded box
in the SA heatmap shows better SA and high access proximity to
adjacent locations, and (b) as discussed in SD, both SI values and
affinity neighborhood range comply with good performance. For
BFS and Lexi, the observations point to irregular access but with
good spatial-temporal locality.

Fourth, consider SA∗ for +1 offset location. 3○ combines values
from SA and SI heatmaps, shows SA∗ is high for both BFS and Lexi,
whereas Default and Random have no measurable value. This high-
lights that BFS and Lexi have high anticipatory spatial-temporal
locality to +1 offset location and will highly benefit from hardware
prefetching.

We conclude that (a) affinity metrics distinguish the performance
of the variants and (b) explain that the tensor reorderings primarily
improve SA in contrast to SD. The latter means that the reorderings
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Figure 4: HiParTI-HICOO tensor reordering variants: Affinity heatmaps for factor matrices & output region.
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Figure 5: HiParTI-HICOO tensor reordering variants: Affinity signal plots for a section of blocks in factor matrices & output
region.

primarily depend upon hardware prefetching for impact. Our ex-
periments with disabled prefetchers confirm that runtime degrades
from 8% to 28% for Lexi and BFS, over a range of large tensors
(nell-2 and nell-1 [35], freebase-music [17]).

Aff. Signal. We study affinity over the memory address space
for BFS and Lexi with affinity signal plots (Figs. 5a and 5b) that

show SA∗ and SD∗ for offset locations (−1 to +1). We focus on SA∗

values in the plots, as SD∗ is low for all blocks in both variants.
SA∗ for +1 offset locations in BFS is stagnant at 0.25, whereas Lexi
has a significant number of blocks with 0.5. This shows that Lexi
has a higher number of blocks with more affinity to adjacent loca-
tions than BFS, and these blocks leverage hardware prefetcher to
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Figure 6: HiParTI-HICOO tensor reordering variants: Affinity
score histograms, distribution of block pairs in hot-cluster
for factor matrices & output region.

decrease load latency. Access frequency plots at the bottom show
that Lexi has less access frequency variation between blocks than
BFS. It indicates that memory locations in Lexi are accessed more
frequently with more use of the same location, consistent with
more reuse and perhaps more memory-level parallelism. Again, we
see that SA∗ clearly explains the better performance in Lexi.

Aff. Histogram. Figure 6a and Fig. 6b show the distribution of
affinity pairs for SA∗ and SD∗ for all variants. In these plots, a dis-
tribution is better when it has more area that is skewed “up and to
the right”. Figure 6a shows that Lexi has more affinity pairs (upper
section) and affinity pairs at all score levels, including high values
(right section). Though Default and Random have few affinity pairs
at high score values, their weighted affinity (§3.5) is low. The distri-
bution in Fig. 6b shows that pairs in all variants are concentrated
towards the lower SD∗ values (left section). Though Lexi has a
better SD∗ distribution, the plot does not identify a clear winner.
Thus we see that affinity heatmaps, signals, and histograms
all explain the better performance of BFS and Lexi by focusing
attention on the impact on SA∗.

Aff. Vector. First, we consider the baseline locality metric RD
in Table 1 shows the best (lowest) value for Default and Random
variants, and the worst value for BFS. We observe that RD can be
highly misleading as an indicator of application performance.

Second, consider realized scores. Recall that realized score quan-
tifies affinity to adjacent locations in the current layout. SA∗𝑟 in
Table 1 shows high values for Lexi and BFS, indicating the benefits
of reordering. Lower realized SA∗𝑟 value for Default and Random
represent the sparse layout and access pattern. Though realized SD∗

𝑟

Table 2: HiParTI Matrix variants: Data locality and SD∗.

Matrix Variant Run A RD SD∗

time (Avg)
B CSR 5.4 s 157K 0.95 0.25

COO-Reduce 8.0 s 627K 0.99 0.41
HICOO-S 4.7 s 156K 0.95 0.26

𝐴’s structure

is higher for Lexi, the minimal range of values does not distinguish
between variants.

Third, consider potential scores. Recall that potential scores rep-
resent a possible value for affinity under the assumption that layout
can be changed dynamically without cost, but it introduces over-
heads. Potential vectors in Table 1 also show high values for Lexi. In
Lexi, the increase in potential score for SA∗𝑟 is attributed to the −1
offset location. For the detailed explanation, recall that the −1 offset
location has high temporal proximity (lower SI, high SA in Fig. 4d
and high SA∗ in Fig. 5b). It is possible that the −1 offset location is
present in the cache from prior access, and actual realized affinity is
higher. Potential SD∗

𝑟 values are similar to realized as SD values are
concentrated towards hot-lines, and as in realized SD∗

𝑟 the values
are low and do not distinguish between variants.

7.1.2 Matrix variants. We analyzememory locality effects of sparse
matrix storage formats CSR, COO and HICOO in SpMM kernel.
SpMM kernel computes 𝐶 = 𝐴 × 𝐵 where 𝐴 is a sparse matrix, 𝐵
and 𝐶 are dense matrices. In our configuration, 𝐴 (blockqp1 [6])
has a density 1.77 x 10−4 and the block structure is shown in Ta-
ble 2; number of columns in 𝐵 is set to 4096. We focus on efficient
parallel implementations and select CSR, COO-Reduce, HICOO-S
variants for analysis. CSR parallelizes rows in 𝐴. COO-Reduce par-
allelizes the number of non-zeroes and uses a buffer for𝐶 . HICOO-S
parallelizes compressed blocks.

Aff. Heatmap. Fig. 7 shows heatmaps for the hottest memory
region, matrix 𝐵 in all variants. It shows uniform locality patterns
where the affinity pattern remains the same across all reference
locations (horizontal axis). We make four observations from the
heatmaps.

First, consider the SD metric. In all three variants, (a) yellow box
in the SD heatmap shows that the variants have high SD values for
self location only, (b) yellow box in the SI heatmap shows low (best)
SI values for the same affinity location self, and (c) 1○ shows affinity
range contains self location only. These observations indicate that
no other affinity locations are accessed within the lifetime of each
reference block, and blocks are reused within a short interval.

Second, consider SD∗ for self. 2○ combines SD and SI heatmaps
and shows high values in all variants, indicating that reuse is high,
with the best values in COO-Reduce.

Third, consider the SA metric. For CSR in Fig. 7a and HICOO-S
in Fig. 7c, SA is high and similar across contiguous locations, and
SI remains low (good) for all reference blocks. For COO-Reduce in
Fig. 7b, SA is not uniform and the values are insignificant, as it incor-
porates the highest access counts of reference blocks, but note that
it is accompanied by good SI values. Though SA for COO-Reduce
differs from the other two, SI remains similar. These observations
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Figure 7: HiParTI matrix variants: Affinity heatmaps for matrix 𝐵.

point to regular, forward traversal access patterns in all three vari-
ants.

Fourth, consider SA∗ for +1 offset location. 3○ combines SA and
SI heatmaps and shows high values in CSR and HICOO-S variants,
indicating that they effectively leverage the prefetcher. Though
SA∗ for +1 offset location is low in COO-Reduce, it is accessed in a
temporal forward direction.

To summarize, for all variants (a) range of affinity blocks is self,
(b) blocks have high reuse, and (c) SI heatmaps show effective
prefetching. These observations point to regular, strided access
with high spatial-temporal locality and suggest that all variants
follow guideline §2.1 behavior for good performance, but there are
differences in the rate of reuse. We conclude that same-line locality
is most important for the matrix variants. Although this type of
locality does not strictly correspond to either caching or prefetch
schemes, it is important and captured by our affinity metrics.

Aff. Vector. Baseline RD values for all variants in Table 2 are
equal (best value of ~1) and indicate similar behavior, whereas dis-
tinct SD∗ values show the trade-off between storage format and
locality. Note that COO-Reduce with the highest SD∗ value (high
reuse) is not the best-performing variant, because it requires addi-
tional buffering as shown in very high access counts (A). Though
CSR and HICOO-S have smaller SD∗ values, they are efficient be-
cause of effective data reuse based on instruction level parallelism
(A in Table 2 are 4× to account for SSE).

It is worth noting that higher reuse, measured by SD∗ values
translates to superior performance within the bounds of access
frequency. So, spatial affinity metrics combined with other
characteristics such as access frequency provide complete in-
formation about performance. At the same time, spatial affinity
metrics provide precise spatial-temporal localitymeasure than
reuse distance (even with best value ~1).

7.2 miniVite
miniVite [10] is a graph benchmark for community detection that
uses Louvain optimization. Variants in our analysis use different
hash table implementations for the hottest map object. v1 uses a
C++ unordered_map, an open hash table with an array of keys, each
containing a linked list for items, and hence irregular accesses. v2
and v3 use TSL hopscotch [15, 38], a closed hash table that stores

Table 3: miniVite: Data locality and affinity vector formap
object.

Region Variant Run A RD Realized Potential
time SA∗

𝑟 SD∗
𝑟 SA∗

𝑟 SD∗
𝑟

map v1 9.1 s 301.8K 2.8 4.3 1.3 4.8 1.4
(hash v2 6.7 s 487.4K 3.3 7.5 2.9 8.1 2.9
table) v3 4.9 s 284.7K 2.9 6.0 1.9 7.1 2.1

items in a contiguous array, and replaces irregular accesses with
strided ones. v2 uses the default table size and does dynamic resizing.
v3 avoids resizing by specifying right-size for each instance.

Aff. Heatmap. Figure 8 shows heatmaps for the map object,
with varying affinity patterns among reference blocks (horizontal
axis) in each variant. We begin with five observations.

First, consider the SDmetric. In Fig. 8a for v1 observe that (a) the
shaded box in the SD heatmap shows sparse and scattered affinity
to contiguous locations, (b) the shaded box in the SI heatmap shows
low (good) SI values for these locations, and (c) 1○ shows that
range of affinity locations extend to a wider neighborhood (+14 to
-10 offset locations in vertical axis). Scattered SD values within the
range, alongwith good SI indicate that distant locations are accessed
in close temporal proximity. This pattern points to negligible spatial
and temporal affinity to adjacent locations, reflective of irregular
accesses in the linked list. For v2 and v3 in Fig. 8b and Fig. 8c, note
that (a) the shaded box in the SD heatmap shows SD values that
are congregated towards same-line and adjacent locations, (b) the
shaded box in the SI heatmap shows a trend of increasing SI with
offset distances, and (c) 1○ for v2 and v3 show affinity to low range
of adjacent locations (v2: +4 to -7, v3: +7 to -8). Concentrated SD
along with a good trend in SI values indicates better affinity to
adjacent locations, evident of the strided traversal of map.

Second, consider SD∗ for self. 2○ combines SD and SI heatmaps
and shows low SD∗ value in all variants. v1’s SD∗ values are very
low. Both v3 and v2 have better (slightly higher) SD∗ values as the
traversal limits the reuse of blocks. We infer that cache-friendly
and same-line reuse improves in v2 and v3, but it is still relatively
low in all variants.

Third, consider the SA metric. In Fig. 8a for v1 notice that (a) the
shaded box in the SA heatmap shows non-uniform SA values that
are spread over contiguous locations, (b) as noted in SD discussions,
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SI values also favor distant locations, and (c) 1○ shows v1’s anticipa-
tion extends to a wide range of contiguous locations. SA correlation
to distant locations shows that there is no anticipatory access to
spatially adjacent locations. In Fig. 8b and Fig. 8c for v2 and v3,
(a) the shaded box in the SA heatmap shows high SA values for
closer neighbors, especially in v3, (b) as noted in SD discussions, SI
values show preference to adjacent locations, and (c) 1○ for v2 and
v3 show anticipation to adjacent locations. High SA values along

with good SI within a much smaller range of adjacent locations,
indicate anticipatory access with better spatial locality in v3.

Fourth, consider SA∗ to +1 offset location. For v1 in Fig. 8a 3○
(combines SA and SI heatmaps) shows negligible values, indicating
that v1 has no prefetching advantage. From 3○ in Fig. 8b and Fig. 8c,
we note that v3 has more reference locations with impactful SA∗
to +1 offset location, pointing to beneficial prefetching than v2.

Finally, temporal locality ( 4○ upper band in all heatmaps) to hot-
lines remains significant in all variants, and it is similar between
all variants.

Interestingly, no variant has affinity relations that follow guide-
line §2.1 for good performance, but the SA and SI heatmaps show
improving spatial locality from v1 to v3.

In summary, changing map’s data structure from open to closed
hash table (a) improves SA than SD to adjacent locations and (b)
though caching (SD) for adjacent locations remains low, it is high for
hot-lines in all variants.We conclude that the primary explanation of
v2’ and v3’s performance is a data structure that exploits hardware
prefetching.

Aff. Histogram. Figure 9 shows histogram plots; recall that
distribution is better when it has more area that is skewed “up and
to the right”. Figure 9a for SA∗ shows that v3 has high distribution
of affinity pairs (upper section), with a greater number of pairs at
the higher score values (right section). v3 has far more impactful
affinity as the weighted value of the area under the curve increases
towards high SA∗ values. Figure 9b for SD∗ shows that both v3 and
v2 have a better distribution of affinity pairs than v1. Though v2 has
almost comparable distribution as v3, a significant portion of the
accesses in v2 are unnecessary (resizing) and hinder performance.
Again, SD∗ shows an improving trend from v1 to v3, but SA∗ shows
better variation and explains the better performance of v3.

Aff. Vector. First, similar values for baseline RD in Table 3 for
v1 and v3 fail to differentiate the performance of these variants.

Second, consider realized scores for quantifying the current lay-
out. SA∗𝑟 shows a higher value for v3 when compared to v1, reflect-
ing the beneficial prefetching. Realized SD∗

𝑟 shows high value for
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Figure 10: Alpaca.cpp: Affinity heatmaps for hot regions src0_row and src1_col.

Table 4: Alpaca.cpp: Data locality and affinity vector.
Region A RD Realized Potential

SA∗
𝑟 SD∗

𝑟 SA∗
𝑟 SD∗

𝑟

src0_row 4.8M 1.25 0.4 0.7 0.6 0.7
src1_col 28.2M 2.99 1.4 0.2 2.8 0.26

v3 than v1, indicating better reuse. In both cases, though v2 has
the highest scores, the impact of the affinity score is reduced as the
accesses include added copying along with traversal through the
array.

Third, consider potential scores for possible layout changes and
their impact on affinity. Potential SA∗𝑟 also shows a higher value
for v3. Possible options for potential score are spread over a small
neighborhood of adjacent locations within the range, indicating that
re-layout can lead to better locality. For all variants, SD∗

𝑟 doesn’t
show a difference between realized and potential scores as SD values
are concentrated among the hot-lines.

7.3 Alpaca.cpp
Alpaca.cpp [9] is an LLM inferencing application implemented
in C++, parallelized using Pthreads. It combines efforts such as
LLaMA [39] and Alpaca [37]. Inferencing in our evaluation uses the
LLaMA 7B parameter model quantized with 4-bit integers (ggml-
alpaca-7b-q4.bin) with seed value 1685480810, and default values
for other parameters.

Among the 12K lines of code (7 MB binary), location analysis
highlights two regions x and y in hotspot function ggml_vec_dot_q4_0.
x region corresponds to src0_row with spatially sparse accesses
identified by hot-access analysis; y region corresponds to src1_col
and it is a hot-contiguous region.

Aff. Heatmap. Heatmaps in Fig. 10 show different locality pat-
terns with differing affinity patterns across reference locations

(horizontal axis) for each region. We use signatures to differentiate
the access patterns in the two regions.

src0_row. We start with src0_row object and its signature in
Fig. 10a. First, consider the SD metric. SD heatmap shows high
values for self, and 1○ shows that affinity is limited to +1,−1 offset
locations and self. This indicates that only adjacent locations are
accessed after access to a reference block.

Second, consider SD∗ for self. 2○ combines SD and SI heatmaps,
and shows high values of SD∗ (~0.3) for all blocks, and points that
these blocks are highly reused.

Third, consider the SA metric. SA heatmaps show high values
for +1 offset than −1 offset. SI heatmap also shows low (good) SI
values for +1 offset and high (bad) values for −1 offset. This shows
that the +1 offset location has a high correlation and the access
pattern is regular, strided access with mostly forward traversal.

Fourth, consider SA for +1 offset location. 3○ shows a combina-
tion of low SI values and higher SA values, implying that +1 offset
locations are accessed in close temporal proximity.

The observed pattern suggests that access behavior for src0_row
has good spatial-temporal locality as in guideline §2.1.

src1_col. Now, we discuss src1_col object’s signature in Fig. 10b.
First, consider the SDmetric. In Fig. 10b observe that (a) the shaded
box in the SD heatmap shows scattered and sparse SD values, (b)
the shaded box in the SI heatmap points to increasing SI for positive
offset locations, and high values for self and negative offsets, and
(c) 1○ shows affinity range that is higher (+6 to -25 offset locations).
Scattered affinity to locations across the range, with irregular SI
values, show that the access pattern in src1_col traverses a wide
range of adjacent locations within each reference block’s lifetime.
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Table 5: XSBench-event variants: Data locality and affinity
vector for material and nuclide region.

Region Variant Run A RD Realized Potential
time SA∗

𝑟 SD∗
𝑟 SA∗

𝑟 SD∗
𝑟

material and k0 52 s 1.5M 2.2 1.24 0.95 1.24 0.95
nuclide k1 14 s 1.5M 2.3 1.25 0.97 1.27 0.97

Second, consider SD∗ for self. 2○ shows high SI and low SD (~0.1)
for self locations, pointing that reuse remains low and is an example
of guideline §2.5.

Third, consider the SA metric. Notice that (a) the shaded box in
the SA heatmap shows uniform SA values for all locations, and (b)
as noted in SD discussions, SI values show a preference for positive
offset locations. We observe that the access pattern in src1_col
has beneficial anticipation towards positive offset locations.

Fourth, consider SA∗ for +1 offset location. 3○ with high SA∗

value shows that high anticipatory spatial-temporal locality to +1
offset location, and access pattern that leverages the hardware
prefetcher.

We validated that decoder implementation in Alpaca.cpp uses a
key-value cache for efficient inferencing. We are exploring other
ways to improve locality for src1_col.

Aff. Vector. First, baseline RD values in Table 4 shows low value
and hence better locality for src0_row and informs about its good
temporal locality. Second, realized scores show high SA∗𝑟 value for
src1_col and low values for src0_row highlighting the benefits
of spatial locality and prefetching in src1_col. Also, realized SD∗

𝑟

shows high values for src0_row, and low values for src1_col,
pointing to low reuse in src1_col. Third, potential score SA∗𝑟 shows
that efforts to reorder accesses for improved prefetching should
focus on src1_col. Potential SD∗

𝑟 doesn’t show a difference to
realized score suggesting that efforts to improve reuse might need
higher levels of refactoring.

Thus, we observe that spatial affinity metrics provide more
insights about data layout, access patterns, and their implica-
tions on memory performance, than reuse distance analysis.

7.4 XSBench
XSBench [40, 41] is a proxy application that models Monte Carlo
neutron transport algorithm, specifically the calculation of macro-
scopic neutron cross sections. We evaluate two variants of the event-
based transport model, baseline k0 and optimized k1. Baseline k0
parallelizes cross section lookups for all particles with varying ma-
terials and follows random access pattern. Optimized k1 sorts the
particles by material and energy and facilitates efficient memory
access.

Locality analysis identifies three regions: hot-contiguous region
material and nuclide; and two hot-access regions with sparse ac-
cesses, energy grid, and grid cross section.

First, we describe signatures for hot-contiguous region material
and nuclide.

Aff.Histogram.We exclude heatmaps for hot-contiguous regions
as both variants use the same data structure and affinity patterns
are similar. Histogram of affinity pairs for material and nuclide in
Fig. 11a and Fig. 11b show better number of affinity pairs (skewed
“up and to the right”) and better affinity in k1.

High number of 
affinity pairs

Good affinity

(a) SA∗ histogram

High 
number of 
affinity pairs

Good affinity

(b) SD∗ histogram

Figure 11: XSBench-event variants: Affinity score histogram,
distribution of block pairs in hot-cluster of material and
nuclide region.

Table 6: XSBench-event variants: Reuse distance and access
frequency for energy grid and grid cross section regions.

Region Variant A RD
energy k0 32.7K 1.0
grid k1 253.2K 7.3
grid cross k0 9.3M 0.0
section k1 9.4M 0.2

Aff. Vector. First, baseline RD shows better (lower) values for
k0, and misleads about performance. Second, realized scores in
Table 5 show better SA∗𝑟 and SD∗

𝑟 values for k1, reflecting the opti-
mal accesses in k1. Third, consider potential scores. The similarity
between realized and potential scores suggests thatmaterial and nu-
clide region has the best possible layout, and optimizations should
focus on other regions.

Now, we focus on sparsely accessed regions (energy grid and
grid cross section). We use signals to compare against baseline RD,
as the scores are not applicable due to highly sparse accesses.

Aff. Signal. Baseline RD in Table 6 for the sparsely accessed
regions (energy grid and grid cross section) shows better (lower)
values for k0, and misleads about the performance.

For the same regions, affinity signals are shown in Fig. 12. k0’s
signal plots are shown in Fig. 12a. The bottom subplot for access
frequency shows sparsely accessed blocks. The middle subplot for
self shows varying SA∗ and SD∗. The top subplot for +1 offset
shows no SA∗ to +1 offset locations. These observations indicate
worse temporal as well as spatial locality among all blocks.

k1’s signal plots are shown in Fig. 12b. The bottom subplot for
access frequency shows more blocks with higher access frequency.
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XSBench – k0

(a) k0

XSBench k1

(b) k1

Figure 12: XSBench-event variants: Affinity signal plots for a section of blocks in energy grid & grid cross section region.

The middle subplot for self shows varying SA∗ and SD∗, but they
are effective as the blocks have high access frequency. The top
subplot for +1 offset shows considerable SA∗ to +1 locations. These
observations indicate that k1 has better spatial-temporal locality.
k1’s signatures with better spatial-temporal affinity patterns reflect
the optimized memory access patterns in k1.

We conclude that spatial affinity signatures capture differences
in access patterns for regions with vastly different footprints, and
the performance of k1 depends on both caching and prefetching.

8 Related Work
We introduce new spatial-temporal affinity metrics, and scalable
affinity analysis that can operate at multiple resolutions.

Affinity and correlation. In the closest work [30], Miucin et al.
measure co-occurence of pair of data objects within a window to
detect communities between objects to guide data layout. It utilizes
co-occurence within a defined window as a measure of affinity to
pack objects into a cache line and reduce cachemiss rate. In contrast,
we use generalized windows with the inclusion of temporal locality
and lifetime, and use strength of pair of metrics to identify locality
signatures. Also, our multi-resolution analysis is applicable for
objects as well as memory locations within large data objects.

Another related concept, reference affinity [49] measures affin-
ity between two data objects based on similarities in their single-
location reuse. Reference affinity has been extended to add more
insights: weakly affined references in [48]; hierarchical data locality
in [47]; conditional probability based co-occurence between pair of
affine data in [26]. Additionally, Ning et al. [31] propose improved
field affinity to measure affinity between structure fields to reorga-
nize structure layouts within cache lines to increase cache reuse.
Both reference affinity and field affinity follow actor-centric formu-
lation for analyzing accesses to user guided access sites. In contrast,

our location-centric analysis covers spatial-temporal locality and
reuse of memory locations to describe affinity between locations.

Sobel et al. [36] present an improved algorithm (with linear
complexity) for co-occurence [26] counting for multiple pattern
sets. In our effort, we use zooming to restrict the pattern sets for
affinity analysis, as the reduced pattern set focuses on significant
locations, and is sufficient to construct affinity signatures. If many
more pattern sets are needed for capturing affinity signature, one
could use [36] as an alternative.

Spatial-temporal probability. Anghel et al. [1] introduce multi-
dimensional spatial-temporal locality for single address locations,
measure the probability of memory accesses with specific spatial
distance and reference windows, and visualize the probability distri-
bution as a heatmap. Our work focuses on the correlation between
multiple locations and generalizes reference windows as lifetime
in spatial density, and forward temporal distance in spatial interval.

Spatial locality measurements. Multiple efforts have recognized
the limitations (single location, temporal dimension) of using reuse
distance for spatial locality analysis and explored novel ways to
measure spatial locality. Gu et al. [11] measure the change of reuse
distance at different block granularities to identify program compo-
nents to improve data layout. Multi-spectral reuse distance [4] uses
reuse distance histograms at different data block sizes, and footprint
metrics to study access patterns and identify appropriate page sizes.
Maeda et al. [27] implement hierarchical reuse distance to preserve
locality details at multiple granularities to aid in design exploration.
Gupta et al. [12] measure aggregated spatial locality with specific
neighborhood and window sizes to evaluate the effects of cache
specifications and their impact on performance. These methods are
constrained to specific neighborhood and window sizes, whereas
we use multi-resolution analysis for expanding the neighborhood,
and use measured temporal distance SI to quantify locality.
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Along with addressing limitations of reuse distance analysis,
added benefits in our work include: novel spatial-temporal affinity
metrics and visualization to show access patterns and highlight
affinity between locations; and combinations of metrics to identify
opportunities for improving data layout.

Pattern analysis. Pattern analysis in various forms has been ex-
ploited in a variety of fields. We focus on pattern analysis methods
used to improve prefetching in storage systems as it is related to
our effort. Occurrence of frequent sequences [7, 25] in I/O access
patterns is used to identify block correlations within specified win-
dows to direct prefetching of blocks. These efforts use temporal [25]
or spatial-temporal [7] information to identify correlations between
blocks within specific window to improve I/O response times. These
techniques exemplify the impact of correlation between multiple
blocks and influence our work in finding highly correlated memory
locations.

There has been recent interest in learning access patterns us-
ing machine learning. This work ranges from learning optimal
replacement policies [3, 16, 34, 43] to learning patterns to assist
prefetching [13, 14, 21, 32, 33, 42]. In general, these approaches
require substantial training time or data. Also, most prefetching
approaches are critically dependent on program control structure,
not data locality.

9 Conclusions
We present novel spatial affinity metrics that capture affinity be-
tween pairs of memory locations along multiple dimensions and at
multiple resolutions. We show how to characterize spatial-temporal
affinity with efficient location-based multi-resolution analysis that
enables analysis of full applications using large memory footprints.
Our evaluations demonstrate that affinity signatures can predic-
tively represent important and differing forms of spatial-temporal
locality, including differences that arise from variant data struc-
tures, layouts, and access patterns. We conclude that spatial affinity
metrics provide more interpretive insight into the impact of spatial-
temporal locality compared to prior methods and metrics that rely
on single location. Our future work includes applying our work to
application data objects with dynamic lifetimes, memory allocation
and data layouts, and hardware-software co-design.
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