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ABSTRACT
This paper describes a new, multi-locality benchmark program
for testing memory access latency and using it to study recent
AMD machines equipped with 3D vertical cache (V-Cache) that
can be over 1 GiB in total size on a single node. The latency study
shows that these large caches differ from traditional LLCs in two
aspects: the V-Cache is partitioned rather than shared, and the
cache replacement policy is more similar to random than it is to
LRU.

1 INTRODUCTION
In a modern computing system, the disparity of speed in cores and
memory significantly impacts program performance in both speed
and energy consumption, known as the memory wall [10] [18].
With the number of cores growing, the data consumption of the
machine becomes larger and faster, and data movement is becoming
more and more important in program performance. Therefore, pro-
grams and algorithms must be carefully designed to minimize data
movement, which raises the importance of data locality analysis.

Data locality cost can be expressed in many different ways. One
of the easiest way to measure data movement cost is through access
latency. In other word, bymeasuring the average data access latency,
we can quantify the cost of data movement and the benefit of
caching.

Our contributions are
• specifications of recent AMD machines with up to 768 MiB

V-Cache on a single machine
• a benchmark program that tests access latency on data

traversals that have different data reuse patterns:
(1) Cyclic: data is repeatedly traversed in the same order
(2) Sawtooth: the order is reversed each time the data is

traversed
• results from V-Cache based machines and a comparison

with other systems
The results show that V-Cache differs from conventional LLCs

in two ways:
(1) The replacement policy is clearly different from the one

used in the L2 cache on the same machine and the policy
used on an Intel machine.

(2) Only local V-Cache is used by a core, and having more V-
Cache modules does not help if only a single core is used,
i.e., partitioned LLC rather than shared LLC.

The replacement policy is a major factor in determining the
average access latency, but it is not disclosed by AMD. The purpose
of using two types of traversals is to (1) identify how LRU like the
policy is and (2) how the policy is sensitive and insensitive to the
order of data traversal.

A limitation is that the new test works on power of two array
sizes. The effect of caching is measured by the cumulative time
of data traversals, not the number of cache misses, which require
access to cache hardware, e.g., hardware counters. As a result, the
test is portable and does not depend on special hardware support
or correctly understanding such support.

2 DUAL ACCESS ORDER STREAM-IN-CACHE
BENCHMARK (SIC)

On modern computers, the access latency is made obscure by non-
data access costs including instructions and auxiliary data, latency
hiding through out-of-order execution and prefetching, contention
on data bandwidth, and cache coherence. When the data size is
greater than the cache size, the latency depends on the miss ratio.
This section presents the pseudo code and the techniques for de-
signing such a test program that overcomes these difficulties and
accurately measures the latency of data access.

2.1 Triangular Access
One of the major problem for creating an access latency benchmark
is prefetching. Prefetcher will automatically fetch the data forward,
thus making the timing ineffective. One common method people
use when benchmarking latency is to manually disable hardware
prefetcher, in BIOS or inMachine Specific Registers (MSR). However,
in this work, by utilizing the power of Triangular Sequence, it is no
longer needed for manually disabling hardware prefetcher.

Triangular Sequence is a common practice among the hash table
community. This is a standard sequence used in quadratic prob-
ing of open hash tables [9]. It is well-known that the triangular
sequence can access each number from 0 to 2𝑚 − 1 exactly once.
In other word, 𝑓 (𝑥) = ∑𝑥

𝑛=1 𝑛 mod 2𝑚 generates a permutation
on {0, ..., 2𝑚 − 1} [2]1. This unique feature allows one to easily
generate a pseudo random traversal for some given arrays, and it
is complex enough to defeat the hardware prefetcher, but, at the
same time, computationally light enough to not be a bottleneck for

1Prove can be find at: https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-
mod-2n/ or The Art of Compute Programming, Volume 3, Chapter 6.4

https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/
https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/
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Algorithm 1 Benchmark
1: procedure Bench(𝑖𝑛𝑝𝑢𝑡 : 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒)
2: set thread affinity to CPU0 ⊲ core binding
3: allocate memory block ⊲ huge page (if applicable)
4: PREFILL (Algo. 2) test array with triangular numbers
5: clear cache
6: load the memory block into the cache
7: load data with different PATTERNS (Algo. 3, 4)
8: end procedure

our benchmark. However, one limitation of using the triangular
access is that we can only bench data size that is 2𝑛 .

One thing to be noted is that by enforcing the triangular sequence
access, this benchmark mimics the probing process of a large hash
table in CPUs, such as Google’s sparse hash table[1] and Swiss
table[7], thus characterizes the performance of such tables with
large on-chip caches.

2.2 Dependent Loads
Modern processors employ latency hiding techniques such as prefetch-
ing and non-blocking loads. To remove such effects, we convert all
data loading into dependent loads in a loop. In this way, the next
load cannot start until the previous load has already completed.
It is to be noted that although data dependence requires a write,
in this benchmark, the write would be a write towards a register
instead of an array address. The memory access consists entirely
of dependent loads.

2.3 Sawtooth and Cyclic Data Traversals
The SiC benchmark uses repeated data traversals in two different
orders. In Cyclic, the order of data traversal stays the same. In Saw-
tooth, the order is reversed at each traversal. Sawtooth performs
the best in caches using Least Recently Used (LRU) replacement
policy, and Cyclic performs worst in LRU, while both of the traver-
sals perform around the same under Most Recently Used (MRU)
replacement policy. With this enabled, one can see the performance
results and determine the cache replacement policy based on the
results. Specifically, in the results, for_for and back_back curves
are Cyclic traversal, and for_back is the Sawtooth traversal. To
measure the latency of accessing different levels of cache, we need
to account for the cache replacement policy. While it is non-trivial
to determine the exact replacement policy, we measure how a cache
performs relatively for Sawtooth and Cyclic.

Triangular access is not a new technique. However, using it with
dependent loads is a novel extension, so is the ability to traverse in
opposite orders without adding new memory access. Algorithms 1
shows the pseudo code for the benchmark, and Algorithms 3 and 4
show the code for for_for cyclic traversal and for_back sawtooth
traversal respectively. For dependent loads, they need to pre-fill
the arrays with the index of the next access, which is shown in
Algorithm 2. The code for back_back is similar.

2.4 Core Binding
In almost all operating systems, the scheduler would sometimes
swap processes around different cores to balance the work. This

Algorithm 2 Prefill Array
1: procedure prefill(𝑖𝑛𝑝𝑢𝑡 : 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒)
2: for 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 i 𝑖𝑛 a do
3: 𝑎[𝑖] ← 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 + 1
4: ⊲ all array elements are 8 bytes, meaning every cache line

contains only 8 elements
5: end for
6: 𝑝 ← 0
7: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 0
8: 𝑡𝑟𝑖 ← 0
9: for 𝑝 < 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 do ⊲ p += 8
10: 𝑡𝑘 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑡𝑟𝑖
11: 𝑡𝑟𝑖 ← 𝑡𝑘 mod 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 ⊲ triangular access
12: 𝑎[𝑡𝑟𝑖] ← 𝑡𝑟𝑖

13: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 8
14: end for
15: end procedure

Algorithm 3 Forward Forward Pattern (Cyclic traversal)
1: procedure Forfor(𝑖𝑛𝑝𝑢𝑡 : 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒)
2: 𝑝 ← 0
3: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 0
4: 𝑡𝑟𝑖 ← 0
5: 𝑡𝑖𝑚𝑒𝑟 𝑠𝑡𝑎𝑟𝑡 ℎ𝑒𝑟𝑒

6: for 𝑝 < 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 do ⊲ p += 8
7: 𝑡𝑘 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑡𝑟𝑖
8: 𝑡𝑟𝑖 ← 𝑡𝑘 mod 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 ⊲ triangular access
9: 𝑡𝑟𝑖 ← 𝑎[𝑡𝑟𝑖] ⊲ dependent load
10: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 8 ⊲ per cache line access
11: end for
12: 𝑝 ← 0
13: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 0
14: 𝑡𝑟𝑖 ← 0
15: for 𝑝 < 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 do ⊲ p += 8
16: 𝑡𝑘 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑡𝑟𝑖
17: 𝑡𝑟𝑖 ← 𝑡𝑘 mod 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 ⊲ triangular access
18: 𝑡𝑟𝑖 ← 𝑎[𝑡𝑟𝑖] ⊲ dependent load
19: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 8 ⊲ per cache line access
20: end for
21: 𝑡𝑖𝑚𝑒𝑟 𝑒𝑛𝑑 ℎ𝑒𝑟𝑒

22: end procedure

happens especially frequently in desktop and real-time devices, and
might also happen in a server environment if the program triggers
a preemption point [12]. To ensure that SiC test the same caches
through its execution, we bind the benchmark to a physical core.

2.5 Cache Line Access
In modern processors, the entire cache line (64 bytes) is fetched
when we access any part of that cache line, which means that if
contiguously access the rest of the cache line, the latency result will
be mitigated by latency of the already fetched cache line. In order
to accurately calculate the latency per touch (fetch), we decided
to access exactly one time per cache line. In this way, despite the
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Algorithm 4 Forward Backward Pattern (Sawtooth traversal)
1: procedure Forback(𝑖𝑛𝑝𝑢𝑡 : 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒)
2: 𝑝 ← 0
3: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 0
4: 𝑡𝑟𝑖 ← 0
5: 𝑡𝑖𝑚𝑒𝑟 𝑠𝑡𝑎𝑟𝑡 ℎ𝑒𝑟𝑒

6: for 𝑝 < 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 do ⊲ p += 8
7: 𝑡𝑘 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑡𝑟𝑖
8: 𝑡𝑟𝑖 ← 𝑡𝑘 mod 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 ⊲ triangular access
9: 𝑡𝑟𝑖 ← 𝑎[𝑡𝑟𝑖] ⊲ dependent load
10: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 𝑠𝑡𝑟𝑖𝑑𝑒 + 8 ⊲ per cache line access
11: end for
12: 𝑝 ← 0
13: for 𝑝 < 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 do ⊲ p += 8
14: 𝑡𝑘 ← 𝑡𝑟𝑖 − 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒

15: 𝑡𝑟𝑖 ← 𝑡𝑘 mod 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑧𝑒 ⊲ triangular access
16: 𝑡𝑟𝑖 ← 𝑎[𝑡𝑟𝑖] ⊲ dependent load
17: 𝑠𝑡𝑟𝑖𝑑𝑒 ← 𝑠𝑡𝑟𝑖𝑑𝑒 − 8 ⊲ per cache line access
18: end for
19: 𝑡𝑖𝑚𝑒𝑟 𝑒𝑛𝑑 ℎ𝑒𝑟𝑒

20: end procedure

processor will fetch all 64 bytes (the whole cache line), we would
still get a accurate result of the latency data.

2.6 Huge Pages
In Zen3 and Zen4 Microarchitectures, the Data Translation Looka-
side Buffer (DTLB) sizes are 64 entries (L1), 2048 entries (L2) and
72 entries (L1), 3072 entries (L2), respectively. This means that,
sometimes, in order to test the large LLC, we will exceed the TLB
capacity if we use the default 4 KiB pages. To solve this issue, we
have employed huge pages up to 1 GiB instead of the standard 4
KiB pages.

3 EVALUATION
This section shows the test results using the SiC benchmark and
the analysis of the AMD L3 caches based on these results, including
the usable L3 cache size per core and the replacement policy.

3.1 Machine Specifications
We have tested two AMD machines: one is server class (EPYC), and
the other is a desktop (Ryzen). For comparison, we have also tested
an Intel server machine (Xeon). As listed on their product pages,
the L3 cache is 768 MiB and 128 MiB for the two AMD machines
and 15 MiB for the Intel machine.

The first machine is AMD EPYC 7773X, launched in March 2021.
The specification is as follows based on the company product page2:

• Up to 3.5 GHz
• Zen 3 Microarchitectures
• 8 Core Chiplet Dies (CCDs), each contains:

– 8 cores 16 threads
– L1i: 256 KiB(8×32 KiB) L1d: 256 KiB(8×32 KiB) 8-way

set associative (ECC) (write-back)

2https://www.amd.com/en/product/11851

– L2: 0.5 MiB (8 × 512 KiB) 8-way set associative (ECC)
(write-back)

– L3: 768 MiB total size, 32 MiB + 64 MiB 3D V-Cache per
CCD 16-way set associative (ECC) (L2 Victim Cache)
(write-back)

The second machine is AMD R9 7950X3D, launched in February
20233:

• Up to 5.7 GHz
• Zen4 Microarchitectures
• 2 CCDs, each contains:

– 8 cores 16 threads
– L1i: 256 KiB(8×32 KiB) L1d: 256 KiB(8×32 KiB) 8-way

set associative (ECC) (write-back)
– L2: 1 MiB (8 × 1024 KiB) 8-way set associative (ECC)

(write-back)
– L3: 128 MiB total size, 32 MiB + 64 MiB 3D V-Cache

only on CCD0 16-way set associative (ECC) (L2 Victim
Cache) (write-back)

The third machine is Intel(R) Core(TM) i7-6700, lauched in 20154:

• Up to 4.0 GHz
• Skylake Microarchitectures

– 4 cores 8 threads
– L1i: 128 KiB (4 × 32 KiB) L1d: 128 KiB (4 × 32 KiB)
– L2: 1 MiB (4 × 256 KiB)
– L3: 8 MiB

The forth machine is Intel(R) Xeon(R) Gold 6230, lauched in
20195:

• Up to 3.9 GHz
• Cascade Lake Microarchitectures
• 2 NUMA nodes, each contains:

– 20 cores 40 threads
– L1i: 640 KiB (20×32 KiB) 8-way set associative L1d:640

KiB (20 × 32 KiB) 8-way set associative write-back
– L2: 20 MiB (20 × 1MiB) 16-way set associative write-

back
– L3: 27.5 MiB (20 × 1.375MiB) 11-way set associative

write-back

The fifth machine is Intel Xeon E5-2430, introduced in 2011.
The machine has two NUMA nodes. Each node has the following
specification6:

• Up to 2.7 GHz
• Sandy Bridge-EN Microarchitectures

– 6 cores 12 threads
– L1i: 192 KiB (6 × 32 KiB) L1d: 192 KiB (6 × 32 KiB)
– L2: 1.5 MiB (6 × 256 KiB)
– L3: 15 MiB

3https://www.amd.com/en/product/12741
4https://ark.intel.com/content/www/us/en/ark/products/88196/intel-core-i7-6700-
processor-8m-cache-up-to-4-00-ghz.html
5https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-gold-
6230-processor-27-5m-cache-2-10-ghz.html
6https://www.intel.com/content/www/us/en/products/sku/64616/intel-xeon-
processor-e52430-15m-cache-2-20-ghz-7-20-gts-intel-qpi/specifications.html

https://www.amd.com/en/product/11851
https://www.amd.com/en/product/12741
https://ark.intel.com/content/www/us/en/ark/products/88196/intel-core-i7-6700-processor-8m-cache-up-to-4-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88196/intel-core-i7-6700-processor-8m-cache-up-to-4-00-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-gold-6230-processor-27-5m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192437/intel-xeon-gold-6230-processor-27-5m-cache-2-10-ghz.html
https://www.intel.com/content/www/us/en/products/sku/64616/intel-xeon-processor-e52430-15m-cache-2-20-ghz-7-20-gts-intel-qpi/specifications.html
https://www.intel.com/content/www/us/en/products/sku/64616/intel-xeon-processor-e52430-15m-cache-2-20-ghz-7-20-gts-intel-qpi/specifications.html
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Figure 1: Access latency in nanoseconds comparison for EPYC
7773X and R9 7950X3D

3.2 V-Cache Partitioning
We have experimented with data size up to 1 GiB, large enough to
include the full effect of the L3 V-Cache. It shows the range of the
access latency from when the data fits in the cache, i.e., the miss
ratio is zero, to the data size when most accesses would be cache
misses.

Figure 1 shows the access latency for the AMD desktop machine
(same as Figure 2) in nanoseconds. To convert from cycle count to
nanoseconds, we use the peak core frequency for each core since
this benchmark is bound to one core, assuming that the CPU runs
at the peak frequency to boost performance. The actual frequency
may vary during the execution. The y-axis shows the access latency
in nanoseconds. One can also see that although the latency results
in these two processors vary, though the shape of the curves are
identical.

The AMD server machine has 768 MiB L3 in total, while the
desktop machine has 128 MiB. We would expect that when the
data size exceeds the smaller L3 (128 MiB), it still fits in the larger
L3 (768 MiB). The larger L3 should not have the dramatic latency
increase that the smaller L3 had when accessing same amount of
data. In other words, if the whole L3 is shared, accessing data size
that is bigger than the smaller L3 but smaller than the larger L3
(such as 256 MiB) by the 7773X (with the larger L3) should not incur
a dramatic latency increase as if accessing the same data through
7950X3D (with the smaller L3).

However, on both machines, the most abrupt latency increase
happens between the same data sizes, from 64 MiB to 128 MiB. On
both machines, the local V-Cache on each CCD is 96 MiB (in the
case of non-uniform cache placement, we bench on the CCD that
have a larger cache; i.e. we benchmarked on CCD0 in 7950X3D).
On each machine, three different traversal orders show the same
effect. In all six cases, the latency result shows that the data size fits
in the cache at 64 MiB but not at 128 MiB. Therefore, we conclude
that the L3 cache on AMD CCDs are partitioned. Each CCD has 96
MiB V-Cache. A program run on one CCD cannot make use of the
L3 on other CCDs.

From the perspective of L3, CCDs on AMD machines are similar
to nodes on conventional multi-socket machines. Note that CCDs
are not traditional nodes in that CCDs share the same memory

Figure 2: Access latency in cycles on L3 R9 7950X3D, com-
pared with the calculated miss ratio of MRU and random
cache replacement policy

interface while traditional nodes have their own memory interfaces.
Nodes have non-uniform memory access (NUMA).

Since both machines show similar access latency, we next study
the desktop machine and analyze the V-Cache cache replacement
policy.

3.3 V-Cache Is Not LRU
On V-Cache, we found that Cyclic and Sawtooth have similar la-
tencies. This is shown in Figure 2, where the latency curves of
for_for, for_back, and back_back largely overlap. This indicates
that V-Cache does not use LRU policy. In this section, we consider
the possibility of MRU and random replacement policy being used
by V-Cache.

3.3.1 Model and Simulation. In Figure 2, we show a modeled Saw-
tooth random eviction miss ratio curve and a modeled Cyclic ran-
dom eviction miss ratio curve alongside with the access latency
curve of the R9 7950X3D. Random eviction in cache can be easily
modeled and has been used in StatCache [8] and the analysis of
cache sharing [17]. Using the binomial model, one can show that
for the Cyclic order, the random eviction miss ratio curve is as
follows. Let𝑚 be the data size in the number of cache blocks, and 𝑐
the cache size in the number of cache blocks. We have:

mr(𝑚,𝑐) = 1 − (1 − 1
𝑐
)𝑚∗mr(𝑚,𝑐 )

The formula differs from the usual miss ratio function in that it has
both the cache size and the data size. It is also recursive. We solve
it for specific𝑚,𝑐 values numerically.

Using the same binomial model, the random eviction miss ratio
for Sawtooth is

mr(𝑚,𝑐) = 1 − (1 − 1
𝑐
)

1
𝑚

∑𝑚
𝑖=1 (2𝑖−1)∗mr(𝑚,𝑐 )

which comes to the exact same miss ratio as Cyclic. The mathemat-
ics shows that Cyclic and Sawtooth have the same miss ratio in a
single level random eviction cache.

The prior work by Ye et al. [19] studied AMD and Intel machines
and modeled LRU for the L3 cache on both. Here we extend the



Measuring Data Access Latency in Large CPU Caches

model to account for random replacement in L3 and compare it
with measurements on the new AMD V-Cache.

Intuitively, every data elements in Cyclic order having equal
chance being in the cache later in the traversal, while, in Sawtooth
order, the data closer to the turning point (the point where the
reverse access begin) of the traversal have a higher chance being a
cache hit than those data that’s further away from the turning point.
For example, for cache size equals to 2, in a Cyclic trace abcabc, the
possibility of the second a, b, or c being in the cache when needed
is the same; in a Sawtooth trace abccba, however, the possibility of
the second c is a cache hit is 100%, and the possibility decreases as
the data element is further from the turning point.

To better model the L3 cache of the R9 7950X3D, which uses a
three-level cache and an exclusive cache hierarchy for L3, assum-
ing L1 and L2 use LRU like cache replacement policy and L3 uses
random like replacement policy, we adjust the above formulas. For
Cyclic, each data block, after it is accessed, first goes to L1, then
evicted from L1 to L2, and finally from L2 to L3. During the time it
is in L1 and L2, it is not at risk of being evicted from L3. We call it
the shielding effect. The reason is that during a reuse interval, in a
part of the period, the object is in L1 or L2, so it is shielded from
random eviction in L3. However, we believe that shielding effect
would not affect the miss ratio of the L3 cache:

mr(𝑚,𝑐2, 𝑐3) = 1 − (1 − 1
𝑐3
)𝑚∗mr(𝑚,𝑐2,𝑐3 )

For Sawtooth, there is cache reuse at the boundary between
two repeats, and the number of L1 and L2 cache hits is 𝑐2 for each
repeat. These hits are subtracted to obtain the actual reuse interval
for L3. In the non-boundary parts, the accesses are cache misses.
Unlike the Cyclic pattern, the Sawtooth pattern has uneven reuse
intervals. When an exclusive L3 cache is introduced, separating
L1 and L2 caches, the blocked reuse intervals at the boundary are
the larger reuse intervals. In other words, the cache reuse at the
boundary is exactly as mentioned above, except the number of
reuses is elongated to the size of 𝑐2

The combined adjustment produces the following:

𝑚𝑟 (𝑚,𝑐2, 𝑐3) = 1 − 1
𝑚 − 𝑐2

∑︁
𝑖∈𝑅𝐼𝑠
(1 − 1

𝑐3
)𝑖∗𝑚𝑟 (𝑚,𝑐2,𝑐3 )

We adjusted to cache block granularity in order to better model
the actual result. All above are also taken into account in the random
eviction simulator.

3.3.2 Actual Results from SIC Benchmark. Figure 2 shows the miss
ratio at cache size of 96 MiB and how it varies when the data size
increases to 1 GiB. Note that the miss ratio curve does not readily
convert to latency. They have different units. The y-axis shows the
access latency. The miss ratio, not shown in the y-axis, increases
from 0% to 100%.

We see that the replacement policy is unlikely LRU. The reason
is that Cyclic accesses, which include the for_for and back_back
in the figure, have near identical latency as Sawtooth access, which
is the for_back order. If the replacement policy is LRU, we would
see large differences between these two types of accesses, since
Sawtooth accesses have better locality in the LRU cache than Cyclic
accesses have. More detailed data points will be given in later para-
graphs.

The shape of the miss ratio curve is compared with that of the
latency curve. While the match is not very close for the modeled
Cyclic curve, the actual result is nearly identical to the modeled
Sawtooth curve, as shown in Figure 2. This is one data point that
suggests that the replacement policy may be more similar to ran-
dom.

3.3.3 MRU Model and Comparison. In Figure 2, we also demon-
strate a modeled MRU curve alongside with all other curves. Let𝑚
be the data size in the number of cache blocks, and 𝑐 the cache size
in the number of cache blocks. One can deduce that for Cyclic and
Sawtooth access patterns, the expected miss ratio is

mr(𝑚,𝑐) = 1 − 𝑐

𝑚

As shown in 2, the actual latency curves for Cyclic and Sawtooth
patterns are similar, which indicates that MRU could be a viable
candidate for the unknown replacement policy on the AMD CPU.
However, the modeled Cyclic and Sawtooth MRU curve has a con-
siderable gap between its curve and the actual benchmarked curves,
suggesting that the cache replacement policy might not be MRU-
like.

3.3.4 Random Eviction Model Implementation. Both Cyclic and
Sawtooth models use recursive equations. The miss ratio is the
fixed-point solution of these equations. We have implemented the
model in Rust7 and Python by solving the recursive equations using
the Newton method.

To verify its correctness, we have also implemented a simulator
for random replacement cache in Rust.8 We found that for the cache
size wemodeled, e.g., 1 GiB cache which has 16 million cache blocks,
the model result could be 40% lower than the simulation result for
Cyclic but 50% higher for Sawtooth. These errors disappear once
we switch from using single-precision floating-point (f32 in Rust)
to double-precision floating-point (f64).

Next we test Cyclic and Sawtooth traversal orders in other caches
on AMD and caches on Intel processors.

3.4 AMD Cache Analysis
3.4.1 L1 and L2. In a LRU cache, the Sawtooth order of traversal
ought to have better locality than that of the Cyclic. In Figure 3 and
Figure 4, we tested both AMD machines for 64 KiB, which is the
closest data size that is larger than the L1 cache size (32 KiB). In
Figure 5 and Figure 6, similarly, we tested to the closest data size
that is larger than the size of the L2 cache, which is 1 MiB on R9
7950X3D and 512 KiB on EPYC 7773X.

Table 1 shows all of the data points of AMD CPUs plotted in
graphs.

For example, Figure 3 shows the latency of three traversal orders
on R9 7950X3D at L1. For the Sawtooth traversal, the latency for
array size 64 KiB is 9.7 cycles. For the two Cyclic traversal orders,
the latencies are both 13.7 cycles. The latency of Sawtooth is lower

7The source code of the Rust solution is available at https://github.com/sauceeeeage/
newton4corun.
8The Rust source code of the simulator is available at https://github.com/XingzhiY/
random_eviction_cache.

https://github.com/sauceeeeage/newton4corun
https://github.com/sauceeeeage/newton4corun
https://github.com/XingzhiY/random_eviction_cache.
https://github.com/XingzhiY/random_eviction_cache.
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Table 1: AMD CPU latency at L1, L2, and L3 in cycles

Borderline L1 to L2 Borderline L2 to L3 Borderline L3 to Memory

7950X3D avg for_for 13.7 45 172.5
7950X3D avg back_back 13.7 45 173.2
7950X3D avg Cyclic 13.7 45 172.8
7950X3D avg Sawtooth 9.7 37.7 166.8
7950X3D Sawtooth Improvement 0.29 0.162 0.03

7773X avg for_for 9.1 40.5 120
7773X avg back_back 8.9 32.5 120.5
7773X avg Cyclic 9 36.5 120.25
7773X avg Sawtooth 6.8 28.5 117.5
7773X Sawtooth Improvement 0.25 0.22 0.02

Figure 3: R9 7950X3D at L1

Figure 4: EPYC 7773X at L1

than that of cyclic by
|Sawtooth latency − Cyclic latency|

Cyclic latency
which is

|9.7 − 13.7|
13.7 ≈ 0.29

Similarly, we apply the above formula to all data points.
On both machines, Sawtooth is clearly faster than Cyclic, which

is expected if the cache replacement policy is LRU.

Figure 5: R9 7950X3D at L2

Figure 6: EPYC 7773X at L2

3.4.2 L3 V-Cache. In contrast, the two access orders show similar
access latency in L3 V-Cache. In Figure 2, for Sawtooth, the latency
at array size 128 MiB (the smallest size that is greater than L3 size)
is 166.8 cycles, and for cyclic, the latency is 172.8 cycles. The latency
of Sawtooth is lower than that of Cyclic by

|166.8 − 172.8|
172.8 ≈ 0.03

Therefore, as the performance result suggested, the cache re-
placement policy for L1 and L2 cache in 7950X3D and 7773X should
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be LRU. On the contrary, the L3 cache replacement policy in both
7950X3D and 7773X should not be LRU.

3.5 Intel Cache Analysis
In this section, we analyze the cache replacement policies of three
Intel CPUs: i7-6700(in Figure 7, 10, and 15), Xeon Gold 6230(in
Figure 8, 11, and 14), and Xeon E5-2430(in Figure 9,12 , and 13).
We apply the same methodology as in section 3.4 on AMD CPUs,
examining the latencies for Sawtooth and Cyclic traversal orders.
Table 2 shows all of the data points of Intel CPUs plotted in graphs.

3.5.1 L1, L2, and L3. As shown in Figure 14, unlike R9 7950X3D
and EPYC 7773X, both i7-6700 and Xeon E5-2430 on all levels of
cache display features of LRU-like cache replacement policy in
Figure 8 and Figure 11, respectively. On the other hand, the Xeon
Gold 6230 displays LRU-like features in its L1 and L2 level cache,
while showing MRU-like feature in its L3 cache.

According to the test results in [6], Intel employs a variant of
the MRU replacement policy in many of its CPU architectures [15].
This policy maintains a single status bit for each cache line. When
a line is accessed, the respective bit is set to 1. If this was the last bit
to be set to 1, all bits for the other lines are set to 0. Upon a cache
miss, the leftmost element with a bit set to 0 is replaced.

One thing to be noted is that, for Intel E5-2430, in Figure 13, using
the same formula mentioned in Section 3.4, we see a 50% latency
reduction by Sawtooth, compared to the Cyclic access latency at 16
MiB, with Cyclic at 168.2 cycles and Sawtooth at 83.7 cycles. The
reduction is

|83.7 − 168.2|
83.7 ≈ 0.50

The reason of the Xeon E5-2430 Sawtooth result having a greater
latency reduction (50% lower) than the L2 results on AMD is that
the L3 size is 15 MiB and the next data point larger than L3 size is
16 MiB, which means it has 15

16 of the total data still being L3 cache
hits for Sawtooth and none for Cyclic.

3.5.2 Confirmation with nanoBench. Abel et al. in their work [6]
confirmed our belief that the i7-6700 indeed uses an LRU-like cache
replacement policy across all three levels of its cache, since i7-6700
shares the same architecture "Skylake" as i7-6500U, which Abel
et al. benchmarked for. This provides a valid data point for our
benchmark and supports our hypotheses regarding AMD CPUs.

3.6 TLB Effects
In Section 2.6, we have discussed the effect of TLB misses and the
need for huge pages. The DTLB sizes for 7773X are 64 entries (L1),
2048 entries (L2), which means it can store up to 2112 pages in total.
In other words, the 7773X’s DTLB can hold up to 8.25 MiB data
without having TLB miss under the default page size of 4 KiB. Thus,
once huge page is enabled, we should be able to see an improvement
on latency for array size that is larger and equal to 16 MiB, which
is the next data point larger than 8.25 MiB.

9All data points are averaged from 2 separate runs and each run averages 20 tests. For
this data point, one of our tests were contaminated due to the server being shared and
used continuously. We have replaced the clearly problematic data with the normal
data from the two repetitions.
10At this data point, the latency of the Sawtooth is greater than that of the Cyclic,
hence the Sawtooth Improvement here should be negative.

Figure 7: Intel i7 6700 at L1

Figure 8: Intel Xeon(R) Gold 6230 at L1

Figure 9: Intel Xeon E5-2430 at L1

Figure 16 compares the latency on 7773X for the versions of
data traversals with regular 4 KiB pages and with 2 MiB pages. We
observe the latency starts to differ at data size around 16 MiB and
becomes greater as the data size increases beyond that point, which
is exactly what we expected.

4 RELATED BENCHMARK TESTS
In this section, we compare the new test with existing test programs.
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Table 2: Intel CPU latency at L1, L2, and L3 in cycles (superscripts are footnote numbers)

Borderline L1 to L2 Borderline L2 to L3 Borderline L3 to Memory

i7-6700 avg for_for 16.5 38.2 276.5
i7-6700 avg back_back 15.3 36.9 270.9
i7-6700 avg Cyclic 15.9 37 273.7
i7-6700 avg Sawtooth 12 32 209.2
i7-6700 Sawtooth Improvement 0.33 0.13 0.24
Xeon E5-2430 avg for_for 17.16 43.32 171.58
Xeon E5-2430 avg back_back 17.1 439 164.8
Xeon E5-2430 avg Cyclic 17.13 43.16 168.19
Xeon E5-2430 avg Sawtooth 14.5 32.73 83.68
Xeon E5-2430 Sawtooth Improvement 0.15 0.24 0.5
Xeon Gold 6230 avg for_for 10.9 52.9 116.6
Xeon Gold 6230 avg back_back 11.22 52.47 122.1
Xeon Gold 6230 avg Cyclic 11.06 52.69 119.35
Xeon Gold 6230 avg Sawtooth 8.7 35.2 127.5
Xeon Gold 6230 Sawtooth Improvement 0.21 0.33 0.0710

4.1 STREAM Benchmark
The STREAM benchmark is a synthetic benchmark program that
measures sustainable memory bandwidth and the corresponding
computation rate for simple vector kernels[14][13]. In this work, we
have adopted and modified some part of the STREAM benchmark
in order to show the latency cost in cache.

4.2 Core to Core Latency Benchmark
Core to Core Latency Benchmark measures the latency it takes for
a CPU to send a message to another CPU via its cache coherence
protocol. By pinning two threads on two different CPU cores, it
can enable the compare-exchange operation, and then measure the
latency [4].

4.3 Microbenchmarks
Microbenchmark is a benchmark suite that measures performance
of CPUs and GPUs [3]. Our test is specifically related their Memo-
ryLatency benchmark. In Microbenchmark, they disable both hard-
ware prefetcher and parallel loading by using dependent loads. We
use the same technique. However, their result shown in Figure 17
seems to be disagreeing with our benchmark, tested on R9 7940X3D.
One possible explanation is that, in Microbenchmark, they did not
account for the asymmetric CPUs on the machine and bound the
benchmark process to a core that is on 7950X3D’s CCD1, which
has only 32 MiB of L3 cache due to the lack of V-Cache. Thus, we
observe the latency peaks at 64 MiB instead of 128 MiB. Another
possible reason is Microbenchmark uses gettimeofday() instead
of more precise timers such as rdtsc() or rdtscp(), which is used
by our test.

4.4 Intel Memory Latency Checker
Intel® Memory Latency Checker (Intel® MLC) is a tool used to
measure memory latencies and bandwidth, and how they change

with the increasing load on the system [16]. Intel®MLC can disable
the hardware prefetcher, either by controlling MSR or enabling
random accesses. In Figure 18, Intel®MLC seems to have measured
an off-chip memory latency of 107 cycles for data size of 128 MiB,
which conflicts with our common understanding of the off-chip
memory latency. In a later test on cache to cache (L2 to L2) latency
test, Intel® MLC reported that from a local socket whether the
data transferring from L2 to L2 is a hit or not, the latency is al-
ways 108.3 cycles, which means that Intel® MLC could have some
problems with its L2 latency measurement that led to the incorrect
measurement of the off-chip memory latency.

4.5 nanoBench
nanoBench detects replacement policies used on Intel machines,
including the set specific parameters used by insertion-based poli-
cies [6]. Their paper shows results for 13 Intel machines. nanoBench
uses generated kernel code and hardware counters, which provides
in-depth measures on Intel machines. It shows that upper level
caches use LRU. Our results on the Intel machine agree with theirs.
Unlike SiC, nanoBench has not been ported to AMD machines.
Since SiC is less complex and does not require kernel access (ex-
cept for setting huge pages), it is more portable. We have analyzed
AMD machines with LLC of size 96MB (per CCD) and an Intel
machine with 27.5MiB LLC. The maximal size of LLC analyzed in
the previous work is 8MB.

4.6 Pointer Chasing Benchmarks
BothMemory Stress Benchmark and GoogleMultichase Benchmark
utilize the pointer chasing method to avoid prefetching and thus
retaining a relatively accurate measurement of the machine [11] [5].
SiC Benchmark uses a similar dependent load design to avoid
prefetching.
11Intel®MLC requires to be ran on 2 MiB pages. In order to keep the results consistent,
SiC, Microbenchmark and Intel®MLC are all ran on 2 MiB pages.
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Figure 10: Intel i7 6700 at L2

Figure 11: Intel Xeon(R) Gold 6230 at L2

Figure 12: Intel Xeon E5-2430 at L2

4.6.1 Memory Stress Benchmark. Memory Stress (Mess) frame-
work provides an unified view of thememory system benchmarking,
simulation and application profiling [11]. Memory Stress Bench-
mark has a similar design comparing with our SiC benchmark.
It utilizes the conventional "pointer chasing" method, while SiC
Benchmark uses a similar dependent load design. In pointer chasing,
the next address depends on the pointer value stored in the current
address. In dependent loads, the next address is the value stored
in the current address with the triangular sequence modification,
whose access pattern is not contiguous.

Figure 13: Intel Xeon E5-2430 at L3

Figure 14: Intel Xeon(R) Gold 6230 at L3

Figure 15: Intel i7 6700 at L3

Conventional pointer chasing method does not involve the tri-
angular sequence part, which we use this feature to avoid possible
aggressive prefetching. i.e. in pointer chase, the successive mem-
ory location being accessed may be contiguous from the current
location, and the access latency therefore reduced by prefetching.
This cannot happen by accident in SiC due to the extra triangular
sequencing.

4.6.2 GoogleMultichase Benchmark. TheGoogleMultichase Bench-
mark is a performance testing tool designed to measure memory
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Figure 16: EPYC 7773X Latency with 4 KiB pages and with
2 MiB pages

Figure 17: R9 7950X3D Microbenchmark with SiC Bench-
mark comparison on 2 MiB pages11

Figure 18: EPYC 7773X Memeory Latency Checker with
SiC Benchmark comparison on 2 MiB pages5

latency, bandwidth, and loaded-latency across different array sizes
and thread configurations, using pointer chasing method [5].

However, their result, tested on EPYC 7773X, varies from run
to run. One possible reason is that in Multichase, although the to-
tal memory is allocated contiguously in an arena, the benchmark

permutes the order of objects. Therefore, the distances among inter-
connected objects varies on each run. This can potentially disturbs
the results.

5 CONCLUSION
In summary, this work introduces a new cache latency benchmark
that employs triangular accesses in defeating hardware prefetcher
and deploys Sawtooth and Cyclic data traversal to measure the
cache replacement policy of the benching processor. We have mea-
sured the new 3D V-Cache technology in AMD’s CPU and report
that the cache is partitioned rather than shared, and the cache
replacement policy is more similar to random eviction than it is
to LRU. Finally, we have also compared our findings with other
existing latency benchmarks.

Modern microarchitecture implementations introduce sophisti-
cated optimizations that hide latency due to cache misses, including
pipelining, prefetching, and memory parallelism. We have devel-
oped a new test borrowing the idea of triangular accesses and
extending it to use dependent loads and have two directions of
traversal with introducing additional memory accesses.
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