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Abstract

ARM-based manycore CPU architectures are well-positioned to
provide the rising memory throughput requirements of modern
data intensive scientific applications in High Performance Comput-
ing (HPC). The Fujitsu A64FX CPU platform is based on the ARM
v8.2A architecture, and is the processor of the flagship Japanese
supercomputer - "Fugaku", which was previously ranked as the
#1 supercomputer in the world according to the Top500 list. The
Nvidia Grace superchip features 144 Neoverse V2 cores based on
the ARMv?9 architecture with 4x128b SVE2, providing exceptional
computational power. The chip supports up to 480GB of memory,
making it ideal for Al, machine learning, and scientific computing
workloads. In this paper, we conduct a thorough performance ex-
ploration of a variety of parallel bandwidth-sensitive benchmarks
and applications compiled with the native Fujitsu compiler on a
Fugaku A64FX compute node and ARM (LLVM) Compiler on an
NVIDIA Grace superchip compute node, engaging all the computa-
tional cores per cluster using OpenMP multithreading (assuming
the cores can drive the available bandwidth). Our ultimate goals
are to study the resource utilization of scientific applications and
benchmarks on A64FX and Grace superchip, considering graph
application scenarios ( GAP Benchmark suite) and eleven appli-
cation proxies from the Rodinia heterogeneous benchmark suite
(considering domains such as Data Mining, Bioinformatics, Fluid
Dynamics, Pattern Recognition, etc.). Through exhaustive perfor-
mance monitoring, we quantify the resource utilization of diverse
OpenMP-based HPC applications on both the Fujitsu A64FX and
the Nvidia Grace Superchip platforms.
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1 Introduction

Since the deployment of high-performance ARM multicore CPUs
(i.e., Fujitsu A64FX) on formerly #1 supercomputer in the world,
RIKEN Fugaku (circa 2020), there has been a number of high-end
energy efficient processor design roadmaps with ARM-based CPUs
(exhibiting 1 TB/s memory bandwidth, private caches and hundreds
of CPU threads), among cloud/hyperscaler and data center product
vendors. Most recently, NVIDIA™ released their first data center
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CPU, Grace, using a custom chip-to-chip interconnect (i.e., NVIDIA-
C2C) to weave two CPU modules into a “superchip”. We compare
Fujitsu A64FX and NVIDIA Grace superchip in Fig. 1, listing the
officially released performance numbers. Aside from being a larger
CPU chipset (144 cores in Grace vs. 48 cores in A64FX), Grace su-
perchip also offers a relatively large (117MiB/#NUMA node) shared
Last Level Cache (LLC), which compared to A64FX’s shared (per
NUMA node or core group) L2 cache is 15X larger.

Fujitsu AB4FX, FX1000 @ 2.2GHz
(custom u-arch, ARM v8.2-A, 512b SIMD)

NVIDIA Grace Superchip (ARM Neoverse V2
@ 3.2GHz, ARM v9-A, SVE2 4x128b SIMD)
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Figure 1: Fujitsu A64FX and NVIDIA Grace Superchip high-level
components (using publicly available information).

A number of prior works have discussed the role of the ARM
ecosystem in HPC, most recently laying out the architectural as-
pects of Fujitsu A64FX and NVIDIA Grace superchip, in the con-
text of scientific applications [1, 9-12, 14, 17-19]. A key design
criteria of these “data center” CPUs are to enhance the through-
put of memory-bound applications, which are ubiquitous in High
Performance Computing (HPC). As such, both A64FX and Grace
are capable of providing high instruction throughput, sustainable
memory bandwidth and low latencies across the memory hierar-
chies (corroborated through popular benchmarks), yet performance
footprints of myriad applications exhibit significant differences. In
Fig. 2, we capture the memory latency spectrum for strided data
transfers (as reported by LMBench [16]), corresponding to accesses
across the memory hierarchy on “data center” CPUs (A64FX and
Grace) vs. desktop CPU system, Apple M3. The impact of a rela-
tively large LLC is evident in delaying the latency spikes as the
data sizes increase (indicating data movement beyond private and
shared caches).

In this paper, we consider both regular and irregular applications
— while regular applications demonstrate fixed strides to access the
memory blocks and may effectively engage the available cores to
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Figure 2: Access latencies (using LMBench, stride=128) across the
memory hierarchy of Fujitsu A64FX, NVIDIA Grace and Apple M3.

drive bandwidth, irregular scenarios might demonstrate relatively
higher and unpredictable memory accesses and workload patterns.
We have deliberately excluded FLOPs-intensive applications and
benchmarks from our analysis, as scientific applications are leaning
towards becoming more data-intensive and sparse, requiring broad
set of optimizations to derive performance from future extreme-
scale architectures. Recent research investigated time spent on
Basic Linear Algebra Subprogram (BLAS) operations across several
applications to not exceed 25% of the total execution time [20], there-
fore, optimizing third-party linear algebra libraries may not yield
sustainable performance improvement. Our approach considers
benchmark evaluation (using STREAM and graph neighborhood ac-
cess benchmarks to study impact of contiguous vs. non-contiguous/
irregular writes) using various inputs followed by thorough profile-
driven application analysis, using recommended compilers, options
and profilers to extract the best performance from the individual
platforms. Since the #cores vary between the platforms, we have
a third configuration, which uses 48 cores on the NVIDIA Grace
platform to keep parity with Fujitsu A64FX. Our studies indicate
that most data intensive (especially irregular) applications benefit
from a deeper memory hierarchy including a large LLC, and effi-
ciencies in the load/store pipelines in processors can lead to free
performance when applications are ported from A64FX platform
to NVIDIA Grace superchip.

2 Benchmarks and Applications

We use standard HPC benchmarks and applications in our anal-
ysis, discussed in this section. The benchmarks incorporate the
fundamental data-access patterns present in parallel applications.
Most applications exhibit regular/contiguous access patterns, in
which data movement happens across distinct memory locations
at regular intervals, conducted by an iterative loop. On the other
hand, graph applications involve graphs, which are mathematical
structure analogous to a set comprising of points and lines; lines
form “edges” to join two arbitrary points in the set, implying some
type of relationship which can expressed via an attribute such as a
scalar (or vector) weight over an edge. Usually, data corresponding
to graphs is expressed by a hierarchical data structure, such as
Compressed Sparse Row (CSR) format, which requires two levels of
loop nesting to scan the edges corresponding to a vertex. This type
of range indexing leads to irregularities in memory accesses, as the
number of edges corresponding to a vertex may vary with diverse

input graphs (edge distributions across a range of input graphs is
shown in Fig. 3). We consider a multithreaded execution environ-
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Figure 3: Top 100K #edges distribution across vertices of graphs.

ment (using OpenMP) in which a portion of the loop iterations are
(statically) assigned to distinct processor threads. For our evalua-
tions, we have not updated any code, benchmark or application, and
present the results as-is. While it is practical to use a single metric
or Figure-of-Merit (FOM) for a benchmark, for an application or
even a mini-application, it is often intractable since different areas
of an application may utilize different capabilities of the underlying
processor. Therefore, we rely on visualizing performance profiles
to understand the overall impact on the system across applications
and inputs.

2.1 STREAM and Graph Neighborhood Accesses

STREAM benchmark [15] is commonly used to study the mem-
ory bandwidth of CPUs, by engaging all the processor cores to
perform contiguous reads/writes to/from distinct memory loca-
tions, and performing simple arithmetic operations with the data.
Additionally, we explore another benchmark to study irregular/
noncontiguous memory accesses, in the form of accessing the ver-
tex neighborhoods of multifarious real-world graphs (comprising of
a varied vertex-edge distributions), as depicted in Fig. 4, compared
with access patterns in STREAM. As a result of the variation in the
edges per vertex (owing to graph structure), if the loop over vertex
is parallelized (which is often the case in real graph applications),
there might be nontrivial load imbalance among the edges. Unlike

STREAM Graph Neighborhood Access

#ipragma omp parallel for #pragma omp parallel for
for i in LARGE SIZED ARRAY: for i in #Vertices:
a[i] = b[i] for j in #Neighbors[i]:
af[i] = b[j]
Figure 4: Distinct streaming access patterns: contiguous read/write
in STREAM vs. non-contiguous read—contiguous write in Graph
Neighborhood Access benchmark.

STREAM, memory access patterns of the graph neighborhood ker-
nels primarily consists of traversing a doubly-nested loop mandated
by the CSR representation of a graph. We use same set of graphs
on different applications running on the experimental platforms,
to study the effect of graph structure and application logic on the



execution footprints. Influenced by STREAM, we develop parallel
variants of copy, add and max kernels in the context of graphs
(referred as graph neighborhood access kernels); the copy kernel
copies the edge weights into an array, max collects the maximum
of the edge weights among the vertex neighborhood into an ar-
ray, whereas add accumulates the edge weights of a neighborhood
copying it into an array. We generate a random geometric graph
with good connectivity properties (dense clusters in the graph) in
memory for benchmarking purposes. Like STREAM, we report the
rate in MB/s for a kernel across a fixed number of iterations.

2.2 GAPBS and Rodinia

The GAP benchmark suite [3] consists of optimized parallel im-
plementations of common graph algorithms supporting a wide vari-
ety of scientific applications. We use four complex graph kernels in
our analysis: Breadth First Search (BFS), PageRank (PR), Connected
Components (CC) and Betweenness Centrality (BC). Breadth First
Search (BFS) performs level-by-level traversal of graphs. PageRank
(PR) iteratively computes the popularity score of the vertices in
a graph, by conducting repetitive sparse matrix-vector computa-
tions, such that the updated values are available immediately to
be adjusted in the current iteration. The CC benchmark performs
labeling of graph vertices according to their connected components,
which is a set of vertices linked together by a path. Betweenness
Centrality (BC) is about updating the scores of the vertices by com-
puting shortest paths from a subset of vertices, usually implemented
using several BFS traversals to approximate the scores.

Rodinia suite [5] comprises of several standalone mini-applications
representing a variety of scientific application domains. We chose
eleven mini-applications — Kmeans, Needleman-Wunsch (NW),
HotSpot (HS), SRAD (versions V1 and V2), Back Propagation (BP),
Leukocyte Tracking (LC), Stream Cluster (SC), CFD Solver (CFD),
LU Decomposition (LUD) and Heartwall Tracking (HW); with ap-
propriate input scenarios, as mentioned in Table 3. Kmeans is a tradi-
tional data mining application scenario that partitions datasets into
apre-defined set of clusters. Needleman-Wunsch (NW) is a dynamic
programming method used to determine optimal genome sequence
alignment. HotSpot (HS) consists of an iterative transient thermal
simulation kernel that solves a series of differential equations for
a block of temperatures. SRAD implements an image denoising
technique based on partial differential equations representing a dif-
fusion algorithm. Back Propagation is a classic Machine Learning
algorithm for training weights of a neural network—comprising of
the forward and backward phases. Leukocyte Tracking (LC) tracks
White Blood Cells (WBC) in blood vessels; WBCs are first detected
in an input video frame, which are subsequently tracked across
rest of the frames, by computing specific gradients for each pixel.
Stream Cluster (SC) performs online clustering for an input stream
of points. CFD Solver (CFD) solves 3-D Euler equation for compress-
ible flow, employing a finite volume formulation on unstructured
grids. LU Decomposition (LUD) is a popular linear algebra algo-
rithm for solving linear equations, by decomposing a matrix into
lower and upper triangular matrices to maximize parallel efficiency.
Heartwall Tracking (HW) uses image processing methods to track
the shape of mouse heart over a sequence of fixed-resolution ultra-
sound images.

3 Evaluations and Analysis

Testbeds Our testbed platforms are Fujitsu A64FX processor
node of the Fugaku system [14] and NVIDIA Grace superchip node
from Stony Brook University’s Ookami cluster [4]. We use the rec-
ommended platform compilers and environment settings, as listed
in Table 1. All the benchmarks and applications use OpenMP multi-
threading [7]. Since Grace superchip has 3x more CPU cores than

Table 1: Platform software details.

I I A64FX I GRACE
Compiler FUJITSU 4.10 ARMCLANG 24.04
-Kfast -Ofast
Options -mcpu=a64fx -mcpu=native
-Kopenmp -fopenmp
. OMP_PLACES=cores OMP_PLACES=cores
Affinity

OMP_BIND=spread
XOS_MMM_L_ARENA_LOCK_TYPE=0
XOS_MMM_L_HPAGE_TYPE=hugetlbfs

XOS_MMM_L_PAGING_POLICY=
demand:demand:demand

OMP_BIND=spread

Environment N/A

Fujitsu A64FX, we additionally include a 48-threads configuration
for Grace (selecting threads across the CPU sockets) in our baseline
performance comparisons, to match with 48-thread runs of A64FX.

Datasets and Input Parameters We use various real-world
graphs for the graph application scenarios in GAPBS. They are
listed in Table 2. Typically, graphs are chosen such that the input
size is greater than the Last Level Cache (LLC), to induce sufficient
memory accesses. We use the same graphs on both A64FX and
Grace platforms, although the latter can support larger graphs due
to 16X greater main memory.

Table 3 lists the input arguments for the Rodinia benchmarks.

Profiling metrics We compare end-to-end execution times (in
seconds) of the benchmarks and applications on a single Fujitsu
A64FX and NVIDIA Grace superchip node. However, execution
times alone does not convey the reasons behind the performance
variations between application versions on the different platforms.
Hence, we rely on systems profiling by studying the low-level per-
formance events to understand the impact on the underlying system.
Our profiling metrics consists of rates and unitless quantities char-
acterizing specific CPU instruction overhead and load/stores across
the memory hierarchy per NUMA node. Due to differences in the
platform profilers, we are able to sample data at a finer granular-
ity on A64FX platform (using Fujitsu Advanced Profiler, FAPP),
as compared to userspace metrics collected from the perf Linux
profiler on Grace superchip (enabling “—per-node” to aggregate
per-NUMA-node measurements). Profiling metrics of A64FX and
Grace are listed in Tables 4 and 5. We engage all the available cores
during performance profiling.

On NVIDIA Grace superchip, we focus on two vital performance
events: the volume of the memory accesses across the memory
hierarchy (caches and main memory) and the CPU pipeline stalls
(which corresponds to the wasted cycles, waiting for memory access
operations or decoding instructions to work on data). Complex
instructions can increase front-end stalls, whereas long-latency
memory operations increase backend-stalls, throttling the front-end.
FAPP on A64FX platform provides a more finer-grained details, such
as integer and floating-point related cycles, and instructions break-
up by functional units (i.e., integer, floating-point or prefetch).



Table 2: Characteristics of the input graphs.

Domain & Applied Benchmarks/Applications .
Graphs ‘ (G : Gr‘;‘;h Neighborhood Ke"l‘;els) #Vertices | #Edges | Max Deg. ‘
com-orkut social network(GN, GAPBS) 3M 234M 33K
Tgg_n_2_24_s0 random geometric(GN, GAPBS) T6M 132M 10
uk-2002 web crawl(GN, GAPBS) 18M 584M 194K
LAW/ljournal-2008 social network(GN. GAPBS) 5M 79M 20K
indochina-2004 web crawl(GN) ™ 194M 256K
VLSI/vas_stokes_4M semiconductor(GN) M 131IM K
VLSI/stokes semiconductor(GN) 11IM 349M 2K
Janna/Bump_2911 reservoir simulation(GN, GAPBS) 3M 128M 195

Table 5: NVIDIA Grace Profiling Metrics

CPU metrics

INS #CPU instructions

ST #Stalls across CPU pipelines

#Stalls in CPU backend (execution, memory)

Table 3: Rodinia kernels and input arguments.

‘ Application ‘ Domain ‘ Problem Sizes ‘
Kmeans Data Mining 819200 data points, 34 features, 512 clusters
Needleman-Wunsch (NW) Bioinformatics 81920 X 81920 data points with penalty of 10
HotSpot (HS) Physics Simulation 1024 X 1024 data points with 1,500,000 iterations
Back Propagation (BP) Pattern Recognition 65536 input nodes
SRAD_V1 Image Processing 502 X 458 image size with 100000 iterations
SRAD_V2 Image Processing 2048 X 2048 image size with 100000 iterations
Leukocyte Tracking (LC) Medical Imaging 219 X 640 pixels/frame
Stream Cluster (SC) Data Mining 655360 points, 256 di i
CFD Solver (CFD) Fluid Dynamics 0.2M elements
LU Decomposition (LUD) Linear Algebra 2048 X 2048 data points
Heart Wall Tracking (HW) Medical Imaging 609 X 590 pixels/frame

Table 4: Fujitsu A64FX Profiling Metrics

% Busy
FP Busy rate for floating point operation pipelines
INT Busy rate for integer operation pipelines
L1 Busy rate for primary cache
L2 Busy rate for secondary cache
MEM Busy rate for memory
#Cache Misses
LS #Load/store instructions
L1M L1 misses
L2M L2 misses
Cycle Accounting (secs.)

PF Stalls due to prefetch port busy
INT Stalls due to integer memory load
FP Stalls due to floating-point memory load
INT(L2) | Stalls due to L2 cache access for integer load
FP(L2) Stalls due to L2 cache access for floating-point load

Data Transfer (MB/s)
own (R) | Throughput of reads within NUMA node
own (W) | Throughput of writes within NUMA node
otr (R) Throughput of reads across NUMA nodes
otr (W) Throughput of writes across NUMA nodes

#Instructions

LS #Load/store instructions
PF #Prefetch instructions
FP #Floating point math and conversion instructions
INT #Integer operation instructions
Total All above plus misc. (predicate, branch, etc.)

3.1 Benchmarks

In this section, we compare the performance of STREAM (con-
tiguous regular access data streams) with the graph neighborhood
access kernels (demonstrates irregular noncontiguous data access
pattern).

3.1.1 STREAM:STREAM is memory-access intensive (we use 24GiB
input array), greater than 50% of the time is spent on memory ac-
cesses (moving data through the cache hierarchy), as shown in
Fig. 6, Grace profiles also corroborates this behavior of relatively
high memory reads than writes, and low cross socket traffic (Fig. 7).
Both FP and INT instruction pipelines are equally busy on A64FX
across the CMGs (up to 7% of overall), suggesting most of the in-
structions are load/store.

TB
S preventing instruction dispatch in frontend
STF #Stalls in frontend due to lack of instructions to issue
sc #Stalled cycles in backend (execution, memory)

preventing instruction dispatch in frontend
STM | #Stalled cycles in backend due to memory load
Memory metrics

LS #Load/store counts

LiM L1 misses

L2M L2 misses

L3M L3 misses

MA #Memory accesses (due to load/stores)
MAR | #Memory reads
MAW | #Memory writes

MRA | #Memory accesses across NUMA nodes
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Figure 5: Performance of STREAM (GB/s, higher is better).
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Figure 7: Performance events of STREAM on Grace (a row corre-
sponds to measurements on a NUMA node, 2 NUMA nodes in Grace).

ADD/TRIAD moves about 30% more data than COPY/SCALE, so
the bandwidth numbers are slightly better for ADD/TRIAD rela-
tively, as shown in Fig. 5. We also observe that SCALE/TRIAD is
about 20% worse than COPY/ADD on A64FX. Since pointers can
potentially reference overlapping areas, some software pipelining
optimizations are not turned on by default, causing the disparity.
Upon passing -Krestp=arg (resolves pointer aliasing or segrega-
tion), such optimizations can be utilized (we only observed a major
impact upon enabling this option for STREAM with the Fujitsu
compiler, but not rest of the scenarios). Grace exhibits about 30%
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Figure 9: Performance events of graph neighborhood benchmarks on Fujitsu A64FX for various graphs (a row corresponds to

measurements on a NUMA node, 4 NUMA nodes in A64FX).

better overall bandwidth than A64FX: this can be due to the auto-
matic enabling of the write streaming mode in Grace, which can
prevent unnecessary cache reads when a cache line would be writ-
ten anyways. In comparison, the Fujitsu compiler can enable the
write streaming mode via the zero-fill (“-kzfill”) compiler option,
which zeroes a cache line using a special instruction (i.e., DC ZVA)
upon detecting a streaming write operation. Enabling zero-fill, we
observe maximum STREAM bandwidth on A64FX to be around
3% less than the full Grace system in Fig. 5. However, our prior
work has shown limitations with implicitly or explicitly enabling
zero-fill beyond simple streaming write scenarios [13]. Therefore,
we exclude zero-fill from the rest of our evaluations.
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Figure 10: Performance events of graph neighborhood benchmarks
on NVIDIA Grace superchip for various graphs (a row corresponds to

measurements on a NUMA node, 2 NUMA nodes in Grace superchip).

3.1.2  Graph Neighborhood Access: Instead of considering contigu-
ous reads and writes for bandwidth measurement (best case, i.e.,
STREAM), the graph neighborhood access benchmark considers
traversing an entire graph in parallel (each thread owns fixed num-
ber of iterations over the vertices of a graph and performs some

o
5

o
5

Gon

operations in proportion to the #edges, edge-distribution across
vertices being dissimilar, see §2.1). This type of traversal leads to ir-
regular/noncontiguous reads. Inspired from STREAM, we consider
COPY, ADD and MAX variants of the graph benchmark which
works on the edges of a graph incurring the same number of arith-
metic operations per edge-iteration as STREAM. The baseline per-
formance in Fig. 8 indicates major performance variations across
the graphs, attributed solely due to the structure of the graphs
(as shown in Fig. 3). Also, comparing the STREAM profiles with
graph neighborhood access (for e.g., Figures 6 vs. 9), the impact
of load imbalance is evident: integer/floating-point stalls and in-
structions are notably higher than those in STREAM indicating
load imbalance and complex indexing. Differences between A64FX
and Grace are also apparent: in a few cases we observe the per-
formance of the graph neighborhood benchmark on Grace to be
comparable with STREAM, whereas on A64FX, the best outcome
was about 50% of the STREAM bandwidth. However, we observe
similar performances on Grace and A64FX for two graphs—ljournal
and indochina, both depicting highly irregular edge distributions
(Fig. 3) despite relatively high maximum degrees. Irregular degree
distributions can lead to severe load imbalances.

The A64FX performance profiles in Fig. 9 can explain the ob-
served performance differences between ljournal/indochina and the
rest. Both ljournal/indochina exhibits higher stalls due to prefetch-
ing, increased load/store operations and relatively high cross-NUMA-
node traffic. These observations also match the Grace performance
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Figure 11: Performance of GAP benchmarks (GAPBS) on A64FX and Grace platforms.
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Figure 12: Performance events of GAPBS(BFS) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

events, as shown in Fig. 10, which depicts significantly high memory
accesses compared to other inputs.

For uk-2002 input, both A64FX and Grace demonstrate better
performance relative to other inputs; uk-2002 demonstrates rela-
tively uniform degree distribution (standard deviation of #edges/
vertex is about 13), and as a result a balanced workload across the
NUMA nodes (as shown in Figures 9 and 10), leading to better
stalls profile (stalls indicate waiting for data either from memory
or cache, lower is better); inputs bump and rgg also demonstrates
better bandwidth on Grace, due to uniform degree distributions.
Additionally, bump demonstrates significantly better performance
on Grace as compared to A64FX. On Grace, bump demonstrates
the least cross-NUMA domain memory accesses among the other
inputs, which is not observed in A64FX. Another reason behind
greater than about 30% improved performance on Grace compared
to A64FX as shown in Fig. 8 can be attributed to the large capac-
ity of LLC (234MiB). In Fig. 6, we observe relatively comparable
L1 and L2 cache misses, whereas on Grace, L2 cache misses can
be seen to be two or three orders of magnitude lower in compari-
son (Fig. 10), indicating significant data reuse (L3 is unified, so the
reported numbers might be higher than private/separate L2).

3.2 Application Scenarios

We discuss the application evaluations in this section, starting
with the GAP benchmark suite in §3.2.1, which consists of optimized
reference implementations of several key graph algorithms. Next,
in §3.2.3 we discuss several benchmarks from the Rodinia suite,
covering diverse application domains.
3.2.1 GAP Benchmark Suite The GAP benchmark suite [3] aims
to standardize benchmarking of graph analytics, by providing a
specification and high-performance modern C++-based reference
shared-memory implementations of common graph algorithms
with a wide variety of applications. We use four graph kernels from
the benchmark: Breadth First Search (BFS), PageRank (PR), Con-
nected Components (CC) and Betweenness Centrality (BC). The
baseline results are shown in Fig. 11 against five input graphs (Ta-
ble 2); increasing the #threads does not improve the performance

significantly, but we still observe about up to 10X better perfor-
mance on Grace than A64FX.

GAP implements an optimal “direction-optimizing” method of
BFS [2] which combines the classic top-down BFS with a bottom-
up step that allows a vertex to check whether its parent is in the
“frontier” list of unvisited vertices (instead of a vertex checking
its adjacent vertices, akin to a parent looking for a child). The
amount of parallelism is proportional to the size of the frontier,
as a result BFS on certain graphs can suffer from starvation with
increased number of threads. PageRank (PR) iteratively computes
the popularity score of the vertices in a graph by implementing
sparse matrix-vector computations, employing OpenMP nested
parallelism which may not be supported by the underlying runtime
due to overheads associated with oversubscription, leading to minor
improvements between 48 and 144 threads on Grace for various
inputs. The CC benchmark performs parallel labeling of the graph
vertices according to their connected components, which is a set
of vertices linked together by a path. Betweenness Centrality (BC)
is about updating the scores of the vertices by computing shortest
paths from a subset of vertices. This is usually implemented using
multiple BFS traversals to approximate the scores, and uses atomic
operations to track possible paths.

Profiling analysis of GAPBS considers different NUMA nodes
and input graphs, measurements of different graphs are stacked
per NUMA node (depicted by broken blue lines), as shown in Fig-
ures 12, 13, 14 and 15. The A64FX profiles indicates most of the
overhead in integer operations (despite floating-point instruction
throughput being higher) and traffic across the NUMA nodes. Ac-
cordingly, corresponding Grace profiles (Figures 16 and 17) also
points to the traffic across the NUMA nodes and relatively high
backend stalled cycles. However, the data movement across NUMA
nodes for A64FX is higher than that of Grace (in the A64FX profiles,
data transfer is represented in MB/s, so the numbers should be
multiplied with 10° to roughly compare with corresponding Grace
memory metrics), and relatively less misses in the cache hierarchy
led to improved end-to-end performance. Also, the cache behavior
and the prefetch instructions of GAPBS are comparable to the graph
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Figure 13: Performance events of GAPBS(PR) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).

o # Cache Misses 1e11 Cycle Wait Time(s) Data Transfer (MB/s) x10? # Instructions 1e12
k" 3e8 les SEINEREN I s L3l 9 zel el L, 3ell 7e6 7e6
| 7ell  [EER 1e8 . . Sel  3el  del _ Sel : 7ell 9e6 PIN 2c12 |
7 2e11 2e8 5e7 6 le-4 [1el 5e-3 EEQ 1e2 1e2 1e2 1e2 2ell 7e6 5e6 7ell 2.0
5e8 9e7 1 6 4e3 2el el 3ell 6e6 9e6 PN
6 2e1l 4e8 de7 5 2 40 381 lel  2el _ 3el 1.0 2ell__6e6 7e6__8ell
7 4e10 268 268 3 Zel 8 2e1 261 46107566 2637 Tell
3 4e10 2e8 1e8 lel 4el 2el Sel Sel 4e10  6e6 2e3 2ell 15
2 5 3e10 1le8 5e7 el 08 3el0 6e6 2e3  lell .
7 4e10 5e8 8e7 7 LIl 8e-2 30  4el  lel  3el . 4el ’ 4e10 5e6 2e3  lell
4 " 3e10 7e7 3e7 3el el 8 2el _ 3el 3el0__5e6 2e3__lell
7 4610 3e8 2e8 3 1 7 Zel 7 261 Zel 46107566 2e3 " Tell
3 4e10 2e8 1e8 de-4  2el 2el. 5e-3 3el  2el [5el5el -0.6 4e10  6e6 2e3  lell -1.0
4 -3 3el0 le8 5e7 6e-4 [2el 3e-3 EEIM le-2 -20 4el 3el0 6e6 2e3  1lell
7 4e10 5e8 8e7 > 5 ES ce-2 4el 9 3el el 2e10  5e6 2e3  lell
4 L 3el0 7e7 3e7 EIN 8e-2 2el 8 2el 2el -0.4 3el0__5e6 2e3  lell
7 1610 768 Te e 79 76l 7 Tel " "Zel 46107666 2e37Iell | o5
3 4e10 2e8 1e8 . de-4  1el 7e-3 “10  3el  2el [del del 4e10  6e6 2e3  lell
4 -1 3el0 2e8 5e7 5e-4 | 2el Sel [ELEE} 4el 202 3el0 6e6 2e3 1lell
7 4e10 5e8 8e7 1 6 4e-3 [EBN 8e-2 4el  lel  3el  4el - 4e10 5e6 2e3  lell
4 3e10 7e7 3e7 8e-3 3e-2 REIINN 9e-2 3el 8 2el  3el 3el0 5e6 2e3 lell
L2 Ls LM L2M PF INT FP INT(L2FP(L2) own(R) own(W) otr(R) otr(W) Ls PF INT Total

Figure 14: Performance events of GAPBS(CC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).
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Figure 15: Performance events of GAPBS(BC) on Fujitsu A64FX for several graphs (broken blue lines indicates NUMA node).
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Figure 16: Performance events of GAPBS BFS and PR on NVIDIA
Grace for several graphs.
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Figure 17: Performance events of GAPBS CC and BC on NVIDIA
Grace for several graphs.

neighborhood benchmarks, due to same input graphs. Comparing
the Grace profiles of GAPBS with graph neighborhood benchmarks
(Figures 16 and 17, vs. 10), we observe comparable volumes of mem-
ory accesses (reads), nearly all stalls are backend stalls (waiting
on memory loads). Therefore, having better latencies across the

0
s

ein

Data Transfer (MB/s)
PSWN de2 | 3e2 iy

# Instructions lel3
3e-1 60 le9 3e9 2e7

50

30

-20

-10

Total

2el2

own(R) own(W) otr(R) otr(W) LS

memory hierarchy (about 50% better in Grace relative to A64FX,
Fig. 2) is beneficial for graph workloads.
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Figure 18: Impact of graph inputs on the Grace and A64FX platforms
across Neighborhood Access benchmarks (left) and GAPBS (right).
‘We compare the performance events datasets (collected from Perf)
for distinct input graph pairs via the Pearson correlation coefficient

which measures linear relationships between the sets (0 implies no
correlation, whereas 1 indicates positive correlation).

3.22  Impact of input graphs The inherent structure of the graphs
can impact the overall performance, due to the load imbalance
across the available threads. In Fig. 18, we calculate the Pearson
correlation coefficient [6] between the subsequent CPU/memory
access profiles (considering the same events collected using Perf
on both the platforms as listed on Table 5, but does not distinguish
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Figure 19: Performance events of Rodinia mini-applications (per line) on Fujitsu A64FX (broken blue lines indicates NUMA node, for e.g., a

row on every NUMA node corresponds to a specific application).

NUMA regions) of Neighborhood Access and GAPBS scenarios
across pairwise input graphs. While quantifying the impact of in-
puts via simple linear relationships can be problematic, but the goal
here is to compare the performance footprints of multifarious input
graphs across the platforms (engaging all available processing cores/
threads). The results indicate a significant diversity between inputs
(for both benchmarks and applications) on the A64FX platform
particularly, as compared to Grace. Aside from the performance
differences due to the hardware capabilities, relatively a smaller
number of threads on A64FX (48 vs. 144 on Grace) accentuates the
load imbalance (each thread owns a fixed number of iterations re-
sembling vertices, but dissimilar number of edges). As the number
of vertices per thread reduces (due to greater processing cores on
Grace), so does the load imbalance. This effect can be observed in
Fig. 11 by comparing the respective patterns of 48 vs. 144 threads
performance of GAPBS applications under different inputs.
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Figure 20: Performance of Rodinia mini-applications on A64FX
and Grace platforms.

3.2.3 Rodinia benchmarks Rodinia heterogeneous suite [5] com-
prises of several standalone benchmarks spanning a range of appli-
cation motifs, as discussed in §2.2. The baseline result is presented in
Fig. 20; aside from StreamCluster (SC), we observe about up to 10X
improvement in end-to-end performance on the Grace platform, as
compared to A64FX. Like the GAP kernels, we observe performance
saturation on Grace using all of the available 144 cores (see Fig. 20).
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Figure 21: Performance events of Rodinia on NVIDIA Grace.

Also unlike the graph benchmarks and mini-applications, we ob-
serve different patterns in the A64FX performance profiles (Fig. 19),
such as very high reuse (due to loop blocking), higher floating-
point operation overheads (compared to integer operations) and
stalls due to memory accesses and instruction execution. However,
both GAPBS and Rodinia exhibits relatively similar data transfer
volumes (especially writes) across the NUMA regions.

On Grace, several Rodinia kernels such as CFD, SRAD and SC
exhibits high stalls, limiting the parallel efficiency, as shown in
Fig. 21. Due to the high capacity of LLC, we also observe maximum
reuse (and unbalanced memory access overhead) and minimal stalls
in LUD, depicting multiple orders of magnitude speedup on Grace
relative to A64FX. We also observe relatively high remote memory
accesses for some of the benchmarks such as HS, SC and CFD.
A64FX partitions the cache into sectors such that misses are only
restricted to a particular “sector”, with the intention to improve
the overall cache misses due to premature eviction of an entire
line. We observe a minor impact of the sector cache in reducing the
LLC cache misses by about 5% for some of the compute intensive
applications in Rodinia (e.g., BP, CFD, etc.); for the graph workloads,
we do not observe any particular evidence of improvement.



4 Concluding Remarks

In this paper, we provide a thorough quantitative analysis of
various HPC applications on two contemporary ARM-based multi-
processor platform — Fujitsu A64FX and NVIDIA Grace superchip.
We observed competitive performance on regular benchmarks such
as STREAM across the platforms, but for more irregular bench-
marking scenarios, NVIDIA Grace outperformed Fujitsu A64FX by
30-50% for a variety of input graphs. Moreover, considering more
involved data intensive application scenarios, the performance gap
between A64FX and Grace were significant, up to orders of mag-
nitude (with no code changes). Our high-level takeaways are as
follows:

e Regular application patterns such as streaming writes or nontem-
poral stores might benefit from platform optimizations such as
write-allocate evasion or elimination (available on both A64FX
and Grace), however they are not likely on the critical path in
applications (primarily used for initializing data structures), so
the outcome will depend on the specific application situation.
This option can detect simple benchmarking patterns, such as
STREAM, so more complex and irregular workload analysis is
mandatory.

e For irregular workloads such as graph analytics, the structure of
the input graph is quite relevant in determining the throughput.
However, more available threads can also reduce the overall load
imbalance due to the graph structure.

e Even irregular applications have regular patterns, having high-
capacity LLC is beneficial in optimizing reuse.

e A number of applications depend on integer pipeline throughput,
optimizing integer pipeline is as important as floating-point.

o For a number of data intensive applications, data exchange traffic
across the NUMA nodes can be significant, therefore, sustainable
bandwidth between NUMA nodes is crucial.

o A number of applications are unable to drive the available band-
width, using all the available cores might lead to starvation and
impact the parallel efficiency. This is partly due to the algo-
rithm implementation and limitations in the underlying pro-
gramming model. Adopting modern performance portability ab-
stractions [8] in developing memory bound applications can
potentially enhance the parallel efficiency.

Overall, our results quantitatively reinforces the immense poten-

tial of performance improvement for scientific applications across

contemporary high-performance ARM data center CPU platforms.
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