
Static Estimation of Reuse Profiles for Arrays in Nested Loops
Abdur Razzak1, Atanu Barai2, Nandakishore Santhi2, Abdel-Hameed A. Badawy1,2

1 Klipsch School of ECE, New Mexico State University, Las Cruces, NM 80003, USA,
2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA

{arazzak, badawy}@nmsu.edu, {abarai, nsanthi}@lanl.gov

ABSTRACT
Efficient memory access patterns play a crucial role in determin-
ing the overall performance of applications by exploiting temporal
and spatial locality, thus maximizing cache locality. The Reuse
Distance Histogram (RDH) is a widely used metric to quantify tem-
poral locality, measuring the distance between consecutive accesses
to the same memory location. Traditionally, calculating RDH re-
quires program execution and memory trace collection to obtain
dynamic memory access behavior. This trace collection is often
time-consuming, resource-intensive, and unsuitable for early-stage
optimization or large-scale applications. Static prediction, on the
other hand, offers a significant speedup in estimating RDH and
cache hit rates. However, these approaches lack accuracy, since the
predictions come without running the program and knowing the
complete memory access pattern. More specifically, when arrays
are used inside nested loops, it is quite difficult to predict access
patterns of the array references without executing the program.
This paper presents a novel static analysis framework for predict-
ing the reuse profiles of array references in programs with nested
loop structures, without requiring any runtime information. By
analyzing loop bounds, access patterns in smaller problem sizes,
and predictive equations, our method predicts access patterns of
arrays and estimates reuse distances and cache hit rate at compile
time. This paper extends our previous study by incorporating more
analysis and improving prediction by addressing previously unhan-
dled reuse patterns. We evaluate our technique against a widely
accepted traditional trace-driven profiling tool, Parallel Reuse Dis-
tance Analysis (PARDA). The results demonstrate that our static
predictor achieves comparable accuracy while offering orders-of-
magnitude improvement in the analysis speed. This work offers a
practical alternative to dynamic reuse profiling and paves the way
for integration into compilers and static performance modeling
tools.

KEYWORDS
Memory Analysis, Reuse Distance, Static Analysis, Probabilistic
Prediction

1 INTRODUCTION
Optimizing memory behavior is essential for improving program
performance, especially in memory-intensive applications where
memory access latency is the primary bottleneck. Among various
memory access analysis techniques, RDH has emerged as a power-
ful and widely used metric to capture the location of temporal data.
Obtaining these measurements requires program analysis methods
that accurately capture memory access patterns and compute reuse
distances (Section 2). Traditionally, dynamic profiling techniques
are used for analyzing applications with arrays inside loops. These

approaches refer to the execution of the program while collecting
detailed memory traces to calculate the RDH. This is because with-
out running the application, it is hard to predict the sequence of
array references when used inside loops, as it changes the memory
address along with the loop variable. Even though this process is
accurate, it incurs significant run-time overhead and wait time to
generate and process large trace files. The necessity of program exe-
cution also makes it difficult to evaluate a program’s characteristics
across different input sizes or configurations without rerunning the
entire profiling process.

In this work, we propose a static analysis tool to predict reuse
profiles to circumvent the long trace collection time of dynamic
approaches. More specifically, this work predicts the array’s volatile
reference-changing behavior in nested loops at compile time with-
out the need for trace collection or program execution.

Figure 2 shows the overall workflow for calculating the RDH and
the cache hit rate of the source code. We have used the LLVM Static
Analysis [1] process for the initial steps until the Loop Annotated
Trace. Our Alternative Static Analyzer takes the loop-annotated
static traces as input. By analyzing loop bounds, loop nesting struc-
ture, and affine array access functions, our approach estimates reuse
distances at compile time and generates RDH and cache hit rate
of the program. Our static approach, shown in green, bypasses the
time-consuming dynamic steps, which are struck through in red,
such as running the program and waiting for the run-time trace
collection. These are the steps we are avoiding. Our technique offers
several key benefits:

• Enables early-stage performancemodelingwithout running
the program.

• Facilitates design space exploration independently of the
problem sizes.

• Significantly reduces the analysis cost compared to trace-
driven methods.

We validate our static model’s reuse distance and cache hit rate
predictions by comparing with PARDA [9] using a few benchmark
applications from Polybench [11]. Our model achieves significant
accuracy and massive speedup in computation time, underscoring
its potential as an efficient alternative to dynamic tools for cache
performance modeling.

The remainder of the paper is organized as follows. Section 2
presents and discusses the concept of reuse distance. Section 3
reviews the current efforts so far in both dynamic and static ap-
proaches. Section 4 explains our static analyzer in detail. Section 5
introduces the results. Finally, Sections 6 and 7 discuss the limita-
tions of the study and concludes the paper, respectively.

Abdur Razzak, Atanu Barai, Nandakishore Santhi, and Abdel-Hameed Badawy

2 BACKGROUND
Reuse distance (also called LRU stack distance) is a measure of how
many unique memory accesses occur between two consecutive
accesses to the same memory location. In simpler terms, it tells how
far back in time (in terms of unique accesses) a reference was last
used before being reused again.

Figure 1 (a) shows a demonstration of the reuse distance cal-
culation from an example memory access sequence: a b b a c b
a. When a memory reference enters the stack for the first time,
those accesses are certainly cold misses and hence marked as ∞.
Every other access finds a reuse of the same reference earlier in the
memory stack and counts the unique references in between as the
reuse distance. RDHs quantify how frequently a memory address is
reused, which represents a histogram that shows the occurrences
or frequencies of those reuse distance numbers (Figure 1(b)). The
higher the frequency at lower reuse distances, the better, as these
values are more likely to be found in the cache, resulting in cache
hits.

Index Access Reuse Distance (RD)

0 a ∞ (first time)
1 b ∞ (first time)
2 b 0 (no other ref. between previous b)
3 a 1 (b)
4 c ∞ (first time)
5 b 2 (c, a)
6 a 2 (b, c)

a. Reuse Distance Table

b. Reuse Distance Histogram

Figure 1: Reuse distance analysis for example reference ac-
cesses: table (a) and histogram (b).

3 RELATEDWORK
Reuse distance analysis and cache hit rates have been extensively
studied in recent times as a means of understanding and optimizing
cache performance. Existing work can be broadly classified into two
approaches. Dynamic approaches rely on runtime information and
trace collection. Static approaches, on the other hand, aim to predict
reuse patterns at compile time without executing the program.

3.1 Dynamic Reuse Profiling
Dynamic analysis tools measure reuse distances by tracking mem-
ory access traces during program execution. These tools require the
program to run first and then full memory accesses after execution
are required to begin the calculation process. Some notable such
tools are DineroIV [6], Valgrind [5], and Pin-based profilers, which
instrument the code to capture memory reference behavior and
generate accurate RDH. Zhong et al. [14] introduced the concept
of temporal reuse distance and developed efficient techniques for
runtime profiling. In recent work, including PARDA [9], improves
scalability and performance by parallelizing the histogram con-
struction process using a tree-based technique. ReuseTracker [12]
represents a hardware-assisted, low-overhead reuse distance analy-
sis tool for multithreaded programs. They accurately profile both
private and shared cache reuses, overcoming the limitations of
traditional simulators and instrumentation-based tools by leverag-
ing performance monitoring units (PMUs) and debug registers in
commodity CPUs.

Although dynamic profiling remains the gold standard in terms
of accuracy, it imposes substantial overhead in both time and calcu-
lation storage, making it unsuitable for large-scale or design-time
analysis.

3.2 Static Reuse Profiling
In contrast, static analysis techniques estimate reuse distances by
analyzing the program structure and memory access patterns at
compile time. Early work by Beyls and D’Hollander [2] applied
reuse distance analysis on loop nests using abstract interpreta-
tion. Xue [13] and Kandemir [7] proposed compiler techniques
that approximate data locality using symbolic loop analysis. More
recently, Ming Ling et al. [8] introduced a hybrid approach that
uses software traces and reuse-sensitive trees (RST) to model the
behavior of the L2 cache reuse distance. However, this technique
still partially depends on the run-time information. Another notable
approach, CUDAsap [4], calculates basic block execution counts at
compilation time.

Most staticmethods either rely on simplifying assumptions or are
limited to small, statically analyzable code segments. The existing
approaches are so far unable to robustly handle nested loops by
changing the array references and predicting reuse histograms
from there. Moreover, many hybrid or semi-static techniques still
depend on profiling certain parameters at runtime, which limits
their usability in fully static compilation pipelines.

In this work, we address these limitations by proposing a fully
static method tailored for array references in nested loops, capable
of estimating reuse-distance histograms with no dependency on ex-
ecution or trace collection. By leveraging smaller loop bounds, struc-
tural memory access patterns, index expressions, and depending
on mathematical relations, our approach provides a generalizable
alternative to dynamic reuse profiling, enabling faster and scalable
prediction of memory behavior suitable for integration into com-
pilers or early design tools. This work is closely aligned with our
previous study [10]. However, it presents significant enhancements
over the earlier approach. The key improvements include:

• Loop block specific calculation: Introduces a separate
calculation process for each loop block, which was absent in

Static Estimation of Reuse Profiles for Arrays in Nested Loops

the earlier work. In this approach, loop blocks are isolated,
the prediction process is applied individually to each, and
the results are merged at the end with other loop and non-
loop blocks. This feature enables more accurate predictions
for larger and more complex programs.

• Loop annotation and array index tracking: Integrates
techniques to identify and annotate loop-controlling vari-
ables for multidimensional array accesses, and to compute
shared array references used across multiple loop blocks,
including the handling of cold misses.

• Validation across complex array based applications:
Achieves high prediction accuracy for both RDH and cache
hit rates, closely matching PARDA calculations, and demon-
strates improved performance on complex problems involv-
ing arrays in nested loop environments.

4 METHODOLOGY
We aim to statically predict the RDH of array references in pro-
grams with nested loops, without executing the program or collect-
ing memory traces. Although the high-level structure is shown in
Figure 2, this work focuses mainly on developing the Alternative
Static Analyzer. This model takes input of the loop annotated
trace, which is an output of the Atanu et al. [1] developed LLVM
static analyzer. After the necessary calculations, it produces the
histogram of the reuse profile and the cache hit rates. For better un-
derstanding, we use the example program in Figure 3 as a running
example to describe each step.

After receiving the Loop Annotated Trace at 4.1, we separate
the trace into various blocks. Figure 4 shows the workflow of the
Alternative Static Analyzer. Each loop block can be marked with the

Run

 Runtime
Trace Collection

Source Code

RDH and Cache Hit Rate

dynamic

Alternative
Static Analyzer

Clang Compiler: Produce LLVM IR

LLVM IR Reader: Static Trace

Trace Analyzer: Basic Block CFG

CFG Analyzer: Loop Annotated Trace

Atanu et
al.

LLVM
Static

Analysis

Figure 2: Steps of static analysis-based reuse profile and cache
hit rate prediction from the source code.

1 for (i = 0; i < 100; i++)
2 for (j = 0; j < 200; j++) {
3 tmp[i][j] = 0;
4 for (k = 0; k < 300; ++k)
5 tmp[i][j] += alpha * A[i][k] * B[k][j];
6 }
7
8 for (i = 0; i < 150; i++)
9 for (j = 0; j < 250; j++) {
10 D[i][j] *= beta;
11 for (k = 0; k < 350; ++k)
12 D[i][j] += tmp[i][k] * C[k][j];
13 }

Figure 3: Example code of nested loops and arrays.

starting square braces and numbers. The loop blocks are calculated
differently from a regular block. Each loop block is processed with
the Static Predictor in isolation as described in 4.3. The single-
loop block calculation reduces the problem size by setting smaller
loop bounds and then predicting the actual loop bounds at the end.
Then we adjust or exclude the redundantly calculated cold misses
in 4.4. Some arrays might be used in multiple loop blocks where
their reuses need to also be reported, which is covered in 4.5. After
adjusting those reuse scenarios, the rescue profiles are merged as
explained in 4.6. When all the blocks are calculated, the final RDH
appears as a result of our Static Analyzer.

4.1 Loop Annotated Trace (Input)
We generate the loop annotated trace using the LLVM static ana-
lyzer [1]. Their method is completely static and is based on compile-
time information. To generate a loop-annotated trace from source
code, the C program is compiled to LLVM Intermediate Representa-
tion (IR) using Clang with -emit-llvm, producing a human-readable
IR file. This IR is then parsed to extract basic block and control
flow information, which is used to construct a Control Flow Graph
(CFG) and estimate basic block execution counts based on branch
probabilities and input sizes. Finally, they analyze the most probable

Loop Through
Each Blocks

Is Loop
Block?

Loop Annotated Trace

Single Loop Block
Static Predictor

Regular Ruse
Profle Calc

Separate Blocks

Merging with
Reuse Profile

Adjust Cold
Misses

Adjust Array Reuse

Merging with
Reuse Profile

All Blocks
Computed? RDHs

YES

YES

NO

NO

Figure 4: Workflow of the Alternative Static Analyzer.

Abdur Razzak, Atanu Barai, Nandakishore Santhi, and Abdel-Hameed Badawy

1 ['retval ', 'alpha ', 'beta ', 'i', '[100', 'i', 'j',
'[200', 'j', 'i', 'j', 'tmp_array -i-j', 'k',
'[300', 'k', 'alpha ', 'i', 'k', 'A_array -i-k',
'k', 'j', 'B_array -k-j', 'i', 'j',
'tmp_array -i-j', 'tmp_array -i-j', 'k', 'k',
']', 'k', 'j', 'j', ']', 'j', 'i', 'i', ']',
'i', 'i', '[150', 'i', 'j', '[250', 'j',
'beta ', 'i', 'j', 'D_array -i-j', 'D_array -i-j',
'k', '[350', 'k', 'i', 'k', 'tmp_array -i-k',
'k', 'j', 'C_array -k-j', 'i', 'j',
'D_array -i-j', 'D_array -i-j', 'k', 'k', ']',
'k', 'j', 'j', ']', 'j', 'i', 'i', ']', 'i']

Figure 5: Generated loop annotated trace from the source
code.

execution paths within the CFG to identify loop boundaries and
use GEP instructions to annotate array index variables and loop
controllers, resulting in a static trace enriched with loop and mem-
ory access context. After following their process, the output trace
looks like Figure 5. This trace is the input to our Static Analyzer.

4.2 Separating Blocks
From the Loop Annotated Trace, we generate separate blocks in
this step. This helps the analyzer to understand which blocks are
related to an array execution. This is because there is a separate
calculation process for loop blocks. After executing the steps, the
blocks look the same as depicted in Figure 6. It can be seen that
out of 5 blocks, the second and fourth blocks are the loop blocks
and need to be calculated differently as a Single Loop Block Static
Predictor 4.3.

1 ['retval ', 'alpha ', 'beta ', 'i']
2 ['[100', 'i', 'j', '[200', 'j', 'i', 'j',

'tmp_array -i-j', 'k', '[300', 'k', 'alpha ',
'i', 'k', 'A_array -i-k', 'k', 'j',
'B_array -j-k', 'i', 'j', 'tmp_array -i-j',
'tmp_array -i-j', 'k', 'k', ']', 'k', 'j', 'j',
']', 'j', 'i', 'i', ']']

3 ['i', 'i']
4 ['[150', 'i', 'j', '[250', 'j', 'beta ', 'i', 'j',

'D_array -i-j', 'D_array -i-j', 'k', '[350', 'k',
'i', 'k', 'tmp_array -i-k', 'k', 'j',
'C_array -j-k', 'i', 'j', 'D_array -i-j',
'D_array -i-j', 'k', 'k', ']', 'k', 'j', 'j',
']', 'j', 'i', 'i', ']']

5 ['i']

Figure 6: Separated Blocks from the Loop Annotated Trace.

4.3 Single Loop Block Static Predictor
To predict the reuse profile for large loop bounds of a single loop
block (e.g., 100-200-300 bounds in the first loop block), we begin by
analyzing with smaller bounds. Figure 7 depicts this process. We
replaced the bigger loop bounds with smaller numbers such as 2-2-
2, 2-2-3, 2-3-2, 3-2-2, 2-3-3, 3-2-3, 3-3-2, and 3-3-3. For each smaller
loop-bound problem, we unfold the loop bounds and calculate the
reuse profile for every smaller loop-bound example. In the first step,
we observe the impact of incrementing one loop variable at a time
to observe its effect on the reuse profile. For example, comparing

2-2-2 to 2-2-3 reveals the influence of increasing k by one, while
moving from 2-2-2 to 2-3-2 highlights the impact of increasing
j by one. Next, we examine coefficients where two variables are
increased simultaneously, such as 2-3-3, to capture the combined
effects of both j and k incrementing by one. In this way, we mark
the coefficients or multipliers for each incremental situation. This
step-by-step process allows us to observe and quantify how reuse
patterns evolve with changes in loop bounds. Using the differences
observed across these smaller cases, we derive coefficients that
represent the contribution of each loop dimension to the reuse
behavior. These coefficients are then incorporated into the dilation
equations.

For the dilation equation, as this particular problem involves
loops with three nesting levels, we categorize the problem as a
third-degree, three-variable problem since the loop depth is three
and the loop variables are 𝑖 , 𝑗 , 𝑘 . Equation 1 illustrates the equation
used to model the example scenario.

𝐹𝑟𝑞 = 𝐵222 + 𝐷𝑖𝑠𝑡𝐼 × 𝐼𝑛𝑐𝑟𝐼 + 𝐷𝑖𝑠𝑡 𝐽 × 𝐼𝑛𝑐𝑟 𝐽 + 𝐷𝑖𝑠𝑡𝐾 × 𝐼𝑛𝑐𝑟𝐾

+𝐶𝑜𝑓 𝑓𝐼 𝐽 × 𝐼𝑛𝑐𝑟𝐼 × 𝐼𝑛𝑐𝑟 𝐽 +𝐶𝑜𝑓 𝑓𝐽 𝐾 × 𝐼𝑛𝑐𝑟 𝐽 × 𝐼𝑛𝑐𝑟𝐾

+𝐶𝑜𝑓 𝑓𝐼𝐾 × 𝐼𝑛𝑐𝑟𝐼 × 𝐼𝑛𝑐𝑟𝐾 +𝐶𝑜𝑓 𝑓𝐼 𝐽 𝐾 × 𝐼𝑛𝑐𝑟𝐼 × 𝐼𝑛𝑐𝑟 𝐽 × 𝐼𝑛𝑐𝑟𝐾
(1)

However, if the problem employs two nested loops, we apply
Equation 2 to compute the reuse distance frequency.

𝐹𝑟𝑞 = 𝐵22 +𝐷𝑖𝑠𝑡 𝐽 × 𝐼𝑛𝑐𝑟 𝐽 +𝐷𝑖𝑠𝑡𝐾 × 𝐼𝑛𝑐𝑟𝐾 +𝐶𝑜𝑓 𝑓𝐽 𝐾 ×𝐷𝑖𝑠𝑡 𝐽 ×𝐷𝑖𝑠𝑡𝐾
(2)

In this way, we predict the frequency for the larger bound by
applying the required dilation equation based on the loop depth
and the variables involved. This technique represents our model as
a problem-size independent solution while completely being static
without executing the full-scale program.

4.4 Adjusting Cold Misses
Since our approach analyzes and predicts each loop block indepen-
dently, the same array can appear in multiple loop blocks. As a
result, the reuse profile for each block might classify the same array
references as cold misses, indicating that the reference is being seen
for the first time. However, a cold miss should only be recorded
when a memory location is accessed for the first time across the
entire execution, not per loop block. Therefore, when combining
reuse profiles from different loop blocks, we must identify and
eliminate those redundant cold misses to avoid overestimating the
total number of unique accesses. This adjustment ensures that cold
misses are reported only once, when the reference truly appears
for the first time, maintaining the accuracy of the overall RDH. For
example, Figure 8 explains such an example in which the array tmp
is introduced to the memory stack by the first loop block for refer-
ences 0 − 0 to 99 − 299. When the second loop block is calculated
independently, it marks 𝑡𝑚𝑝 [0] [0] to 𝑡𝑚𝑝 [149] [349] as cold misses.
However, 𝑡𝑚𝑝 [0] [0] to 𝑡𝑚𝑝 [99] [299] have been introduced before
by the first loop block, and hence those 30,000 redundant cold miss
frequencies are deducted.

Static Estimation of Reuse Profiles for Arrays in Nested Loops

i-j-k
2-2-2

2-2-33-2-2 2-3-2

2-3-33-3-2

3-3-3
j & k incr

incr single j
incr single kincr single i

i & k incr
i & j incr

i & j & k incr

Dialation Equation

Actual Bound Prediction
I-J-K

coff i & j incr coff j & k incr

coff i & k incr

coff i & j & k
incr 2-3-3

Figure 7: Estimating Reuse Profile from Smaller Problem
Sizes. We analyze small problem sizes to derive predictive
coefficients. We systematically vary each loop bound (i, j,
k) individually and in combination to isolate its effect on
the reuse profile, which informs the terms of the Dilation
Equation.

4.5 Adjusting Array Reuses
When an array is first accessed in an earlier loop block, all its ref-
erences are introduced through the loop variable values of that
first loop block. If the same array references appeared in later loop
blocks, those references should find a reuse distance in the following
loop blocks, even though the access patterns might be infrequent.
To avoid overestimating reuse distances, we apply sequence-based
predictions that consider the order and timing of accesses across
loop blocks. This adjustment reports reuses of the same array ref-
erences that are used in multiple loops, leading to more accurate
profiling. For example, in Figure 8, all memory references from
𝑡𝑚𝑝 [0] [0] to 𝑡𝑚𝑝 [99] [299] find reuses in the second loop block.

4.6 Merging Reuse Profile
After statically analyzing each loop block individually, we obtain a
RDH and a list of cold misses corresponding to first-time memory
accesses within each block. However, to construct a final program-
wide reuse profile, it is essential to merge these partial results
into a unified histogram while accounting for overlapping memory

0-0 0-1 0-2 0-3 ... 0-299
1-0 1-1 1-2 1-3 ... 1-299
2-0 2-1 2-2 2-3 ... 2-299
3-0 3-1 3-2 3-3 ... 3-299
...

99-0 99-1 99-2 99-3 ... 99-299

a. tmp[0][0] to tmp[99][299] introduced by the first loop block
0-0 0-1 0-2 0-3 ... 0-299 ... 0-349
1-0 1-1 1-2 1-3 ... 1-299 ... 1-349
2-0 2-1 2-2 2-3 ... 2-299 ... 2-349
3-0 3-1 3-2 3-3 ... 3-299 ... 3-349
...

99-0 99-1 99-2 99-3 ... 99-299 ... 99-349
...

149-0 149-1 149-2 149-3 ... 149-299 ... 149-349

b. tmp[0][0] - tmp[99][299] again introduced by the second loop

Figure 8: Redundant cold misses from shared array usage
across loop blocks

references. Our merging strategy involves aggregating the RDHs
by summing the frequency counts of the matching reuse distance
keys across all blocks. More importantly, we resolve redundant cold
misses by tracking memory references seen in earlier subsections.
If a memory reference is marked as a cold miss in a later block, even
though it has already appeared in any previous block, it is excluded
from the global cold miss list. This ensures that the final RDH and
cold-misses profile accurately reflect the temporal locality across
the full execution context of the program, rather than overstating
cold starts due to per-block isolation. After the merging process is
complete, the cold miss list contains each unique memory reference
only once.

Figure 9 demonstrates the merging technique. After each block
calculates its reuse profile, they are merged at the end. The frequen-
cies of the same reuse distance are added, for instance, the reuse
distance 0, both frequency a in block 1 and frequency x in block
2 are added up at merging. In the same way, while merging the
cold misses, only the unique references are kept in that list. After
merging all the blocks, the final reuse profile is reported as the
output, and all cold misses are reported as the frequency to the -1
key.

5 RESULTS
This section summarizes our experimental results and compares
themwith the reference dynamic tools. Our static approach predicts
reuse profiles and cache hit rates very close to the reference model,
showing a significant speedup in calculation time.

Overall, our results highlight a fundamental trade-off; our static
approach perfectly captures the high-frequency, short-distance
reuses that dominate the behavior of smaller, tighter caches, while
a dynamic approach retains perfect fidelity for long-distance reuses
that only matter in very large caches.

Abdur Razzak, Atanu Barai, Nandakishore Santhi, and Abdel-Hameed Badawy

Reuse Profile: {0: a, 1: b, 2: c, 3:
d, 4: e, …}​
Cold Misses: [i, j, tmp-0-0, tmp-
0-1, …, A-0-0, A-0-1, B-0-0,…]

Reuse Profile: {0: x, 1: y, 2: z, 3:
u, 4: v, …}​
Cold Misses: [i, j, tmp-0-0, tmp-
0-1,…, D-0-0, D-0-1, C-0-0,…]

 ['[100', 'i', 'j', '[200', 'j', 'i', 'j',
'tmp_array-i-j', 'k', '[300', 'k',
'alpha', 'i', 'k', 'A_array-i-k', 'k',
'j', 'B_array-j-k', 'i', 'j',
'tmp_array-i-j’, 'tmp_array-i-j',
'k', 'k', ']', 'k', 'j', 'j', ']', 'j', 'i', 'i', ‘]’]

Loop Block 1

['[150', 'i', 'j', '[250', 'j', 'beta', 'i',
'j', 'D_array-i-j', 'D_array-i-j', 'k',
'[350', 'k', 'i', 'k', 'tmp_array-i-
k', 'k', 'j', 'C_array-j-k', 'i', 'j’,
'D_array-i-j', 'D_array-i-j', 'k',
'k', ']', 'k', 'j', 'j', ']', 'j', 'i', 'i', ']’]

Loop Block 2

Reuse profile: {0: a+x, 1: b+y, 2: c+z, 3: d+u, 4: e+v, …}​
Cold Misses: [i,j, tmp-0-0, tmp-0-1,A-0-0, B-0-0, D-
0-0, D-0-1, C-0-0,…]

Merged

Figure 9: Merging reuse profile and cold misses.

5.1 Comparison Methods & Metrics
5.1.1 Reference Model: PARDA. To evaluate the precision and per-
formance of our static reuse profiling approach, we use PARDA [9]
as a reference dynamicmodel. PARDAutilizes a tree-based structure
with a complexity of𝑂 (𝑛 log𝑛) and performs a parallel computation
to calculate reuse distances from collected memory traces, provid-
ing both high accuracy and scalability. We compare our statically
predicted RDH and cache hit rates against PARDA’s dynamically
calculated output. The execution times are reported from the time
of starting the compilation of the source code to the completion of
the RDH calculation in both models. The comparison demonstrates
the efficiency of our static approach over trace-driven methods.

5.1.2 Cache. We evaluated our static prediction method in various
cache sizes of 32KB, 256KB, and 1MB, using a fixed associativity
of 8 and a line size of 64 bytes. The results show that our model
accurately captures reuse behavior across varying cache capacities,
closely matches the reference dynamic profiling tool, and demon-
strates scalability for different memory hierarchies.

5.1.3 Applications Used for Validation. We have used multiple ap-
plications from PolyBench [11] benchmark suite. Table 2 lists the
benchmark applications we tested. Each application may contain
two or three nested loops. The 2mm application is used for problem
scaling analysis across four different datasets, whereas the other
applications are used to compare their behavior in our model while
maintaining a constant problem size in the small configuration.

5.1.4 Cache Hit Rate Measurement. We use an analytical memory
model known as the Stack Distance-based Cache Model (SDCM) [3]
to estimate cache hit rates. This model accepts the reuse profile of
a program along with cache parameters and computes the corre-
sponding hit rate. For a fair comparison, we keep the cache con-
figuration constant for both our model and the reference model.
SDCM uses the following equation 3 to calculate the probability of
a hit P(h) for the entire reuse profile.

𝑃 (ℎ) =
𝑁∑︁
𝑖=0

𝑃 (𝐷𝑖) × 𝑃 (ℎ | 𝐷𝑖) (3)

where, 𝑃 (𝐷𝑖) is the probability of 𝑖𝑡ℎ reuse distance (𝐷) in a reuse
distribution and (𝑃 (ℎ | 𝐷)) is the conditional probability of hitting
given a distance 𝐷 . 𝑃 (𝐷𝑖) is calculated from the frequency of 𝐷 in
the reuse histogram.

5.2 Problem Scaling Analysis
In this section, we analyze the effect of increasing problem size,
more specifically, loop bounds, while keeping the application same,
to observe the performance characteristics. This comparison helps
to evaluate how this tool performs as the dataset scales from smaller
to larger sizes compared to the reference model. Provides valuable
insights into the tool’s scalability and efficiency across varying
problem sizes.

5.2.1 Dataset. We have used the 2mm application and progres-
sively scaled the dataset from Mini to Large. Table 1 outlines the
detailed sizes of the problem. NI, NJ, NK and NL are the loop bounds
of the program and they also dictate the array sizes. As the loop
bounds increase across different runs, both the execution time and
the number of memory references increase significantly. This scal-
ing allows us to evaluate how well our model adapts to larger
computational loads.

5.2.2 Reuse Distance Comparison. As we compute the reuse pro-
files, it is essential to note that the application logic remains un-
changed; only the loop bounds are scaled accordingly. Figure 10
shows the comparison of the frequency of reuse distances across
different problem sizes, where the blue bars represent the calculated
frequencies of the reference model, and the orange bars indicate
the predicted frequency counts of our model. Since a large number
of reuse distances are reported, it is difficult to display all of them
in the graph. Therefore, we only show that the reuse distances with
frequency counts greater than 800 (Freq(RD) > 800).

Both our model and the reference model exhibit higher frequen-
cies under the same reuse distances as we move from the Mini to
the larger problem sizes. Our model performs well in predicting the
highest frequencies at lower reuse distances with notable accuracy.
However, as a compile-time approach, it lacks access to the exact
timing of memory reference occurrences. As a result, it can only es-
timate frequency distributions and may not precisely predict reuse
distances that arise from the dynamic behavior of array references
during runtime.

5.2.3 Cache Hit Rate. We compared the cache hit rates produced
by our static model with those from the dynamic PARDA approach
across different problem sizes. For this comparison, we keep the
cache size 1 Megabyte, block size 64, and 8-way associative. Fig-
ure 11 shows the comparison of the cache hit rates between PARDA
and our model across various problem sizes. Our model closely
approximates the hit rates reported by PARDA for smaller datasets.
However, for medium and large problem sizes, the cache hit rate
predicted by our model is slightly lower. This discrepancy arises be-
cause larger loop bounds introduce more array references, many of
which exhibit dynamic behavior that our static analysis cannot fully

Static Estimation of Reuse Profiles for Arrays in Nested Loops

Dataset Loop Bounds Array Dimensions
Mini NI = 16, NJ = 18, NK = 22, NL = 24 tmp[16][18], A[16][22], B[22][18], C[18][24], D[16][24]
Small NI = 40, NJ = 50, NK = 70, NL = 80 tmp[40][50], A[40][70], B[70][50], C[50][80], D[40][80]

Medium NI = 180, NJ = 190, NK = 210, NL = 220 tmp[180][190], A[180][210], B[210][190], C[190][220], D[180][220]
Large NI = 300, NJ = 320, NK = 400, NL = 420 tmp[300][320], A[300][400], B[400][320], C[320][420], D[300][420]

Table 1: Problem size scaling configurations for the 2mm application.

-1 0 1 2 3 4 5 6 41 49 46
2

49
6

Reuse Distances

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

Fr
eq

ue
nc

y

PARDA
Prediction

(a): Mini

-1 0 1 2 3 4 5 6 7
10

4
10

5
14

5
36

94
41

84

Reuse Distances

0

200,000

400,000

600,000

800,000

Fr
eq

ue
nc

y

PARDA
Prediction

(b): Small

-1 0 1 2 3 4 5 6 7
38

4
38

5
42

5
40

51
4
42

40
4

Reuse Distances

0

10,000,000

20,000,000

30,000,000

40,000,000

Fr
eq

ue
nc

y

PARDA
Prediction

(c): Medium

-1 0 1 2 3 4 5 6 7
64

4
64

5
80

5

12
91

24

13
54

64

Reuse Distances

0

50,000,000

100,000,000

150,000,000

200,000,000

Fr
eq

ue
nc

y

PARDA
Prediction

(d): Large

Figure 10: Reuse Distance Histogram comparison on problem size scaling between the dynamic tool & our static method.

capture, especially those associated with larger reuse distances, as
discussed in Figure 10. In these cases, our model may fail to report
reuse distances that fall within the cache, resulting in missed cache
hits. In contrast, PARDA calculates dynamically and accurately
identifies such reuse distances at runtime and includes them in its
hit rate calculation, leading to higher reported accuracy.

5.2.4 Model Execution Time. We evaluated the execution time
required to generate the RDH from the source program in both
the reference model (PARDA) and our proposed model. Figure 12
shows the execution time (in seconds) of the different datasets. Our
model achieves significant speedups over PARDA, particularly for
larger problem sizes.

Abdur Razzak, Atanu Barai, Nandakishore Santhi, and Abdel-Hameed Badawy

Mini Small Medium Large
Dataset

90

92

94

96

98

100

Ca
ch

e
H

it
 R

at
e

(%
)

PARDA
Prediction

Figure 11: Cache Hit Rate comparison between the reference
model (PARDA) and this model across various datasets.

This significant performance gain is achieved because our model
is problem-size independent. Using compile-time information, the
model estimates the RDH. Unlike PARDA, it avoids running the
program dynamically and eliminates the need for memory trace
collection and analysis.

Mini Small Medium Large
Dataset

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
)

PARDA
Prediction

Figure 12: Comparison of Model Execution between PARDA
and this model (time from source code to result generation).

5.3 Multi-Kernel Evaluation
In this section, we evaluate the performance of our model using
multiple kernels from the PolyBench [11] benchmark suite. This
analysis helps to understand the effectiveness of this model with
other applications.

5.3.1 Dataset. To further evaluate our model’s behavior against
the reference model, we tested it on additional PolyBench kernels
beyond 2mm. As shown in Table 2, all the selected applications
belong to the linear algebra category. For simplicity, only the kernel
portions of these applications were executed. Instead of testing
across all data set sizes, we limited our evaluation to the smaller
loop-bound configuration described in Table 1.

Applications Nested
Loops

Analysis Problem Sizes

2mm 3 Problem Scaling Mini,Small,Medium,Large
3mm 3 Multi-Kernel Small
atax 2 Multi-Kernel Small
mvt 2 Multi-Kernel Small
gemver 2 Multi-Kernel Small
Table 2: Other PolyBench kernels used for evaluation.

5.3.2 Reuse Distance Comparison. We have run only the kernel
applications mentioned in Table 2 and the results are shown in
Figure 13. Once again, our model accurately reports the frequencies
for lower reuse distances. However, it struggles to predict reuse
distances that are dynamically reported due to the volatility of array
accesses. Since we use smaller datasets in this test, kernels such
as atax, bicg, and mvt show strong alignment between the reuse
distance frequencies of our model and those reported by PARDA.
In contrast, 3mm presents a challenge, as it involves multiple ar-
rays with interleaved access patterns that are difficult to estimate
without observing the actual runtime behavior.

5.3.3 Cache Hit Rate. As shown in Figure 14, our model achieves
cache hit rates closely aligned with PARDA in additional bench-
marks such as atax, bicg, and mvt. It represents how accurate our
predictions are for various applications’ memory access patterns.
However, 3mm shows a slightly lower hit rate due to its use of
multiple arrays with interleaved access, making it difficult for static
analysis to capture all reuse opportunities without observing run-
time behavior.

5.3.4 Model Execution Time. We compared the execution time of
four benchmark applications with the reference model. As previ-
ously explained, our model performs static analysis and generates
predictions in near-constant time, while PARDA’s execution time
varies with problem size. For example, as shown in Figure 15, the
3mm application involves higher computational complexity and
thus takes significantly longer in PARDA. In contrast, bicg is a
smaller kernel with a much shorter run-time. Regardless of the
application, our model maintains a consistently low execution time.
As a result, our static model provides a much faster alternative
for estimating the reuse profile without compromising accuracy in
critical reuse regions.

6 DISCUSSION & LIMITATIONS
Although our static model demonstrates strong performance in
predicting reuse profiles and cache hit rates efficiently, it does have
several limitations:

• Limited Detection of Long Reuse Distances: The model
currently struggles to identify large and dynamic reuse dis-
tances that occur across loop iterations or through indirect
memory accesses. These reuse patterns are often captured
by a dynamic profiling tool like PARDA but are overlooked
in static estimation.

• Accuracy Drops for Large Cache Sizes: Due to the in-
ability to account for infrequent but reuse distances, the

Static Estimation of Reuse Profiles for Arrays in Nested Loops

-1 0 1 2 3 4 5
10

4
14

4
16

4
36

93
41

83
66

43

Reuse Distances

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

Fr
eq

ue
nc

y

PARDA
Prediction

(a): 3mm

-1 0 1 2 3 4 5
14

4

Reuse Distances

0

100,000

200,000

300,000

400,000

500,000

Fr
eq

ue
nc

y

PARDA
Prediction

(b): atax

-1 0 1 3 4 5 7
21

5

Reuse Distances

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

20,000

Fr
eq

ue
nc

y

PARDA
Prediction

(c): bicg

-1 0 1 2 3 4
16

3

Reuse Distances

0

10,000

20,000

30,000

40,000

50,000
Fr

eq
ue

nc
y

PARDA
Prediction

(d): mvt

Figure 13: Reuse Distance Histogram comparison on different applications.

cache hit rate accuracy decreases slightly as the cache size
increases.

• Lacking Branch Predictions: Our approach does not
cover reuse behaviors at function-level reuse behaviors
or cases where branches are involved.

• Hand Input Bounds: Since we cannot execute the pro-
gram, the loop bounds’ values are not available at compile
time. Therefore, wemanually provide loop exit probabilities
before running the static analysis tool.

We are currently exploring techniques to address these limita-
tions to better approximate non-local and complex reuse patterns.

7 CONCLUSION
We have presented an almost fully static analysis framework ca-
pable of estimating reuse-distance histograms for array-based ap-
plications with orders-of-magnitude greater speed than traditional
dynamic profilers. We present “Alternative Static Analyzer” that
estimates RDH and cache hit rates without requiring the execution
of the source code or the collection of memory traces. By analyz-
ing the program structure and the reuse patterns at compile time,
our model achieves a significant speedup, especially for the larger
problems, compared to dynamic tools like PARDA. Our approach
demonstrates high accuracy in predicting reuse distances and cache
hit rates, particularly for frequently accessed references and smaller
cache configurations, where it closely matches PARDA’s results.
The result indicates that this model is a highly efficient and scalable

Abdur Razzak, Atanu Barai, Nandakishore Santhi, and Abdel-Hameed Badawy

3mm atax bicg mvt
Applications

92

93

94

95

96

97

98

99

Ca
ch

e
H

it
 R

at
e

(%
)

PARDA
Prediction

Figure 14: Cache Hit Rate comparison for the applications.

3mm atax bicg mvt
Dataset

100

101

Ex
ec

ut
io

n
Ti

m
e

(s
)

PARDA
Prediction

Figure 15: Comparison of Model Execution between PARDA
and this model for the benchmark applications.

alternative to the dynamic calculation process for early-stage cache
performance analysis. However, the current version of the model
does not fully capture all array reuse scenarios, especially those
involving complex loop interactions or long reuse distances. These
limitations lead to an underestimation of cache hit rates at larger
cache sizes. We are actively working on addressing these limita-
tions by refining loop analysis and incorporating extended reuse
tracking to enhance accuracy across a broader range of memory
access patterns.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers. Triad National Secu-
rity, LLC partially funded this research under subcontracts #581326
and #C4975. The Department of Energy (DOE) National Nuclear Se-
curity Administration (NNSA) under contract DEAC52-06NA25396,
and the Los Alamos National Laboratory ASC program under
project JAPB-SID1 also partially funded this research. This paper
has been approved for public release with LA-UR-25-25754. The
opinions, findings, or conclusions expressed in this paper are solely
the authors’ and do not necessarily represent those of the DOE or
the US government.

REFERENCES
[1] Atanu Barai, Nandakishore Santhi, Abdur Razzak, Stephan Eidenbenz, and

Abdel-Hameed A. Badawy. 2024. LLVM Static Analysis for Program Char-
acterization and Memory Reuse Profile Estimation. In Proceedings of the Inter-
national Symposium on Memory Systems (Alexandria, VA, USA) (MEMSYS ’23).
Association for Computing Machinery, New York, NY, USA, Article 3, 6 pages.
https://doi.org/10.1145/3631882.3631885

[2] Kristof Beyls and Erik H. D’Hollander. 2009. Refactoring for Data Locality.
Computer 42, 2 (2009), 62–71. https://doi.org/10.1109/MC.2009.57

[3] Mark Brehob and Richard Enbody. 1999. An analytical model of locality and
caching. Tech. Rep. MSU-CSE-99-31 (1999).

[4] Yannick Emonds, Lorenz Braun, and Holger Fröning. 2023. CUDAsap: Statically-
Determined Execution Statistics as Alternative to Execution-Based Profiling.
In 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet
Computing (CCGrid). 119–130. https://doi.org/10.1109/CCGrid57682.2023.00021

[5] Julian Seward et al. 2024. Valgrind: A Dynamic Binary Instrumentation Frame-
work. https://valgrind.org/. Accessed: 2025-05-06.

[6] Mark D. Hill. 2024. Dinero IV - A Uniprocessor Cache Simulator. https://pages.
cs.wisc.edu/~markhill/DineroIV/. Accessed: 2025-05-06.

[7] Mahmut Taylan Kandemir, Jihyun Ryoo, Xulong Tang, and Mustafa Karakoy.
2021. Compiler support for near data computing. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual
Event, Republic of Korea) (PPoPP ’21). Association for Computing Machinery,
New York, NY, USA, 90–104. https://doi.org/10.1145/3437801.3441600

[8] Ming Ling, Jiancong Ge, and Guangmin Wang. 2019. Fast Modeling L2 Cache
Reuse Distance Histograms Using Combined Locality Information from Software
Traces. arXiv preprint arXiv:1907.05068 (2019). https://arxiv.org/abs/1907.05068

[9] Qingpeng Niu, James Dinan, Qingda Lu, and P. Sadayappan. 2012. PARDA: A
Fast Parallel Reuse Distance Analysis Algorithm. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium. 1284–1294. https://doi.org/10.
1109/IPDPS.2012.117

[10] Abdur Razzak, Atanu Barai, Nandakishore Santhi, and Abdel Hameed Badawy.
2024. Static Reuse Profile Estimation for Array Applications. In Proceedings of
the International Symposium on Memory Systems (MEMSYS ’24). Association for
Computing Machinery, New York, NY, USA, 235–244. https://doi.org/10.1145/
3695794.3695817

[11] Matthias J. Reisinger. 2021. PolyBenchC-4.2.1. https://github.com/
MatthiasJReisinger/PolyBenchC-4.2.1. Accessed: 2025-05-06.

[12] Muhammad Aditya Sasongko, Milind Chabbi, Mandana Bagheri Marzijarani, and
Didem Unat. 2021. ReuseTracker: Fast Yet Accurate Multicore Reuse Distance
Analyzer. ACM Trans. Archit. Code Optim. 19, 1, Article 3 (dec 2021), 25 pages.
https://doi.org/10.1145/3484199

[13] J. Xue and Y. Huang. 1997. Reuse-driven tiling for data locality. In Proceedings
of the ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation (PLDI). ACM, 1–12.

[14] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality analysis
using reuse distance. ACM Trans. Program. Lang. Syst. 31, 6, Article 20 (Aug.
2009), 39 pages. https://doi.org/10.1145/1552309.1552310

https://doi.org/10.1145/3631882.3631885
https://doi.org/10.1109/MC.2009.57
https://doi.org/10.1109/CCGrid57682.2023.00021
https://valgrind.org/
https://pages.cs.wisc.edu/~markhill/DineroIV/
https://pages.cs.wisc.edu/~markhill/DineroIV/
https://doi.org/10.1145/3437801.3441600
https://arxiv.org/abs/1907.05068
https://doi.org/10.1109/IPDPS.2012.117
https://doi.org/10.1109/IPDPS.2012.117
https://doi.org/10.1145/3695794.3695817
https://doi.org/10.1145/3695794.3695817
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://doi.org/10.1145/3484199
https://doi.org/10.1145/1552309.1552310

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	3.1 Dynamic Reuse Profiling
	3.2 Static Reuse Profiling

	4 Methodology
	4.1 Loop Annotated Trace (Input)
	4.2 Separating Blocks
	4.3 Single Loop Block Static Predictor
	4.4 Adjusting Cold Misses
	4.5 Adjusting Array Reuses
	4.6 Merging Reuse Profile

	5 Results
	5.1 Comparison Methods & Metrics
	5.2 Problem Scaling Analysis
	5.3 Multi-Kernel Evaluation

	6 Discussion & Limitations
	7 Conclusion
	Acknowledgments
	References

