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ABSTRACT

Side-channels are unintended pathways through which computer
systems leak information, originating from physical or microarchi-
tectural behaviors that produce observable phenomena correlated
with internal operations. Despite decades of research, the field suf-
fers from inconsistent terminology and classification. This work
proposes a structured framework to define and categorize side-
channel phenomena based on leakage source and functional activ-
ity: Side-Channel Attack (SCA), Side-Channel Analysis (SCAN), and
Side-Channel Defense (SCD). The utility of this taxonomy is demon-
strated through a case study of microarchitectural SCAN using
Hardware Performance Counters (HPCs), which capture low-level
CPU events. HPCs are shown to enable passive, low-overhead mon-
itoring for early detection of ransomware and other malware. On-
going work explores cross-platform applicability, improved event
selection, and the integration of machine learning for real-time
anomaly detection, advancing the role of HPC-based side-channel
analysis in practical security applications.

1 INTRODUCTION

Computers exude information, by design. They have become fully
integrated into our lives because we have come to depend on the
myriad services computer systems provide. Much of the informa-
tion that is obtained from computers is intentional, but the physical
implementation of computer hardware that provides these services
leads necessarily to physical behavior on the part of an operat-
ing computer. This physical behavior has physical characteristics,
many of which become channels of information leakage that can
be observed by an unintended receiver. These “side-channels” of
computer operations, such as current usage and power consump-
tion, generation of heat and electromagnetic radiation, and events
at the micro-architectural level, can be exploited to compromise
the confidentiality of a system.

1.1 A Brief History of Side-channels

The identification of side-channels as avenues to gather and exploit
valuable information is relatively new - it was 1996 when Paul
Kocher used differences in the timing of computer performance
optimizations (a function of the chosen micro-architectural imple-
mentation) to find the entire secret key of asymmetric encryption
algorithms such as Diffie-Hellman, Rivest Shamir Adleman (RSA),
and Digitial Signature Standard (DSS) [12], followed closely by
analyzing the power consumed during cryptographic operations

to extract keys from dozens of products [10]. In the 2000s the Na-
tional Security Agency declassified the TEMPEST program [22],
and electromagnetic signal leakage was identified as another vi-
able side-channel [1]. In the score of years that followed, a number
of additional side-channels were commonly accepted: Acoustic,
optical, temperature, memory/cache, and micro-architectural; and
advantages, disadvantages, and methods of exploiting and securing
each are active research areas.

1.2 The Side-channel Terminology Problem

The related nomenclature, however, is highly inconsistent. Side-
channel attacks are classified a number of ways: Active vs. Passive,
Invasive vs. Non-invasive [18], Simple vs. Differential [26], Profiled
vs. Non-Profiled [9], but the terms are often used in overlapping con-
texts. Some works refer to Side-channel Analysis and Constructive
Side-channel Analysis while others refer to the same techniques
as passive side-channel attacks and side-channel defense, respec-
tively. Meanwhile, what actually constitutes a side-channel is also
ambiguous - with multiple names used interchangeably for the
same leakage vector, sometimes compounded by conflating the
name of the side-channel with an attack method. “Mutual infor-
mation," generally considered statistical measure of the amount of
information shared between two random variables, is at times con-
sidered a metric [19] [25], a side-channel [24], an analysis method
[2] [15], and an attack method [6]. There are as many as six different
terms used for the similar side-channel methods related to microar-
chitecture/memory/cache/access/timing/transient execution, with
no clear guideline or definition to distinguish between them. The
highly publicized Spectre [11] and Meltdown [13] attacks of 2018
help explain this issue. In a rapidly evolving field, every novel attack
that is identified sends researchers scrambling for a solution. It’s
not at all surprising that the terminology is inconsistent; the focus
is always on reacting to the next threat.

2 A SIDE-CHANNEL FRAMEWORK

This side-channel framework is adapted from [7] and side-channel
is defined here as:

A side-channel is a pathway of information leakage
resulting from the physical behavior or microarchi-
tectural design of computer hardware, observable
by an unintended receiver.

Unlike conventional communication channels, side-channels
transmit information unintentionally, typically through physical



phenomena or timing variations correlated with system state or
internal computation.

2.1 Classification by Leakage Source

Side-channels may be categorized based on the physical modality
of leakage:

e Power side-channels: Exploit variations in power con-
sumption.

e Electromagnetic (EM) side-channels: Measure radiated
EM signals.

o Acoustic side-channels: Detect sounds or vibrations pro-
duced by hardware.

e Temperature side-channels: Monitor temperature varia-
tions.

e Optical side-channels: Light emission by a system (e.g.,
LED patterns, photon release).

e Microarchitectural side-channels: A broad category of
side-channels based on the underlying hardware imple-
mentation of a processor, which exploit the performance-
enhancing behaviors of CPU internals (e.g., caches, TLBs,
branch predictors). Commonly sub-divided into timing and
cache-based side-channels, as described in [20].

A single leakage modality may be accessed through multiple
techniques. For example, temperature leakage may be observed via
either internal sensors or external thermal imaging; both methods
access the temperature side-channel.

2.2 Functional Categories of Side-Channel
Activity
Side-channel activity can be categorized into three functional roles:

e Side-Channel Attack (SCA): The exploitation of side-
channel leakage to extract secrets or gain unauthorized
system access.

e Side-Channel Analysis (SCAN): The observation and
analysis of side-channel leakage for non-invasive informa-
tion gathering, monitoring, or threat detection.

o Side-Channel Defense (SCD): Techniques intended to re-
duce side-channel leakage or to decorrelate it from sensitive
internal states.

Each side-channel supports multiple approaches to Attack, Anal-
ysis, and Defense, with specific activities in these categories referred
to as methods. These methods define how SCA, SCAN, or SCD are
implemented. For example, multiple power analysis approaches
(e.g., simple, differential, correlation) are used in SCA to break en-
cryption [16]. Signal classification using hardware performance
counters serves as a SCAN method for identifying anomalous sys-
tem behavior [8], while cache coloring is a method of SCD aimed
at reducing cache-based leakage [14].

3 CASE STUDY: MICROARCHITECTURAL
SCAN USING HARDWARE PERFORMANCE
COUNTERS

Modern processors are equipped with hardware performance

counters (HPCs), which expose low-level execution metrics includ-
ing cache misses, branch mispredictions, instruction retirements,
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and cycles stalled. Although originally designed for performance
optimization, these counters provide insight into microarchitec-
tural behavior that aligns closely with known side-channel sources
[23]. Recent research has explored the use of HPCs as a passive
monitoring interface into microarchitectural side-channels. Under
the proposed framework, this is categorized as a SCAN method,
since it leverages side-channel leakage for detection and diagnostic
purposes without interfering with normal system operations.

Multiple studies have demonstrated the effectiveness of hard-
ware performance counters (HPCs) as a side-channel analysis (SCAN)
method for identifying cache-based attacks [5, 4] and general mal-
ware behavior [21, 17]. These approaches exploit microarchitectural
leakage observable through HPCs, such as cache misses, branch
mispredictions, and retired instruction counts, to detect malicious
execution patterns with minimal overhead.

3.1 Ongoing Research in HPC-Based
Ransomware Detection

Recent advancements in ransomware detection have increasingly
focused on leveraging Hardware Performance Counters (HPCs)
as a robust defense mechanism. This approach capitalizes on the
unique microarchitectural "fingerprints” left by ransomware during
execution, offering a dynamic analysis method that is more resilient
to code variations and zero-day threats than traditional signature-
based systems. Researchers are employing machine learning algo-
rithms to classify malicious behavior based on patterns observed in
HPCs to achieve early detection with minimal performance over-
head, crucial for mitigating the rapid encryption capabilities of
modern ransomware.

Ongoing work is focused on refining the results obtained in
[8], which collected data from over two hundred distinct hardware
events, a significantly larger set than typically evaluated in other
literature. The approach demonstrated the viability of classifying
ransomware in under two seconds with over 95% accuracy, achiev-
ing this impressive performance with as few as 3 hardware event
features when using Neural Network and Bagged Tree classifiers.
This efficiency highlights the potential for HPC-based solutions
to be integrated into endpoint security products with minimal re-
source consumption.

While HPC-based detection offers compelling advantages like
real-time analysis and resilience against unknown threats, chal-
lenges remain. These include the need for further accuracy im-
provements, a deeper understanding of the causal link between
hardware events and high-level software behavior, and difficulties
in distinguishing ransomware embedded within seemingly benign
applications.

Current research includes:

o Gaining confidence in identifying HPC events that are in-
dicative of ransomware activity [3].

e Optimizing event selection for portability across microar-
chitectures and execution environments (e.g., virtualized
vs. non-virtualized).

e Comparing detection performance across non-virtualized
and virtualized (VM) environments.

e Expanding datasets of ransomware behavior captured through
HPC-observed side-channel traces.
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e Applying machine learning models to classify HPC data
streams.

e Developing real-time anomaly detectors based on HPCs for
embedded and cloud environments.

o Extending analysis to additional processor microarchitec-
tures.

By providing a structured framework to understand and classify
side-channel phenomena and their applications, this work clarifies
existing terminology and supports more systematic research ef-
forts. The utility of this framework is illustrated through a practical
example: the use of Hardware Performance Counters (HPCs) for
ransomware detection. This application is categorized as SCAN,
leveraging microarchitectural side-channel leakage for passive, low-
overhead threat detection. Ongoing work demonstrates that ana-
lyzing microarchitectural side-channel data obtained via HPCs may
provide effective early characterization and detection of malware
while imposing minimal system overhead.
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