Studying CPU and memory utilization of applications
on Fujitsu A64FX and Nvidia Grace Superchip

Yan Kang
ybk5166@psu.edu
The Pennsylvania State University
Pennsylvania, USA

Mahmut Kandemir
mtk2@psu.edu
The Pennsylvania State University
Pennsylvania, USA

Abstract

ARM-based manycore CPU architectures are well-positioned to
provide the rising memory throughput requirements of modern
data intensive scientific applications in High Performance Comput-
ing (HPC). The Fujitsu A64FX CPU platform is based on the ARM
v8.2A architecture, and is the processor of the flagship Japanese
supercomputer - "Fugaku", which was previously ranked as the
#1 supercomputer in the world according to the Top500 list. The
Nvidia Grace superchip features 144 Neoverse V2 cores based on
the ARMv?9 architecture with 4x128b SVE2, providing exceptional
computational power. The chip supports up to 480GB of memory,
making it ideal for Al, machine learning, and scientific computing
workloads. In this paper, we conduct a thorough performance ex-
ploration of a variety of parallel bandwidth-sensitive benchmarks
and applications compiled with the native Fujitsu compiler on a
Fugaku A64FX compute node and ARM (LLVM) Compiler on an
NVIDIA Grace superchip compute node, engaging all the computa-
tional cores per cluster using OpenMP multithreading (assuming
the cores can drive the available bandwidth). Our ultimate goals
are to study the resource utilization of scientific applications and
benchmarks on A64FX and Grace superchip, considering graph
application scenarios (GAP Benchmark suite) and eleven appli-
cation proxies from the Rodinia heterogeneous benchmark suite
(considering domains such as Data Mining, Bioinformatics, Fluid
Dynamics, Pattern Recognition, etc.). Through exhaustive perfor-
mance monitoring, we quantify the resource utilization of diverse
OpenMP-based HPC applications on both the Fujitsu A64FX and
the Nvidia Grace Superchip platforms.

Keywords

Fujitsu A64FX, Fugaku, NVIDIA Grace superchip, Graph analytics,
Rodinia benchmark suite, GAP benchmark

1 Introduction

Since the deployment of high-performance ARM multicore CPUs
(i.e., Fujitsu A64FX) on formerly #1 supercomputer in the world,
RIKEN Fugaku (circa 2020), there has been a number of high-end
energy efficient processor design roadmaps with ARM-based CPUs
(exhibiting 1 TB/s memory bandwidth, private caches and hundreds
of CPU threads), among cloud/hyperscaler and data center product
vendors. Most recently, NVIDIA™ released their first data center

Sayan Ghosh
sayan.ghosh@pnnl.gov
Pacific Northwest National Laboratory
Washington, USA

Andrés Marquez
andres.marquez@pnnl.gov
Pacific Northwest National Laboratory
Washington, USA

CPU, Grace, using a custom chip-to-chip interconnect (i.e., NVIDIA-
C2C) to weave two CPU modules into a “superchip”. We compare
Fujitsu A64FX and NVIDIA Grace superchip in Fig. 1, listing the
officially released performance numbers. Aside from being a larger
CPU chipset (144 cores in Grace vs. 48 cores in A64FX), Grace su-
perchip also offers a relatively large (117MiB/#NUMA node) shared
Last Level Cache (LLC), which compared to A64FX’s shared (per
NUMA node or core group) L2 cache is 15X larger.

Fujitsu AB4FX, FX1000 @ 2.2GHz
(custom u-arch, ARM v8.2-A, 512b SIMD)

NVIDIA Grace Superchip (ARM Neoverse V2
@ 3.2GHz, ARM v9-A, SVE2 4x128b SIMD)

240 GB LPDDR5X NUMA #1

240 GB LPDDR5X NUMA #0
Dispatch 8 ins/cycle
INT

Execution Units

Y
=
=5}
g
2}
[0}
@

8GB HBM2
8GB HBM2
8GB HBM2
117 MiB L3

Shared 12-way SA
Shared 12-way SA

oot 1T)]
Bl /11 cycles
64kiB L1 e
2568 1
[sroea 1ovoysn 2 K
Shared 16-way SA8MiB L2 [NNINE

~4 10 cycles,

cycles 128B/cycle
4-way SA IIERETETY
64KiB L1 1MiB L2
Private caches (648 line)

Figure 1: Fujitsu A64FX and NVIDIA Grace Superchip high-level
components (using publicly available information).

A number of prior works have discussed the role of the ARM
ecosystem in HPC, most recently laying out the architectural as-
pects of Fujitsu A64FX and NVIDIA Grace superchip, in the con-
text of scientific applications [1, 9-12, 14, 17-19]. A key design
criteria of these “data center” CPUs are to enhance the through-
put of memory-bound applications, which are ubiquitous in High
Performance Computing (HPC). As such, both A64FX and Grace
are capable of providing high instruction throughput, sustainable
memory bandwidth and low latencies across the memory hierar-
chies (corroborated through popular benchmarks), yet performance
footprints of myriad applications exhibit significant differences. In
Fig. 2, we capture the memory latency spectrum for strided data
transfers (as reported by LMBench [16]), corresponding to accesses
across the memory hierarchy on “data center” CPUs (A64FX and
Grace) vs. desktop CPU system, Apple M3. The impact of a rela-
tively large LLC is evident in delaying the latency spikes as the
data sizes increase (indicating data movement beyond private and
shared caches).

In this paper, we consider both regular and irregular applications
— while regular applications demonstrate fixed strides to access the
memory blocks and may effectively engage the available cores to

—e— Fujitsu A64FX (custom u-arch, ARM v8.2-A)
NVIDIA Grace superchip (Neoverse V2, ARM v9-A)
101 —— Apple M3 Max W 16 cores and 64GB LPDDRS5 (custom u-arch, ARM v8.6-A)

Latency (ns)

270 276 273 2 2 2 2
Data Transferred (MB)

Figure 2: Access latencies (using LMBench, stride=128) across the
memory hierarchy of Fujitsu A64FX, NVIDIA Grace and Apple M3.

drive bandwidth, irregular scenarios might demonstrate relatively
higher and unpredictable memory accesses and workload patterns.
We have deliberately excluded FLOPs-intensive applications and
benchmarks from our analysis, as scientific applications are leaning
towards becoming more data-intensive and sparse, requiring broad
set of optimizations to derive performance from future extreme-
scale architectures. Recent research investigated time spent on
Basic Linear Algebra Subprogram (BLAS) operations across several
applications to not exceed 25% of the total execution time [20], there-
fore, optimizing third-party linear algebra libraries may not yield
sustainable performance improvement. Our approach considers
benchmark evaluation (using STREAM and graph neighborhood ac-
cess benchmarks to study impact of contiguous vs. non-contiguous/
irregular writes) using various inputs followed by thorough profile-
driven application analysis, using recommended compilers, options
and profilers to extract the best performance from the individual
platforms. Since the #cores vary between the platforms, we have
a third configuration, which uses 48 cores on the NVIDIA Grace
platform to keep parity with Fujitsu A64FX. Our studies indicate
that most data intensive (especially irregular) applications benefit
from a deeper memory hierarchy including a large LLC, and effi-
ciencies in the load/store pipelines in processors can lead to free
performance when applications are ported from A64FX platform
to NVIDIA Grace superchip.

2 Benchmarks and Applications

We use standard HPC benchmarks and applications in our anal-
ysis, discussed in this section. The benchmarks incorporate the
fundamental data-access patterns present in parallel applications.
Most applications exhibit regular/contiguous access patterns, in
which data movement happens across distinct memory locations
at regular intervals, conducted by an iterative loop. On the other
hand, graph applications involve graphs, which are mathematical
structure analogous to a set comprising of points and lines; lines
form “edges” to join two arbitrary points in the set, implying some
type of relationship which can expressed via an attribute such as a
scalar (or vector) weight over an edge. Usually, data corresponding
to graphs is expressed by a hierarchical data structure, such as
Compressed Sparse Row (CSR) format, which requires two levels of
loop nesting to scan the edges corresponding to a vertex. This type
of range indexing leads to irregularities in memory accesses, as the
number of edges corresponding to a vertex may vary with diverse

input graphs (edge distributions across a range of input graphs is
shown in Fig. 3). We consider a multithreaded execution environ-

—e— orkut —=— ljournal —=— vasStokes rgg
104 uk2002 —%— indochina —=— Bump

102

>io oh ohz o5 Jia o5 St6
#\Vertices

Figure 3: Top 100K #edges distribution across vertices of graphs.

ment (using OpenMP) in which a portion of the loop iterations are
(statically) assigned to distinct processor threads. For our evalua-
tions, we have not updated any code, benchmark or application, and
present the results as-is. While it is practical to use a single metric
or Figure-of-Merit (FOM) for a benchmark, for an application or
even a mini-application, it is often intractable since different areas
of an application may utilize different capabilities of the underlying
processor. Therefore, we rely on visualizing performance profiles
to understand the overall impact on the system across applications
and inputs.

2.1 STREAM and Graph Neighborhood Accesses

STREAM benchmark [15] is commonly used to study the mem-
ory bandwidth of CPUs, by engaging all the processor cores to
perform contiguous reads/writes to/from distinct memory loca-
tions, and performing simple arithmetic operations with the data.
Additionally, we explore another benchmark to study irregular/
noncontiguous memory accesses, in the form of accessing the ver-
tex neighborhoods of multifarious real-world graphs (comprising of
a varied vertex-edge distributions), as depicted in Fig. 4, compared
with access patterns in STREAM. As a result of the variation in the
edges per vertex (owing to graph structure), if the loop over vertex
is parallelized (which is often the case in real graph applications),
there might be nontrivial load imbalance among the edges. Unlike

STREAM Graph Neighborhood Access

#ipragma omp parallel for #pragma omp parallel for
for i in LARGE SIZED ARRAY: for i in #Vertices:
a[i] = b[i] for j in #Neighbors[i]:
af[i] = b[j]
Figure 4: Distinct streaming access patterns: contiguous read/write
in STREAM vs. non-contiguous read—contiguous write in Graph
Neighborhood Access benchmark.

STREAM, memory access patterns of the graph neighborhood ker-
nels primarily consists of traversing a doubly-nested loop mandated
by the CSR representation of a graph. We use same set of graphs
on different applications running on the experimental platforms,
to study the effect of graph structure and application logic on the

execution footprints. Influenced by STREAM, we develop parallel
variants of copy, add and max kernels in the context of graphs
(referred as graph neighborhood access kernels); the copy kernel
copies the edge weights into an array, max collects the maximum
of the edge weights among the vertex neighborhood into an ar-
ray, whereas add accumulates the edge weights of a neighborhood
copying it into an array. We generate a random geometric graph
with good connectivity properties (dense clusters in the graph) in
memory for benchmarking purposes. Like STREAM, we report the
rate in MB/s for a kernel across a fixed number of iterations.

2.2 GAPBS and Rodinia

The GAP benchmark suite [3] consists of optimized parallel im-
plementations of common graph algorithms supporting a wide vari-
ety of scientific applications. We use four complex graph kernels in
our analysis: Breadth First Search (BFS), PageRank (PR), Connected
Components (CC) and Betweenness Centrality (BC). Breadth First
Search (BFS) performs level-by-level traversal of graphs. PageRank
(PR) iteratively computes the popularity score of the vertices in
a graph, by conducting repetitive sparse matrix-vector computa-
tions, such that the updated values are available immediately to
be adjusted in the current iteration. The CC benchmark performs
labeling of graph vertices according to their connected components,
which is a set of vertices linked together by a path. Betweenness
Centrality (BC) is about updating the scores of the vertices by com-
puting shortest paths from a subset of vertices, usually implemented
using several BFS traversals to approximate the scores.

Rodinia suite [5] comprises of several standalone mini-applications
representing a variety of scientific application domains. We chose
eleven mini-applications — Kmeans, Needleman-Wunsch (NW),
HotSpot (HS), SRAD (versions V1 and V2), Back Propagation (BP),
Leukocyte Tracking (LC), Stream Cluster (SC), CFD Solver (CFD),
LU Decomposition (LUD) and Heartwall Tracking (HW); with ap-
propriate input scenarios, as mentioned in Table 3. Kmeans is a tradi-
tional data mining application scenario that partitions datasets into
apre-defined set of clusters. Needleman-Wunsch (NW) is a dynamic
programming method used to determine optimal genome sequence
alignment. HotSpot (HS) consists of an iterative transient thermal
simulation kernel that solves a series of differential equations for
a block of temperatures. SRAD implements an image denoising
technique based on partial differential equations representing a dif-
fusion algorithm. Back Propagation is a classic Machine Learning
algorithm for training weights of a neural network—comprising of
the forward and backward phases. Leukocyte Tracking (LC) tracks
White Blood Cells (WBC) in blood vessels; WBCs are first detected
in an input video frame, which are subsequently tracked across
rest of the frames, by computing specific gradients for each pixel.
Stream Cluster (SC) performs online clustering for an input stream
of points. CFD Solver (CFD) solves 3-D Euler equation for compress-
ible flow, employing a finite volume formulation on unstructured
grids. LU Decomposition (LUD) is a popular linear algebra algo-
rithm for solving linear equations, by decomposing a matrix into
lower and upper triangular matrices to maximize parallel efficiency.
Heartwall Tracking (HW) uses image processing methods to track
the shape of mouse heart over a sequence of fixed-resolution ultra-
sound images.

3 Evaluations and Analysis

Testbeds Our testbed platforms are Fujitsu A64FX processor
node of the Fugaku system [14] and NVIDIA Grace superchip node
from Stony Brook University’s Ookami cluster [4]. We use the rec-
ommended platform compilers and environment settings, as listed
in Table 1. All the benchmarks and applications use OpenMP multi-
threading [7]. Since Grace superchip has 3x more CPU cores than

Table 1: Platform software details.

I I A64FX I GRACE
Compiler FUJITSU 4.10 ARMCLANG 24.04
-Kfast -Ofast
Options -mcpu=a64fx -mcpu=native
-Kopenmp -fopenmp
. OMP_PLACES=cores OMP_PLACES=cores
Affinity

OMP_BIND=spread
XOS_MMM_L_ARENA_LOCK_TYPE=0
XOS_MMM_L_HPAGE_TYPE=hugetlbfs

XOS_MMM_L_PAGING_POLICY=
demand:demand:demand

OMP_BIND=spread

Environment N/A

Fujitsu A64FX, we additionally include a 48-threads configuration
for Grace (selecting threads across the CPU sockets) in our baseline
performance comparisons, to match with 48-thread runs of A64FX.

Datasets and Input Parameters We use various real-world
graphs for the graph application scenarios in GAPBS. They are
listed in Table 2. Typically, graphs are chosen such that the input
size is greater than the Last Level Cache (LLC), to induce sufficient
memory accesses. We use the same graphs on both A64FX and
Grace platforms, although the latter can support larger graphs due
to 16X greater main memory.

Table 3 lists the input arguments for the Rodinia benchmarks.

Profiling metrics We compare end-to-end execution times (in
seconds) of the benchmarks and applications on a single Fujitsu
A64FX and NVIDIA Grace superchip node. However, execution
times alone does not convey the reasons behind the performance
variations between application versions on the different platforms.
Hence, we rely on systems profiling by studying the low-level per-
formance events to understand the impact on the underlying system.
Our profiling metrics consists of rates and unitless quantities char-
acterizing specific CPU instruction overhead and load/stores across
the memory hierarchy per NUMA node. Due to differences in the
platform profilers, we are able to sample data at a finer granular-
ity on A64FX platform (using Fujitsu Advanced Profiler, FAPP),
as compared to userspace metrics collected from the perf Linux
profiler on Grace superchip (enabling “—per-node” to aggregate
per-NUMA-node measurements). Profiling metrics of A64FX and
Grace are listed in Tables 4 and 5. We engage all the available cores
during performance profiling.

On NVIDIA Grace superchip, we focus on two vital performance
events: the volume of the memory accesses across the memory
hierarchy (caches and main memory) and the CPU pipeline stalls
(which corresponds to the wasted cycles, waiting for memory access
operations or decoding instructions to work on data). Complex
instructions can increase front-end stalls, whereas long-latency
memory operations increase backend-stalls, throttling the front-end.
FAPP on A64FX platform provides a more finer-grained details, such
as integer and floating-point related cycles, and instructions break-
up by functional units (i.e., integer, floating-point or prefetch).

Table 2: Characteristics of the input graphs.

Domain & Applied Benchmarks/Applications .
Graphs ‘ (G : Gr‘;‘;h Neighborhood Ke"l‘;els) #Vertices | #Edges | Max Deg. ‘
com-orkut social network(GN, GAPBS) 3M 234M 33K
Tgg_n_2_24_s0 random geometric(GN, GAPBS) T6M 132M 10
uk-2002 web crawl(GN, GAPBS) 18M 584M 194K
LAW/ljournal-2008 social network(GN. GAPBS) 5M 79M 20K
indochina-2004 web crawl(GN) ™ 194M 256K
VLSI/vas_stokes_4M semiconductor(GN) M 131IM K
VLSI/stokes semiconductor(GN) 11IM 349M 2K
Janna/Bump_2911 reservoir simulation(GN, GAPBS) 3M 128M 195

Table 5: NVIDIA Grace Profiling Metrics

CPU metrics

INS #CPU instructions

ST #Stalls across CPU pipelines

#Stalls in CPU backend (execution, memory)

Table 3: Rodinia kernels and input arguments.

‘ Application ‘ Domain ‘ Problem Sizes ‘
Kmeans Data Mining 819200 data points, 34 features, 512 clusters
Needleman-Wunsch (NW) Bioinformatics 81920 X 81920 data points with penalty of 10
HotSpot (HS) Physics Simulation 1024 X 1024 data points with 1,500,000 iterations
Back Propagation (BP) Pattern Recognition 65536 input nodes
SRAD_V1 Image Processing 502 X 458 image size with 100000 iterations
SRAD_V2 Image Processing 2048 X 2048 image size with 100000 iterations
Leukocyte Tracking (LC) Medical Imaging 219 X 640 pixels/frame
Stream Cluster (SC) Data Mining 655360 points, 256 di i
CFD Solver (CFD) Fluid Dynamics 0.2M elements
LU Decomposition (LUD) Linear Algebra 2048 X 2048 data points
Heart Wall Tracking (HW) Medical Imaging 609 X 590 pixels/frame

Table 4: Fujitsu A64FX Profiling Metrics

% Busy
FP Busy rate for floating point operation pipelines
INT Busy rate for integer operation pipelines
L1 Busy rate for primary cache
L2 Busy rate for secondary cache
MEM Busy rate for memory
#Cache Misses
LS #Load/store instructions
L1M L1 misses
L2M L2 misses
Cycle Accounting (secs.)

PF Stalls due to prefetch port busy
INT Stalls due to integer memory load
FP Stalls due to floating-point memory load
INT(L2) | Stalls due to L2 cache access for integer load
FP(L2) Stalls due to L2 cache access for floating-point load

Data Transfer (MB/s)
own (R) | Throughput of reads within NUMA node
own (W) | Throughput of writes within NUMA node
otr (R) Throughput of reads across NUMA nodes
otr (W) Throughput of writes across NUMA nodes

#Instructions

LS #Load/store instructions
PF #Prefetch instructions
FP #Floating point math and conversion instructions
INT #Integer operation instructions
Total All above plus misc. (predicate, branch, etc.)

3.1 Benchmarks

In this section, we compare the performance of STREAM (con-
tiguous regular access data streams) with the graph neighborhood
access kernels (demonstrates irregular noncontiguous data access
pattern).

3.1.1 STREAM:STREAM is memory-access intensive (we use 24GiB
input array), greater than 50% of the time is spent on memory ac-
cesses (moving data through the cache hierarchy), as shown in
Fig. 6, Grace profiles also corroborates this behavior of relatively
high memory reads than writes, and low cross socket traffic (Fig. 7).
Both FP and INT instruction pipelines are equally busy on A64FX
across the CMGs (up to 7% of overall), suggesting most of the in-
structions are load/store.

TB
S preventing instruction dispatch in frontend
STF #Stalls in frontend due to lack of instructions to issue
sc #Stalled cycles in backend (execution, memory)

preventing instruction dispatch in frontend
STM | #Stalled cycles in backend due to memory load
Memory metrics

LS #Load/store counts

LiM L1 misses

L2M L2 misses

L3M L3 misses

MA #Memory accesses (due to load/stores)
MAR | #Memory reads
MAW | #Memory writes

MRA | #Memory accesses across NUMA nodes

1000

— AB4FX-FUJITSU =3 AG4FX-FUJITSU+zero fill [GRACE-ARMCLANG(144 threads)

. AG4FX-FUJITSU+pointer segregation FZZ GRACE-ARMCLANG(48 threads)

Mean Rate GB/s

COopY TRIAD

Figure 5: Performance of STREAM (GB/s, higher is better).

% Busy X101 Data Transfer (MB/s) ;01 # Instructions .iov
-6

Cache Misses,qon Cycle Wait Time(s) 10
15 4e1 |3 2e107es 4esdali I

2e10 [RICIERTE]

2e1

1e9 1e107e8 3¢9 3430 |3

29 1e9 21 | lelo7e83e93eAﬂ -2

-
se1 16107¢ 3¢9 3e4 50

29 1e9

FPOINT L1 L2 MEM s oum

Figure 6: Performance events of STREAM on Fujitsu A64FX with
Zero Filling (a row corresponds to measurements on a NUMA node,
4 NUMA nodes in A64FX).

own(Rbwn(Wiot(R) otr(W) s PEFPINT Total

lell
z 7e10 7e8pell 6e9 9e7 6e9 2e112elldel 2¢6 t;g
u .

E 9e11 7e10 1e9Bell 6e9 1le8 5e9 2ell2ellsel0 led -2.5

INS SC ST STB STM STF LS LIM L2M L3M MA MAR MAW MRA
CPU Metrics Memory Metrics

Figure 7: Performance events of STREAM on Grace (a row corre-
sponds to measurements on a NUMA node, 2 NUMA nodes in Grace).

ADD/TRIAD moves about 30% more data than COPY/SCALE, so
the bandwidth numbers are slightly better for ADD/TRIAD rela-
tively, as shown in Fig. 5. We also observe that SCALE/TRIAD is
about 20% worse than COPY/ADD on A64FX. Since pointers can
potentially reference overlapping areas, some software pipelining
optimizations are not turned on by default, causing the disparity.
Upon passing -Krestp=arg (resolves pointer aliasing or segrega-
tion), such optimizations can be utilized (we only observed a major
impact upon enabling this option for STREAM with the Fujitsu
compiler, but not rest of the scenarios). Grace exhibits about 30%

1200

Il A64FX-FUJITSU ©ZZZ) GRACE-ARMCLANG(48 threads) 1 GRACE-ARMCLANG(144 threads)
1000
w
@ 800
(O]
)
T 600
4
S 7
@ 400 ﬁ
= ?
200 g
o 2 |
COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX COPY ADD MAX
com-Orkut uk-2002 ljournal-2008 indochina-2004 vas_stokes_4M bump rgg stokes
Figure 8: Performance of graph neighborhood kernels (GB/s, higher is better) across compilers and graphs.
. it Ti # Instructions
% Busy x10 # Cache Misses tenn ,, f¥ClP Walt Timels) | PR e A LT sl o7 3o leo mew '
2 15 _5610 5e8 e8 3e1 601 3e1 4 1lel lell 9e7 4e9 7e8 %E]]
1 48 > 8 6610 aco] . M TeT(2en] 3 | 2ed 160 1% se7 350 e
1 2 = & o o i g ded 2000 Gel0 3e7 3e9 2e8 |21l .
2 1 e e 363 362 8e1 1 1lel 3e10 2e7 2e9 1e8 9el0
7 3e10 3e8 2e8 1.2 lell 9e7 5e9 6e8 [EQ
: £ 8e8 3e8 2o g s 2 ed 140 lell 7e7 8¢9 4es [YSEN
,,,,, 2 3 IRl fes ST 5 2610266360267 6eld
10 59 6 610 et Ie8 262 8el 4el” 4 1lel 2e10 2e6 4e9 9e7 8elld
R 2610 les o8 1.0 8 1 21 2 lel 120 1500 2610 3e6 269 3e7 7elo
2 2 20) 2 el 2e1 7e10 le7 39 de7
3 3 12 3e8 2e8 @ ‘gdsy o e 2010 2e6 3e9 2e7 8el0 3
7 5 3 2610 28 2¢8
& 20 EiEm 5 ‘500 fe8 1e8 1 el 9 100 9e9 9e5 209 le7 3el0
2e10 3e8 3e8 0.8 7e-. 2 2el0 le6 5e9 8e7 6eld
7 2 i 310 oes] 9 310 366 Jeo cer (el
""" . B 75 [T - SR P S B Tel e el €' e7 €
H = B K ey = = 2 4é1 7el 4 del |80 oo 2610 2e6 2e9 9e7 7el0
4 lel 3 2el 2 lel 3el0 4e6 2e9 3e7 lell 2
4 21 BEEE 3e10 le8 le8
3 %8 17 4e8 3e8 0.6 5 21 lel 2 3 Tel0 le7 4e3 de7 [EON
3el0 2e8 2e8 4e-2 2 3el 1 lel e’ el e e €.
g %% 3 9e9 1le8 le8 3 2 2l 3el 8 -60 9e9 9e5 209 le7 3ell
19 3 17 3e10 3e8 3e8 462 8e2 3el 1 ledl 3e10 2e6 5e9 8e7 6el0
14 3; 3el0 6e8 6e8 0.4 6e-2 2 3 3el0 2e6 7e9 6e7 lell
""" 5 el I R R R TelTgE T Tel 2 4 40 Lsgo 26107366268 267 TLelL
15 3. 54 2el0 4e8 4e8 3 le-1 6 4 1 2el0 1le6 5e9 9e7 7el0 -1
6 2 2e10 3e8 2e8 Se-4 2 3el 2 lel 2¢10 2e6 3e9 3e7 7el0
7 3 22 8e10 8e8 7e8 02 6 201 lel 2 4 8e10 1le7 8e9 4e7
11 15 -1 3e10 3e8 3e8 3e2 6el lel 2 1 -20 3e10 3e6 4e9 2e7 B8eld
5 P 51 | 2e10 1le8 1le8 3 2 2l 4el 7 2e10 3e6 29 1le7 7el0
19 32 27 3e10 3e8 3e8 4e2 8e2 3 1 1 3¢10 3e6 5e9 8e7 6e10
21 s a9 | 5e10 9e8 9e8 27 lel 2 5e10 3e6 1el0 6e7 lell
FP INT L1 L2 LS LM LM PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) LS PF FP INT Total

Figure 9: Performance events of graph neighborhood benchmarks on Fujitsu A64FX for various graphs (a row corresponds to

measurements on a NUMA node, 4 NUMA nodes in A64FX).

better overall bandwidth than A64FX: this can be due to the auto-
matic enabling of the write streaming mode in Grace, which can
prevent unnecessary cache reads when a cache line would be writ-
ten anyways. In comparison, the Fujitsu compiler can enable the
write streaming mode via the zero-fill (“-kzfill”) compiler option,
which zeroes a cache line using a special instruction (i.e., DC ZVA)
upon detecting a streaming write operation. Enabling zero-fill, we
observe maximum STREAM bandwidth on A64FX to be around
3% less than the full Grace system in Fig. 5. However, our prior
work has shown limitations with implicitly or explicitly enabling
zero-fill beyond simple streaming write scenarios [13]. Therefore,
we exclude zero-fill from the rest of our evaluations.

1e12
B8P 1c11 1011 1011 4010 3eo) BB 111 1c11 26114010 6o el 2¢9 4e7 29 Heli3ense10 1ea | 1

1e11
e11 269 2¢7 2e9 Belizelize10 264 | 7
o

uk

072106610 769 5e9 jfell 269 1e7 209 4elldellselo les

060106610 1e9 3e9[4elll Bes 3e6 Ges dell3ellselo ges
le12

e11 3es 7e6 Jes Gelidellselo zed | 1.0

0.5

e12
5e103e103¢10 4e9 3e0 0e1016119e102¢10 6eo 112 Bes 2¢7 7es Tel21e129e10 264 | 3
H

ljour orkut

indo

52103¢102¢10 169 3e9fBell 5e5 4e6 ses 3e113e113e10 265 82109108210 369 5e9 fle12 269 Se6 269 lel21e129e10 6es | L

let
11 5e5 ses ces gemizen 2610 6e3 | 13
32

EBHc104e103e101010 109 RaRlee107e107103e10 109 fte11 e 17 9en 2el1zenize10 1ei | 5

2
88 :c103¢103¢10 8e8 1c0.

8B >c112¢11 2611 9e10 2e9.
B8 9:109e109€10 4e9 269

INS SC ST STB STM STF
CPU Metrics

11 8e8 206 8es 261126112010 1e6
e12

e11 169 507 1e9 delldelldelo 2ed | 1
o

B85c1040104e10 3¢9 109

8B 1c11 1611 1611 4010 9e0
B8Blsc 1050104010 3¢9 8e9

INS SC ST STB STM STF
CPU Metrics

€11 169 46 1e9 2e112e112€10 de5

rgg Vstok
stok bump

e11 169 3¢7 1e9 3el13ell3e10 863 | ‘10
0.5

611 169 606 1e9 delldell3elo 6es e11 3¢9 7e6 3¢9 Sellsellaelo 2e6

LS LM L2M L3M MA MARMAWMRA

LS L1M L2M L3M MA MARMAWMRA
[Memory Metrics

Figure 10: Performance events of graph neighborhood benchmarks
on NVIDIA Grace superchip for various graphs (a row corresponds to

measurements on a NUMA node, 2 NUMA nodes in Grace superchip).

3.1.2 Graph Neighborhood Access: Instead of considering contigu-
ous reads and writes for bandwidth measurement (best case, i.e.,
STREAM), the graph neighborhood access benchmark considers
traversing an entire graph in parallel (each thread owns fixed num-
ber of iterations over the vertices of a graph and performs some

o
5

o
5

Gon

operations in proportion to the #edges, edge-distribution across
vertices being dissimilar, see §2.1). This type of traversal leads to ir-
regular/noncontiguous reads. Inspired from STREAM, we consider
COPY, ADD and MAX variants of the graph benchmark which
works on the edges of a graph incurring the same number of arith-
metic operations per edge-iteration as STREAM. The baseline per-
formance in Fig. 8 indicates major performance variations across
the graphs, attributed solely due to the structure of the graphs
(as shown in Fig. 3). Also, comparing the STREAM profiles with
graph neighborhood access (for e.g., Figures 6 vs. 9), the impact
of load imbalance is evident: integer/floating-point stalls and in-
structions are notably higher than those in STREAM indicating
load imbalance and complex indexing. Differences between A64FX
and Grace are also apparent: in a few cases we observe the per-
formance of the graph neighborhood benchmark on Grace to be
comparable with STREAM, whereas on A64FX, the best outcome
was about 50% of the STREAM bandwidth. However, we observe
similar performances on Grace and A64FX for two graphs—ljournal
and indochina, both depicting highly irregular edge distributions
(Fig. 3) despite relatively high maximum degrees. Irregular degree
distributions can lead to severe load imbalances.

The A64FX performance profiles in Fig. 9 can explain the ob-
served performance differences between ljournal/indochina and the
rest. Both ljournal/indochina exhibits higher stalls due to prefetch-
ing, increased load/store operations and relatively high cross-NUMA-
node traffic. These observations also match the Grace performance

cc

7

1071

é
% v g
7. W)
orkut uk2002ljournal rgg Bump

Run Time (s)
Run Time (s)

V4

Run Time (s)

2 2 —
orkut uk2002ljournal rgg Bump

Run Time (s)

V1

orkut uk2002ljournal rg Bup

orkut uk2002ljournal rgg Bump
Figure 11: Performance of GAP benchmarks (GAPBS) on A64FX and Grace platforms.

% Busy x10! # Cache Misses 1011 Cycle Wait Time(s) Data Transfer (MB/s) x102 # Instructions 1e12
4e8 1e8 6e-5 9 6e3 [lel 2e2 [g0 del lel 2e1 3el 3ell 8e6 B8e8 7el
3e8 1e8 ¢ 3e5 4 2e3 lel Ge3 S5el 3el 3el 3el 7ell le7 29 2e7
7 2ell 1e8 4e7 = e e 20 1e2 2ell 6e6 6e8 5e6 7ell 20
) 9e8 5e8 6el 20 3ell 9e6 9e8 2e7
2ell 2e8 Se7 5 del __ 1lel 9 lel 2ell _7e6 __7e8 _ 8e6_ Bell
25 2 6 4e10 3e8 268 60 “Zel 8 26T el 4610 "6e6 762 Zed lell
24 2 5e10 2e8 1e8 3el 2el 3el 4el 5e10 7e6 7e2 les 2ell
20 4 5 3e10 1e8 4e7 , 5o _.5el 5el 3el0 5e6 7e2 3e4 lell L5
20 9 6e10 8e8 5e8 ESEN 22 22 15 6e10 7e6 7e2 1le7 2ell
24 3 3e10 9e7 e7 3el 9 Tel 9 3el0__6e6__8e2 _ 5e5 lell
25 2 4 4610 3e8 1e8 5 40 TTZel 8 2l "7l 3610 666 7e2 2e4 Tell
24 2 5el0 2e8 le8 3el 2el 3el 4el 5el0 7e6 7e2 le5 2ell -1.0
20 4 3 3e10 1e8 4e7 30 _5el 4el [i9l 1.0 3el0 5e6 7e2 3e4 lell
19 9 6e10 8e8 5e8 , 5el 6el0 7e6 7e2 le7 2ell
24 3 3e10 9e7 de7 el 8 Tel 9 3el0_6e6 _7e2 _ 5e5 lell
75 2 4e10 & Te 20 et t 261726t 4610766 7e2 T2ed TTellT g5
24 2 5e10 2e8 1e8 N - 3el 2el 3el 3el -0.5 5¢10 8e6 7e2 le5 2ell
21 4 1 3e10 1e8 5e7 I 4e-4 lel 3e3 le2 -10 __6el Sel 9el le2 3el0 5e6 7e2 3ed lell
20 9 6e10 8e8 5e8 2e-4 2e-2 2e-1 Sel 6el0 7e6 7e2 le7 2ell
24 3 3e10 1e8 de7 2e-3 [3el. 5e-2 | 3el le-l 3el 9 Tel 9 3el0 6e6 7e2 5e5 lell
L1 L2 Ls L1M L2M PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) LS PF FP INT Total

Figure 12: Performance events of GAPBS(BFS) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

events, as shown in Fig. 10, which depicts significantly high memory
accesses compared to other inputs.

For uk-2002 input, both A64FX and Grace demonstrate better
performance relative to other inputs; uk-2002 demonstrates rela-
tively uniform degree distribution (standard deviation of #edges/
vertex is about 13), and as a result a balanced workload across the
NUMA nodes (as shown in Figures 9 and 10), leading to better
stalls profile (stalls indicate waiting for data either from memory
or cache, lower is better); inputs bump and rgg also demonstrates
better bandwidth on Grace, due to uniform degree distributions.
Additionally, bump demonstrates significantly better performance
on Grace as compared to A64FX. On Grace, bump demonstrates
the least cross-NUMA domain memory accesses among the other
inputs, which is not observed in A64FX. Another reason behind
greater than about 30% improved performance on Grace compared
to A64FX as shown in Fig. 8 can be attributed to the large capac-
ity of LLC (234MiB). In Fig. 6, we observe relatively comparable
L1 and L2 cache misses, whereas on Grace, L2 cache misses can
be seen to be two or three orders of magnitude lower in compari-
son (Fig. 10), indicating significant data reuse (L3 is unified, so the
reported numbers might be higher than private/separate L2).

3.2 Application Scenarios

We discuss the application evaluations in this section, starting
with the GAP benchmark suite in §3.2.1, which consists of optimized
reference implementations of several key graph algorithms. Next,
in §3.2.3 we discuss several benchmarks from the Rodinia suite,
covering diverse application domains.
3.2.1 GAP Benchmark Suite The GAP benchmark suite [3] aims
to standardize benchmarking of graph analytics, by providing a
specification and high-performance modern C++-based reference
shared-memory implementations of common graph algorithms
with a wide variety of applications. We use four graph kernels from
the benchmark: Breadth First Search (BFS), PageRank (PR), Con-
nected Components (CC) and Betweenness Centrality (BC). The
baseline results are shown in Fig. 11 against five input graphs (Ta-
ble 2); increasing the #threads does not improve the performance

significantly, but we still observe about up to 10X better perfor-
mance on Grace than A64FX.

GAP implements an optimal “direction-optimizing” method of
BFS [2] which combines the classic top-down BFS with a bottom-
up step that allows a vertex to check whether its parent is in the
“frontier” list of unvisited vertices (instead of a vertex checking
its adjacent vertices, akin to a parent looking for a child). The
amount of parallelism is proportional to the size of the frontier,
as a result BFS on certain graphs can suffer from starvation with
increased number of threads. PageRank (PR) iteratively computes
the popularity score of the vertices in a graph by implementing
sparse matrix-vector computations, employing OpenMP nested
parallelism which may not be supported by the underlying runtime
due to overheads associated with oversubscription, leading to minor
improvements between 48 and 144 threads on Grace for various
inputs. The CC benchmark performs parallel labeling of the graph
vertices according to their connected components, which is a set
of vertices linked together by a path. Betweenness Centrality (BC)
is about updating the scores of the vertices by computing shortest
paths from a subset of vertices. This is usually implemented using
multiple BFS traversals to approximate the scores, and uses atomic
operations to track possible paths.

Profiling analysis of GAPBS considers different NUMA nodes
and input graphs, measurements of different graphs are stacked
per NUMA node (depicted by broken blue lines), as shown in Fig-
ures 12, 13, 14 and 15. The A64FX profiles indicates most of the
overhead in integer operations (despite floating-point instruction
throughput being higher) and traffic across the NUMA nodes. Ac-
cordingly, corresponding Grace profiles (Figures 16 and 17) also
points to the traffic across the NUMA nodes and relatively high
backend stalled cycles. However, the data movement across NUMA
nodes for A64FX is higher than that of Grace (in the A64FX profiles,
data transfer is represented in MB/s, so the numbers should be
multiplied with 10° to roughly compare with corresponding Grace
memory metrics), and relatively less misses in the cache hierarchy
led to improved end-to-end performance. Also, the cache behavior
and the prefetch instructions of GAPBS are comparable to the graph

%101 # Cache Misses lell Cycle Wait Time(s) %102 Data Transfer (MB/s) x10? # Instructions le12
e 2e10 3e9 e5 3el 7el 5 3el 14 9el 2el Sel el 3ell le7 2010 3e8 [t 55
6 7ell 9e8 7e8 7 3e6 5 3¢l 5 3 ’ 1630 7el 3e2 [Ule3 4.0 7e1l le7 4el0 :
17 7 3ell 2e9 8e8 8e-6 2el lel 9 2e2 4e2 4e3 3ell 1le7 1lelO
2 4ell 6e8 4e8 6 3e-6 6el 7 5 2 12 202 3el 2e2 = 3e2 35 4ell 6e6 2el0
1 6 2ell 4e8 1e8 2e5 3 3¢l 8 5 2e2 2el le2 2e2 ’ 2ell _6e6__6e9 2.0
3 Tell 7610 3&9 664 8l 2 5T Se T 7el 8 661 86l Te11 866 210
7 lell 9e8 7e8 5 le4 6 _4del 7 4 10 le2 2el 6e2 3e2 3.0 lell 8e6 4eld
22 5 lell 2e9 6e8 2e-4 2el lel 8 3e2 del 6e2 lell 1le7 9e9
5 8e10 6e8 4e8 Sed 1 8 6 2 0g 202 3l 2e2 3e2 2.5 8el0 5e6 2el0 15
6 " 4e10 1le8 9e7 4 3ed 3 3l 9 6 - 2e2 2el _lea 2e2 4e10 5e6__ 5e9
9e10 1610 369 64T 2 536l 7el 8 5e1 T TBel 2.0 9610 8e6 2e10
7 lell 9e8 7e8 5 8e5 6 [del 7 5 o6 le2 2e1 7e2 3e2 lell 8e6 4eld
7 -3 lell 2e9 7e8 le-d 2el 2e1 7 2e2 del 5e2 lell le7 9e9 -1.0
5 8e10 6e8 4e8 de-d 1 8 5 2 2e2 2el 202 3e2 [1.5 8el0 5e6 2e10
6 4e10 1le8 9e7 2 2e4 4 3el 8 6 0.4 _2e2__ 2el __le2 _ 2e2 4e10_ 5e6__5e9
3 2 1611 1610 369 664 HeT 2 6 3ed el 8 561 7el 1.0 TeI1 966 Zelld
7 lell 9e8 7e8 9e-5 5 [del 7 5 2e2 2el 6e2 3e2 lell 8e6 4el0 05
20 1 lell 2e9 7e8 -1 le-d 2el lel 8 -02 2e2 Sel [W2e3m 4e2 S05 lell 1le7 9e9
6 8e10 6e8 4e8 2e-4 8el 7 6 2 2e2 3el 202 3e2 8el0 5e6 2el0
6 4e10 1le8 9e7 3e4 3 3l 9 6 2e2 2el le2 2e2 4e10 5e6 5e9 9e7 lell
L2 Ls L1M L2Mm FP INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) Ls PF FP INT Total

Figure 13: Performance events of GAPBS(PR) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

o # Cache Misses 1e11 Cycle Wait Time(s) Data Transfer (MB/s) x10? # Instructions 1e12
k" 3e8 les SEINEREN I s L3l 9 zel el L, 3ell 7e6 7e6
| 7ell [EER 1e8 . . Sel 3el del _ Sel : 7ell 9e6 PIN 2c12 |
7 2e11 2e8 5e7 6 le-4 [1el 5e-3 EEQ 1e2 1e2 1e2 1e2 2ell 7e6 5e6 7ell 2.0
5e8 9e7 1 6 4e3 2el el 3ell 6e6 9e6 PN
6 2e1l 4e8 de7 5 2 40 381 lel 2el _ 3el 1.0 2ell__6e6 7e6__8ell
7 4e10 268 268 3 Zel 8 2e1 261 46107566 2637 Tell
3 4e10 2e8 1e8 lel 4el 2el Sel Sel 4e10 6e6 2e3 2ell 15
2 5 3e10 1le8 5e7 el 08 3el0 6e6 2e3 lell .
7 4e10 5e8 8e7 7 LIl 8e-2 30 4el lel 3el . 4el ’ 4e10 5e6 2e3 lell
4 " 3e10 7e7 3e7 3el el 8 2el _ 3el 3el0__5e6 2e3__lell
7 4610 3e8 2e8 3 1 7 Zel 7 261 Zel 46107566 2e3 " Tell
3 4e10 2e8 1e8 de-4 2el 2el. 5e-3 3el 2el [5el5el -0.6 4e10 6e6 2e3 lell -1.0
4 -3 3el0 le8 5e7 6e-4 [2el 3e-3 EEIM le-2 -20 4el 3el0 6e6 2e3 1lell
7 4e10 5e8 8e7 > 5 ES ce-2 4el 9 3el el 2e10 5e6 2e3 lell
4 L 3el0 7e7 3e7 EIN 8e-2 2el 8 2el 2el -0.4 3el0__5e6 2e3 lell
7 1610 768 Te e 79 76l 7 Tel " "Zel 46107666 2e37Iell | o5
3 4e10 2e8 1e8 . de-4 1el 7e-3 “10 3el 2el [del del 4e10 6e6 2e3 lell
4 -1 3el0 2e8 5e7 5e-4 | 2el Sel [ELEE} 4el 202 3el0 6e6 2e3 1lell
7 4e10 5e8 8e7 1 6 4e-3 [EBN 8e-2 4el lel 3el 4el - 4e10 5e6 2e3 lell
4 3e10 7e7 3e7 8e-3 3e-2 REIINN 9e-2 3el 8 2el 3el 3el0 5e6 2e3 lell
L2 Ls LM L2M PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) Ls PF INT Total

Figure 14: Performance events of GAPBS(CC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

x10%

1lel2

4

2el12
1e12
3 5el2

2e12
lel2
| Sel2

Cache Misses
el 2e10 2e9

4

o

Cycle Wait Time(s)
6 5] 2e-1 el

-1 2el2
lel2

LS

-1

FP INT(L2FP(L2)

Figure 15: Performance events of GAPBS(BC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

1e12 1e12
» EBBeenizenizennier1e1ofieiE oes seo 7es HeiBieizienn ser”| 3 se115e11 5011 4011 2610fRH 310 20103010384 361 211 165 | 5
F
£ 01120112611 1011 809 fle12 760 acn gen ReazoeLBet0 9e7 5115611 5011 4011 2010R012 3010 20103020 20022012 2011 169 %
H e e
M oe105e1080101010 seo[1e12 368 Ge7 365 Ret21e122011 367°(4 1e112e11 1011 4010201001612 169 368 169 peTaTe122011 165 4
= EBlsc100e108e101010 e9 fie1z 3ea 7e7 3es lenzienzseio 3e7 7 B 111011 1611 4010201001012 109 38 10 Reaznerzrcnr oe7 | *
N 6e108e107¢102¢10 5e9 el 168 6e7 2¢8 le120e11 1e11 3¢7 BB 11211 1e116e102e1001612 39 1e9 3¢9 2el2ie1a1ens 77 | 4
5 |2 |3
3 BBce1080107¢102¢10 40 et 1e8 7e7 26 Se11genn 7e10 3e7 | 1 [1112611 1611 701011001612 5e9 20 5e9 lel21enz1en 707 |
o EEElc11 411 011 401110100612 269 100 1e0 261226122611 268 | 50 BE o 101611 1011 3e102¢10e32 ses 2¢8 1e0 Redagelnnen 267 | 3
2 et de11e113011 900 ba1d 269 169 109 2e122e121011 33 122 ® 1e111011 1611 5102e10ke11 169 268 100 gedngennzero se7 | 1
8
o EBB6e100e100e10 510 aeo jenn 160 ae7 zes Bemasentoeto sei°|*; etn zeo se7 ze0 Bennzentoeto set”|’,
E M. 0cc107e10310 3e9 et 1¢6 4e7 18 BemdTeYGe10 se7 BB 0 c104e10 2¢9 3e9ffet 160 27 16 patazentcer0 17 | *
H

INS SC ST STB STM STF LS L1M L2M L3M MA MARMAWMRA
cp Me

U Metrics

mory Metrics

INS SC ST STBSTM STF LS L1M L2M L3M MA MARMAWMRA
cp M

U Metrics

emory Metrics

Figure 16: Performance events of GAPBS BFS and PR on NVIDIA
Grace for several graphs.

INS SC ST STB STM STF
CPU Metrics

LS L1M L2M L3M MA MARMAWMRA
M

lemory Metrics

3 aeo aeo e TEHFTETZ 1011 007" [3 i oo e s ol e seo o JEERER 1o 7]y
Jell Se8 4e8 2e8 lel29ellsel0 9e7 1 l4el14delldell3ellleloflel2 4e9 3e9 3e9 lel2lel2lell 4e8

7ell 3e8 2e8 3e8 9ellBell 7el0 35]72]2] EREI2e112e112e111e1l 79 [Bell 1e9 9e8 1e9 lel29ellselo Zefelz
el 7e0 37 des le120ent 1011 666 erioeniserscennseichld <es o9 4eo faseiasers 7657
61l se7 26 1es Bell7ellselo 6es | 2 EBE1c111e111e116e10 5e9 Pell 3e8 les des 9ellgelllell 18 12
‘ell 3e7 le6 9e7 7ell6ell6el0 le7 1 111111111 6e10 429 [Bell 3e8 1le8 3e8 BellBell7elo le8 = 1

INS SC ST STB STM STF LS L1M L2M L3M MA MARMAWMRA

CPU Metrics

Me

mory Metrics

Figure 17: Performance events of GAPBS CC and BC on NVIDIA
Grace for several graphs.

neighborhood benchmarks, due to same input graphs. Comparing
the Grace profiles of GAPBS with graph neighborhood benchmarks
(Figures 16 and 17, vs. 10), we observe comparable volumes of mem-
ory accesses (reads), nearly all stalls are backend stalls (waiting
on memory loads). Therefore, having better latencies across the

0
s

ein

Data Transfer (MB/s)
PSWN de2 | 3e2 iy

Instructions lel3
3e-1 60 le9 3e9 2e7

50

30

-20

-10

Total

2el2

own(R) own(W) otr(R) otr(W) LS

memory hierarchy (about 50% better in Grace relative to A64FX,
Fig. 2) is beneficial for graph workloads.

Impact of Inputs for Neighborhood Access

Impact of Inputs for GAPBS

S I S ol g e g g o2 8 8 8 8 @
N
£ R = 0975 " [N
5 .
S 0.8 H
£ £ 0950
3 B 3
g096 * £ 0925
3 . 2 o CCABaRX
< R A BCAG4FX
Sooa 8 oars B BFSAGAFX
§ < PRAGAFX
4 £ 0.850 0 CCGrace
Fos 3 o BCorace
® Grace 0.825 O BFsGrace
A AsaRX N PR-Grace
0.800
orkut orkut orkut orkut Uk uk ljour ljour bump orkut orkut orkut orkut uk Uk ljour fiour rgg
ljour bump rgg ljour bump rgg bump rgg rgg uk fjour rgg bump ljour rgg bump rgg bump bump

Input Graph Pairs

Input Graph Pairs.

Figure 18: Impact of graph inputs on the Grace and A64FX platforms
across Neighborhood Access benchmarks (left) and GAPBS (right).
‘We compare the performance events datasets (collected from Perf)
for distinct input graph pairs via the Pearson correlation coefficient

which measures linear relationships between the sets (0 implies no
correlation, whereas 1 indicates positive correlation).

3.22 Impact of input graphs The inherent structure of the graphs
can impact the overall performance, due to the load imbalance
across the available threads. In Fig. 18, we calculate the Pearson
correlation coefficient [6] between the subsequent CPU/memory
access profiles (considering the same events collected using Perf
on both the platforms as listed on Table 5, but does not distinguish

% Busy x10! # Cache Misses 1e12 Cycle Wait Ti) # Instructions lel2
Kmeans 250 19 4 9ell 2e10 6e7 4.0 6e9” 7e2 lel 5 Te-1 Data Transfer (MB/s) 9e: e6 lel2 dell
bl E 310 i 38 381 se 2a1 3 el 1o 36 e
Hotspot 52 5 Ze e e e-9 3e- e e e e e e
o 4 WU 0 5 e 4e8 2e -2 3e3 9e-1 1 8e-l €2 Ze 40000 F5¢
sovi 16 WEFMN 28 10 8 e 3e10 de 5e-2 3 Sel le2 e3 de e
12 280 2 e 3el0 1e! 35 3 del 6 e2 Se. e
2 e 7e9 1e 7e1 sel 3el e3 4 e
e 4e9 3e . e e e: e
. 051 e e e 35000 s
7 ; 5e2 3e2 e3 de
2 4 e2 1le:
T 30 § L2el] lel 2e2 2 2e2
. 3 7 Te2 &2
2 2 5 1e3 e3 30000
24 1 6 2 lel 6e2 e2
L % e s]
e e e e
B 2 25 30 963 2e3 = s
8 4 le2 4e2 le3 €. 25000
1 5 5 9 e4 e
U 8 7 e3 e
se-1 2 e2 e
T 2.0 o 7lel1 3611 eg e
& e e 3
e e e e:
16 oed e "20 4e3 3e3 3e3 e L4
2 El e 1 1 7e2 Se.
20 3 e e 15 7 4 de3 [uled
2 e 7e9 e 2e2 5e2 1le3 _9e2 -15000
W0 4 3 e 3e9 e 162 de2
4 e 2e9 e 5e2 le3 1e
6 2e9 de7 e el el 2e2 1le2
,,,,,,,,,,,,,,,,, lell le8 9e6 ‘10 | le2 le2 2e2 _ 2e2
) 9ell 2ell Se I B S L Tez ™ -10000
7 2 lel0 2e8 9e7 -10 2e3 1le3 8e2 2e3 |
4 2e10 o8 del Tel 32 4e2 2
5e9 8e6 e5 6e2 3el lel 3el
1) 2e9 el 2e-1 5e-1 5e2 7e2
2m 2 | e 3e10 e -0.5 8 2e3 4e3 5000
e 7e8 e 6el 6el 3 4
8 4 e 3e9 = 7e- 5 2 led led
cro 25 9 20 5 e 2e9 e 4e-3 lel 3e 3 6 8 le3 le3
wo 9 2 6 1e9 2e7 e 3e-2 Be-d 4e-2 2 4 le2 1le2
Herwa 12 [EEEE 16 L lell 2e8 e le6 6e-d 203 2el 2e3 § 6el 6el le2 3e2 lell 2e7 5el0 8e7 5ell L,
FPINT L1 L2 MEM Ls LM L2m PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) LS PF FP INT Total

Figure 19: Performance events of Rodinia mini-applications (per line) on Fujitsu A64FX (broken blue lines indicates NUMA node, for e.g., a

row on every NUMA node corresponds to a specific application).

NUMA regions) of Neighborhood Access and GAPBS scenarios
across pairwise input graphs. While quantifying the impact of in-
puts via simple linear relationships can be problematic, but the goal
here is to compare the performance footprints of multifarious input
graphs across the platforms (engaging all available processing cores/
threads). The results indicate a significant diversity between inputs
(for both benchmarks and applications) on the A64FX platform
particularly, as compared to Grace. Aside from the performance
differences due to the hardware capabilities, relatively a smaller
number of threads on A64FX (48 vs. 144 on Grace) accentuates the
load imbalance (each thread owns a fixed number of iterations re-
sembling vertices, but dissimilar number of edges). As the number
of vertices per thread reduces (due to greater processing cores on
Grace), so does the load imbalance. This effect can be observed in
Fig. 11 by comparing the respective patterns of 48 vs. 144 threads
performance of GAPBS applications under different inputs.

b Wl A64FX-FUJITSU GRACE-ARMCLANG(48 threads) [GRACE-ARMCLANG(144 threads)
10 .
% H % 1
- % 1 7 :
: é ? Vb
5 100 7 7 % 7 3
2 7 7 o 1
! % % o
il 7 7 W V|

o & & . B0 @ S © P

‘m\e'o“ N Y\o’é’qo o‘)b‘\o 6@6\\ 6"‘)§ *oc\‘ (’\os@ [CAGIING éé&x\"’

< P e
%’0& °

Figure 20: Performance of Rodinia mini-applications on A64FX
and Grace platforms.

3.2.3 Rodinia benchmarks Rodinia heterogeneous suite [5] com-
prises of several standalone benchmarks spanning a range of appli-
cation motifs, as discussed in §2.2. The baseline result is presented in
Fig. 20; aside from StreamCluster (SC), we observe about up to 10X
improvement in end-to-end performance on the Grace platform, as
compared to A64FX. Like the GAP kernels, we observe performance
saturation on Grace using all of the available 144 cores (see Fig. 20).

lel2
B 1e111e111e11 5¢9 de9 Pel21e10 8e7 1e102e122e124€10 Se6 ‘ 50

lell
PRl 12101e101e10 7e9 9e8JBel0 Ges 6e7 Ses 7e106e10 7e9 1e5 | 2
25

nw

B 1e111e111el1 669 3e9 Pel21e10 8e7 1e102e122e123e10 1e7 PIB122102e101€101e10 6eB6el0 Ges Se7 5e8 6el05e10 5e9 2e5

lel3 lell
EDE 212212 2¢12 1e12 4el0flel3 2e11 210 2e11 Tel31e139ell 4e8 ‘ ; 83814104210 4e101e10 Seflell 2e9 6eB 1e9 lelllell2el0 5e3 | 4
1

3

bp

EBEDe122e122¢12 1e12 4e10fle13 2e11 2610 2e11 16139612911 3e8 E8B) Ge9 6e9 6e9 le7 Seflell Bed ded 2e5 lelllellleld 2ed

lel: lel2
PIEISe115e115e11 1e112e1006e12 de9 29 4e9 6e126el26ell 7e8 ‘ 15 EQ¥I%e119e119e114e10 3e9jlel27el0 3e8 7el0lel28ell lell 2e6 | 3
10 2

05

PBEIse115e115e11 1e112e10Kel2 3e9 2e9 3e9 bel26el25ell le7 EBPle11 0611911 4e10 3e9flel2 710 3e8 7el0lel2lel2lell 1e6 | L

sradVl Hspot kmeans

sradv2

lel! lel3

PBElel16e116ell 3e9 lelgbel22e10 7e7 2e105e125e125e11 2e4 ‘ 7e12pSEPBEPISEPISE 3 10Re123610 669 3e102e122e122e11 5e9 | 2
v
1

X 15

3 10

2 PBEIsel13el13e11 1e8 26106612 8¢7 1e6 47 bel2Sel2sell ded 0 PSEPIEPREPREPEE 4c106e12 3610 5¢9 3e106el25€125€11 8e9
lel2 lel0

- 16e116e Lelgpell 4e9 269 4e9 3el1Zell3el0 6es | 19 g 1e10 268 2¢8 6e6 7e7flel0 6e7 2e6 8e7 3e9 29 9e8 7 |

b 3 25

G 2

seoBell 79 369 7e9 Jelizelndet0 3e8 O 2e10 99 3e6 37 27)9e9 e 6ed 2e8 00

lell

5 [aR1c102e101610 667 2e9pell de7 266 4e7 ZellZellzelo led | 7.5 INS SC ST STBSTM STF LS LIM L2M L3M MA MARMAWMRA

3 g 2 CPU Metrics Memory Metrics

I {Ble102e101e10 2¢7 1e9fpell 4e5 2e5 de5 3ell2ell2e10 2e4

INS SC ST STB STM STF LS LIM L2M L3M MA MARMAWMRA
CPU Metrics Memory Metrics

Figure 21: Performance events of Rodinia on NVIDIA Grace.

Also unlike the graph benchmarks and mini-applications, we ob-
serve different patterns in the A64FX performance profiles (Fig. 19),
such as very high reuse (due to loop blocking), higher floating-
point operation overheads (compared to integer operations) and
stalls due to memory accesses and instruction execution. However,
both GAPBS and Rodinia exhibits relatively similar data transfer
volumes (especially writes) across the NUMA regions.

On Grace, several Rodinia kernels such as CFD, SRAD and SC
exhibits high stalls, limiting the parallel efficiency, as shown in
Fig. 21. Due to the high capacity of LLC, we also observe maximum
reuse (and unbalanced memory access overhead) and minimal stalls
in LUD, depicting multiple orders of magnitude speedup on Grace
relative to A64FX. We also observe relatively high remote memory
accesses for some of the benchmarks such as HS, SC and CFD.
A64FX partitions the cache into sectors such that misses are only
restricted to a particular “sector”, with the intention to improve
the overall cache misses due to premature eviction of an entire
line. We observe a minor impact of the sector cache in reducing the
LLC cache misses by about 5% for some of the compute intensive
applications in Rodinia (e.g., BP, CFD, etc.); for the graph workloads,
we do not observe any particular evidence of improvement.

4 Concluding Remarks

In this paper, we provide a thorough quantitative analysis of
various HPC applications on two contemporary ARM-based multi-
processor platform — Fujitsu A64FX and NVIDIA Grace superchip.
We observed competitive performance on regular benchmarks such
as STREAM across the platforms, but for more irregular bench-
marking scenarios, NVIDIA Grace outperformed Fujitsu A64FX by
30-50% for a variety of input graphs. Moreover, considering more
involved data intensive application scenarios, the performance gap
between A64FX and Grace were significant, up to orders of mag-
nitude (with no code changes). Our high-level takeaways are as
follows:

e Regular application patterns such as streaming writes or nontem-
poral stores might benefit from platform optimizations such as
write-allocate evasion or elimination (available on both A64FX
and Grace), however they are not likely on the critical path in
applications (primarily used for initializing data structures), so
the outcome will depend on the specific application situation.
This option can detect simple benchmarking patterns, such as
STREAM, so more complex and irregular workload analysis is
mandatory.

e For irregular workloads such as graph analytics, the structure of
the input graph is quite relevant in determining the throughput.
However, more available threads can also reduce the overall load
imbalance due to the graph structure.

e Even irregular applications have regular patterns, having high-
capacity LLC is beneficial in optimizing reuse.

e A number of applications depend on integer pipeline throughput,
optimizing integer pipeline is as important as floating-point.

o For a number of data intensive applications, data exchange traffic
across the NUMA nodes can be significant, therefore, sustainable
bandwidth between NUMA nodes is crucial.

o A number of applications are unable to drive the available band-
width, using all the available cores might lead to starvation and
impact the parallel efficiency. This is partly due to the algo-
rithm implementation and limitations in the underlying pro-
gramming model. Adopting modern performance portability ab-
stractions [8] in developing memory bound applications can
potentially enhance the parallel efficiency.

Overall, our results quantitatively reinforces the immense poten-

tial of performance improvement for scientific applications across

contemporary high-performance ARM data center CPU platforms.

Acknowledgments

This work was supported by the US DOE Office of Science project
“Advanced Memory to Support Artificial Intelligence for Science”
at PNNL. PNNL is operated by Battelle Memorial Institute under
Contract DE-AC05-76RL01830. Research at PSU is supported by
National Science Foundation (NSF) grants #2211018, #1931531, and
#2008398.

References

[1] Fabio Banchelli, Joan Vinyals-Ylla-Catala, Josep Pocurull, Marc Clasca, Kilian
Peiro, Filippo Spiga, Marta Garcia-Gasulla, and Filippo Mantovani. Nvidia grace
superchip early evaluation for hpc applications. In Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region Workshops,
pages 45-54, 2024.

G

7

(8]

[10

[11

[12

(13]

(14]

[16]

(17]

[18

[20]

Scott Beamer, Krste Asanovic, and David Patterson. Direction-optimizing
breadth-first search. In SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages 1-10.
IEEE, 2012.

Scott Beamer, Krste Asanovi¢, and David Patterson. The gap benchmark suite.
arXiv preprint arXiv:1508.03619, 2015.

Andrew Burford, Alan Calder, David Carlson, Barbara Chapman, Firat Coskun,
Tony Curtis, Catherine Feldman, Robert Harrison, Yan Kang, Benjamin Michalow-
icz, et al. Ookami: Deployment and initial experiences. pages 1-8, 2021.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,
Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(ISWC), pages 44-54. Ieee, 2009.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jing-
dong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient.
Noise reduction in speech processing, pages 1-4, 2009.

Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for
shared-memory programming. IEEE computational science and engineering, 5(1):
46-55, 1998.

Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkin-
son, Codrin Popa, and Justin Salmon. Performance portability across diverse
computer architectures. In 2019 IEEE/ACM International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC), pages 1-13. IEEE, 2019.
Jens Domke. A64fx—your compiler you must decide! In 2021 IEEE International
Conference on Cluster Computing (CLUSTER), pages 736-740. IEEE, 2021.

Anne C Elster and Tor A Haugdahl. Nvidia hopper gpu and grace cpu highlights.
Computing in Science & Engineering, 24(2):95-100, 2022.

Jonathon Evans. Nvidia grace. In 2022 IEEE Hot Chips 34 Symposium (HCS),
pages 1-20. IEEE Computer Society, 2022.

Adrian Jackson, Andrew Turner, Michéle Weiland, Nick Johnson, Olly Perks, and
Mark Parsons. Evaluating the arm ecosystem for high performance computing.
In Proceedings of the Platform for Advanced Scientific Computing Conference, pages
1-11, 2019.

Yan Kang, Sayan Ghosh, Mahmut Kandemir, and Andrés Marquez. Impact of
write-allocate elimination on fujitsu a64fx. In Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region Workshops,
pages 24-35, 2024.

Satoshi Matsuoka. Fugaku and A64FX: the first exascale supercomputer and
its innovative ARM CPU. In 2021 Symposium on VLSI Circuits, pages 1-3. IEEE,
2021.

John D McCalpin. Stream benchmark. Link: www. cs. virginia. edu/stream/ref.
html# what, 22:7, 1995.

Larry W McVoy, Carl Staelin, et al. Lmbench: Portable tools for performance
analysis. In USENIX annual technical conference, pages 279-294. San Diego, CA,
USA, 1996.

Benjamin Michalowicz, Eric Raut, Yan Kang, Tony Curtis, Barbara Chapman,
and Dossay Oryspayev. Comparing openmp implementations with applications
across a64fx platforms. In International Workshop on OpenMP, pages 127-141.
Springer, 2021.

Tetsuya Odajima, Yuetsu Kodama, Miwako Tsuji, Motohiko Matsuda, Yutaka
Maruyama, and Mitsuhisa Sato. Preliminary performance evaluation of the
fujitsu a64fx using hpc applications. In 2020 IEEE International Conference on
Cluster Computing (CLUSTER), pages 523-530. IEEE, 2020.

Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya
Odajima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo
Miyoshi, et al. Co-design for a64fx manycore processor and” fugaku”. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 1-15. IEEE, 2020.

Harry Waugh and Simon McIntosh-Smith. On the use of blas libraries in modern
scientific codes at scale. In Driving Scientific and Engineering Discoveries Through
the Convergence of HPC, Big Data and AI: 17th Smoky Mountains Computational
Sciences and Engineering Conference, SMC 2020, Oak Ridge, TN, USA, August 26-28,
2020, Revised Selected Papers 17, pages 67-79. Springer, 2020.

	Abstract
	1 Introduction
	2 Benchmarks and Applications
	2.1 STREAM and Graph Neighborhood Accesses
	2.2 GAPBS and Rodinia

	3 Evaluations and Analysis
	3.1 Benchmarks
	3.2 Application Scenarios

	4 Concluding Remarks
	References

