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Abstract
Memory hierarchy often represents a significant performance bot-
tleneck in modern computing systems. A promising direction to
mitigate this bottleneck is through HW/SW coordination at the
system level. However, many existing solutions require changes
to legacy programming paradigms, such as ISA extensions, and
often provide specialized optimizations limited to specific modules
or policies within the memory hierarchy. In this work, we intro-
duce InterStellar, a HW/SW co-design methodology that overcomes
these limitations. InterStellar enables the design of a stream-aware
memory controller that dynamically adapts its scheduling andmem-
ory management policies while proactively batching future stream
accesses from off-chip memory. The design is optimized not only
for performance, but also for energy efficiency and bandwidth uti-
lization. On systems with eight RISC-V cores, InterStellar achieves
significant end-to-end speedup compared to a commercial off-the-
shelf (COTS) memory controller: up to 2.72× for PolyBench, 1.84×
for HPCG, 1.24× for Rodinia, 1.47× for Parboil, and 1.29× for the
Phoenix suite.

CCS Concepts
•Hardware→Memory and dense storage;Hardware-software
co-design; • Computer systems organization→ Parallel archi-
tectures.
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Hardware/Software Co-Design, DRAM, Scheduling, Intelligent Sys-
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1 Introduction
Five main observations motivate this work. We build the logical
arguments for this work sequentially through these observations
as follows. Observation 1: Memory bottleneck. While there have
been significant advancements in processing capabilities of com-
puting systems, one critical bottleneck that continues to impede
the overall system performance is the memory hierarchy [1–4].
For instance, despite the substantial increase in the Dynamic Ran-
dom Access Memory (DRAM) capacity over the past two decades

[5, 6], the reduction in DRAM access latency remained marginal [7–
10]. The impact of this bottleneck is further exacerbated with the
increased demand for memory bandwidth and low-latency require-
ments from modern applications (e.g. machine learning and artifi-
cial intelligence). Comprising several shared resources, the memory
hierarchy is prone to contention among different processing ele-
ments [11], while off-chip access latency can extend to hundreds
of cycles [12, 13].

Observation 2: Lack of Hardware/Software (HW/SW) coor-
dination. Modern Commercial off-the-shelf (COTS) architectures
and a significant portion of the extensive architecture research
works in the past decades have focused on solutions that satisfy
two criteria: 1) software-obliviousness: hardware and software only
communicate through the dictated ISA contract, and 2) hardware
is built mainly for general-purpose. For example, the whole mem-
ory hierarchy is built with the locality concept at the individual
requests basis through the memory (e.g. load/store) instructions
and in most cases memory components (e.g. schedulers/arbiters)
have no notion of issuing cores, their criticality, nature of the con-
text or requirements. Despite its advantages, this paradigm leaves
significant performance opportunities on the table with all hard-
ware optimizations being best-effort (and in many times specula-
tive) based on local information only; mostly current instruction
window scope. Therefore, several recent works argued for utiliz-
ing software-driven knowledge to optimize the memory hierarchy
[14, 15] including prefetchers [16–23], cache data placement, cache
replacement policies [15, 24], and cache management [25–28].

Observation 3: Narrow scope of customized HW/SW solu-
tions. Despite the performance improvements shown by these
efforts, they provide a specialized solution that is limited to optimiz-
ing a specific module or policy within the memory hierarchy. Given
the high upfront cost of a new HW/SW interface, it is unrealistic
from industry perspective to add a new interface for each special-
ized memory optimization [24]. Thus, a general HW/SW interface
is vital for adoption. For memory, this interface should enable the
software to expose richer semantics about memory access patterns
to the hardware modules in the hierarchy. In turn, these modules
can use this information to intelligently adapt their decisions and
policies to cater for the performance opportunities at hand.
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Observation 4: Streams as a low-cost opportunity for richer
semantics. On the quest for a non-intrusive yet general enough
approach for such richer interface, we find the particular idea of
memory streams is quite promising. In a non-formal definition, a
memory stream consists of recurring patterns of memory access,
typically resulting from loops and nested loops. Several papers have
explored memory streams as a richer memory representation [21,
22, 29–33]. However, all of them focus on the cache hierarchy, not
the main memory. Also, they all require ISA extensions. Finally,
excluding the works focusing on different computing paradigms
such as in/near memory computing [32, 33], most of these works
focus solely on a single memory policy; namely, prefetching.

Observation 5: Memory policies cooperation. In this paper,
we take a different direction. Instead of leveraging the stream in-
formation to guide cache prefetching [21–23] or even doing the
computation at Level 3 cache (L3 cache) [32, 33], we use the stream
information outside of the cache hierarchy at thememory controller
(MC) to guide its DRAM management policies (namely, scheduling
and DRAM row management), while also proactively fetching the
stream data from the off-chip memory. Fusing the stream fetching
with the MC policies offer several benefits as we detail in Section 3.

To this end, we propose in this paper InterStellar as a stream-
based HW/SW co-design methodology. The detailed InterStellar’s
methodology is presented in Section 4. We also present a novel
intelligent MC solution that leverages the software provided infor-
mation about streams through InterStellar to optimize the fetching
decisions and degree, the request scheduling, and the DRAM row
management policy. The detailed architecture of the proposed intel-
ligentMC is also illustrated in Section 5. The implementation details,
including compiler modifications and hardware cost, are detailed
in Section 6. The system considerations are presented in Section 7,
while the experimental environment is outlined in Section 8. De-
tailed evaluation is illustrated in Section 9. Our gem5 results show
that applying InterStellar in an 8-core setup improves performance
by up to 2.72x, 1.84x, 1.24x, 1.47x, and 1.29x for PolyBench, HPCG,
Rodinia, Parboil, and Phoenix, respectively.

2 Background
2.1 DRAM Operation
DRAM consists of multiple banks that can be accessed nearly simul-
taneously enhancing memory system performance. Each DRAM
bank is a two-dimensional grid of cells arranged in rows and columns.
Accessing data from a row loads it into sense amplifiers function-
ing as a small cache within each bank. This is known as the row
buffer or DRAM page. Row hits are the accesses to data in an opened
row buffer. They need only to access the requested columns from
the row buffer through a CAS command. Therefore, they exhibit a
lower access latency known as the column latency (𝑡𝐶𝐿) according
to the JEDEC DRAM standard [5]. In contrast, accessing rows not
in the row buffer requires three prior steps. 1) Precharging the
sense amplifiers with a PRE command needs row precharge cycles
(𝑡𝑅𝑃 ). 2) Activating the new row with an ACT command exhibts
row-to-column delay cycles (𝑡𝑅𝐶𝐷 ). 3) Issuing a CAS command to
read/write from/to the requested columns. This scenario is known
as row conflicts and incur higher access latency: 𝑡𝑅𝑃 + 𝑡𝑅𝐶𝐷 + 𝑡𝐶𝐿 .
If the row buffer of a bank does not have any data (for example

initially after power-on or after a DRAM refresh operation), the
bank is referred to as idle and accessing it is a row miss. A row miss
only needs the ACT and the CAS commands, so it incurs a latency
of 𝑡𝑅𝐶𝐷 + 𝑡𝐶𝐿 .
DRAM page policies define how a MC manages DRAM pages.
There are three widely used DRAM page policies:
1) Opened Page Policy. The MC keeps the row buffer open after
access. If a subsequent request needs data from the same row, it is
accessed quickly. This approach works well for sequential data but
inefficiently for poor-locality data.
2) Closed Page Policy. This policy automatically precharges the
row after each read and write, closing the page regardless of row
misses or hits. It offers predictable latency and is efficient when
conflicts dominate access patterns. However, it fails to capitalize
on the locality of sequential accesses.
3) Commercial-Off-the-Shelf (COTS) Page Policy. It dynam-
ically switches between open and close policies based on the ob-
served access patterns. By tracking hit/miss rates in DRAM banks,
it speculates whether to keep the row open or close. It is widely
used in modern COTS MCs [34–39].

2.2 Data Streams
A stream refers to a foreseeable sequence of memory access pat-
terns that can be vectorized [29]. It represents a structured pattern
of data flow, facilitating efficient data exchange and processing [23].
There are two common stream types. 1) A direct stream, which
is defined by an access size (size of the individual data element
accessed in memory), stride (size between consecutive accesses),
and number of strides. In its simplest format, a direct stream can be
represented in the form of A[i]. A direct stream generally exhibits
a high locality memory access pattern with predictable addresses.
This represents a huge opportunity for intelligent hardware opti-
mizations, if such information is conveyed from the software layer.
Direct stream data processing is commonly employed in diverse
fields such as media streaming, big data analytics, financial services,
machine learning and AI, and supply chain management [40].
2) An indirect stream, which derives its memory addresses from
the data entry of another stream (e.g. in the form of A[B[i]]). The
data from the originating stream can be interpreted either as an
offset from a base address or as a pointer value. Indirect streams
have the capability to be linked together in chains, allowing the
creation of complex multi-indirect access patterns. (eg. A[B[C[i]]]).
Such indirection is common on graph analytics, machine learning,
and other sparse linear algebra-based applications [41]. Indirect
streams can exhibit either high or poor locality characteristics. By
accurately representing the stream, it had been shown also that is
possible to develop efficient hardware solutions for data-centric
applications, such as the specialized streaming cores and accelera-
tors [23, 42–44]. Although the approach can be generalized to other
stream types (ex: pointer chasing, trees, and graphs), in the current
work we focus only on the direct and indirect streams. Actually,
other data structure access patterns can be reduced to either direct
streams or indirect streams. For example, linked lists often follow a
direct stream pattern when traversed, provided that the memory is
not fragmented.
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3 Motivation
3.1 Bridging Gaps Beyond Traditional

Prefetching
Hardware prefetchers (HWPs) have long served as a practical so-
lution for mitigating memory latency by speculatively fetching
data based on observed access patterns. While effective for many
workloads with regular locality, our experiments reveal scenarios
where their underlying assumptions become limiting, exposing
a gap for new strategies. In particular, we identify several recur-
ring bottlenecks that arise across a variety of memory-intensive
benchmarks (BMs), each highlighting specific limitations in how
traditional prefetchers interact with system-level resources such
as caches, and MCs. We illustrate these challenges through repre-
sentative workloads exhibiting diverse access patterns and system
configurations. Despite being accurate, conventional prefetching
mechanisms can introduce several system-level bottlenecks. The
key limitations we observe are summarized below:

(1) Limited Miss Status Holding Registers (MSHR) Ca-
pacity:MSHRs track outstanding memory misses in non-
blocking caches. Once they are full, further memory re-
quests—prefetch or demand—must stall, limiting memory-
level parallelism even if the MC has available capacity.

(2) Limited DRAM Read Queue: When the read queue at
the MC becomes full, both prefetch and demand requests
experience delays, creating memory-level backpressure re-
gardless of prefetch accuracy.

(3) Multi-Cluster Prefetch Contention: In multi-cluster sys-
tems, each with its own prefetcher, independent memory
streams may target shared DRAM banks or rows. Without
coordination, this traffic causes row conflicts, bank con-
tention, and delays at the MC. This occurs even in single-
cluster multi-core systems.

These bottlenecks also give rise to several observable artifacts
that impact overall system behavior and efficiency:

(1) Cache Pollution: Prefetched data that is not used in time
may evict useful demand data, reducing cache hit rates and
increasing memory traffic.

(2) Inefficient Use of Memory Bandwidth: When the MC’s
read queue is full, prefetch requests continue to flow from
the LLC, consuming on-chip interconnect without being
serviced, leading to wasted bandwidth.

(3) Elevated DRAM Energy Consumption: Prefetches that
cause frequent row activations and precharges— particu-
larly when they lead to row conflicts or are dropped— can
increase DRAM energy consumption.

To support these arguments, we now turn to quantitative obser-
vations from our experimental setup. We run three experiments
using an 8-core Out-of-Order (OoO) RISC-V system configured
with the baseline parameters in Section 8, with minor adjustments
per experiment to isolate specific bottlenecks. Experiment 1 uses
ideal MSHRs (512 entries) but a realistic memory controller with 32-
entry read queue, sweeping both the HWP degree and queue size.
Experiment 2 inverts this: it provisions an ideal 2048-entry read
queue while limiting MSHRs to a practical 64 entries. Experiment
3 To assess the efffect of DRAM contention, we experiment two
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Figure 1: Speedup of InterStellar without HWP against COTS
with Stream HWP using experiment 1 setup.

sub-cases: 1) Eight-clusters, each with its own Last-Level Cache
(LLC) and stream prefetcher. 2) Direct stream BMs that access the
DRAM in large stride. Both cases would generate more conflicts.
To isolate other bottlenecks, a setup with ideal MSHRs (512), and
MC read queue size (2048) is established.
Selected Benchmarks
We selected a subset of BMs— gesummv, dscals, and srad_v2 that
collectively cover different characteristics of memory behavior.
gesummv captures low-compute, memory-intensive execution with
multiple streams; dscals from LAPACK allows us to study large-
stride streaming with configurable strides; and srad_v2 combines
compute-heavy phases with significant memory intensity. These
BMs were selected to illustrate different workload characteristics
in terms of locality, stride, and compute/memory balance.

Experiment 1: MC Read Queue Saturation
We evaluate the impact of MC read queue saturation using the
srad_v2 BM from the Rodinia suite, which generates seven direct
memory streams—ideal for stress-testing stream prefetchers. To
isolate the effects of prefetcher aggressiveness:

• We vary the HWP’s degree from 2 to 256, fixing the HWP
queue size at 1024.

• Then, we fix the degree at 128 and sweep the HWP queue
size from 2 to 8192.

These sweeps reveal how increasing prefetch volume stresses both
the MC read queue and overall system performance.
Results revealed that InterStellar consistently outperforms the
streamHWP baseline. Fig. 1 shows the speedup of InterStellar (with-
out HWP) over COTS with Stream HWP across varying prefetcher
parameters. If theHWPwere effective, higher aggressiveness should
reduce InterStellar’s relative speedup. However, InterStellar achieves
up to 1.23× speedup at low degrees (2–16), with gains plateauing
beyond degree 32 due to memory pressure from uncoordinated
prefetching. Queue size sweeps show similar limits: speedup sat-
urates at size 32, matching the MC read queue capacity, with no
benefit from larger queues. Fig. 2 confirms this by showing the
normalized frequency of queue-full events—how often the queue
blocks relative to total memory requests. Queue pressure spikes
at degree and size 32, then plateaus, indicating full MC utilization.
Beyond this point, extra prefetch traffic stalls upstream, wasting
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bandwidth and explaining why further HWP aggressiveness yields
no additional gains.

Fig. 3 shows cache pollution—prefetched lines evicted before
use—under increasing HWP degree for two BMs: gesummv (left) and
srad_v2 (right). In gesummv, with two streams and low compute
intensity, pollution exceeds 15% at degree 8 and reaches 23% at 256
due to rapid cache saturation. In contrast, srad_v2 has compute-
heavy phases as well as being memory intensive. The compute
phases delay generation of more prefetches, keeping pollution low
until degree 64, then rising to 21% at 256. These trends show that
both access patterns and compute intensity influence prefetch ef-
fectiveness, beyond accuracy alone.

Experiment 2: MSHR Bottleneck
To assess MSHR constraints, we fix the DRAM read queue at 2048
entries and limitMSHRs to 64. Repeating theHWP parameter sweep
from Experiment 1, InterStellar achieves up to 1.27× speedup over
the COTS baseline, but this drops to 1.17× and plateaus as the
HWP degree and queue size reach 64. Fig. 4 shows MSHR blocking
frequency rising sharply at this point and saturating. This inflection
aligns with the 64-entry MSHR limit, confirming that increased
prefetch aggressiveness is bottlenecked by MSHR capacity.

DRAM statistics further reveal that traditional HWPs are oblivi-
ous to DRAM organization. Increasing HWP degree under MSHR
bottlenecks results in fragmented, uncoordinated streams that cause
row-level contention and degraded DRAM efficiency. In contrast,
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Figure 4: MSHR blocking frequency as HWP degree (left) and
queue size (right) increase with experiment 2 setup.
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Figure 5: DRAM requests breakdown for COTS with HWP
and InterStellar without HWP with experiment 2 setup.

InterStellar is DRAM-aware (Section 5.2) and batches only row hits.
It also applies intelligent page policies (Section 5.1) that reduce
row conflicts by issuing early auto-precharges for known future
conflicts—enabled by HW/SW co-design and stream-level access
knowledge.
Key observations from the DRAM-level breakdown (Fig. 5):

• COTS with HWP starts with a 62% row hit rate at low
degrees. As the degree increases, hits improve slightly but
then sharply drop to 45% at degree 64—coinciding with
MSHR saturation. The hit rate then plateaus. At the same
point (degree 64), the combined row conflict and miss rate
increases significantly—from 25% to 55%. This is due to
increased out-of-order request arrivals and inter-stream
interference.

• InterStellar, by contrast, maintains a high row hit rate
( 70%) and keeps conflict rate low ( 7%), demonstrating effec-
tive DRAM row-locality preservation and minimal request
interference.

Experiment 3: Elevated DRAM Conflicts
Bottleneck
While Experiment 2 showed that DRAM conflicts rise under MSHR
pressure, we now demonstrate that even with ideal MSHR (512
MSHRs) and MC resources (2048 entries per read queue size at MC),
DRAM-level contention remains a critical bottleneck. We analyze
two representative scenarios: (1) multi-cluster interference, and (2)
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Figure 6: DRAMaccess patterns under two scenarios: (a) Eight
Clusters. (b) Streams with large-stride, horizontal axis values
represents strides as 1, 2, 4 cache lines.

large-stride streaming.
1. Multi-cluster contention. We simulate an 8-cluster system,
where each cluster has its own LLC and independent stream prefetcher.
Using srad_v2, we observe that after compute-heavy phases, early
prefetches return and populate LLC. Subsequent accesses from the
same stream thus trigger fewer prefetches. As multiple clusters do
this in parallel, the resulting fragmented memory streams cause
severe DRAM contention. To isolate cache pollution effect, we also
run a special setup where HWP stores the prefetches internally
inside an isolated buffer. Each LLC request that doesn’t hit in LLC
checks if it hits inside this buffer first before creating MSHR. As
shown in Fig. 6a, DRAM conflict rate under COTS with HWP is
more than 95%, with a row hit rate under 5%. In contrast, InterStellar ,
by batching only page-aligned hits, reduces conflict rate to 14% and
raises hit rate to over 80%, resulting in a 3.1× reduction in active
DRAM cycles.
2. Large-stride streaming. We evaluate dscal BM from LAPACK
with stride lengths of 1, 2, and 4 cache lines. Larger strides increase
LLC misses, leading to more direct DRAM traffic. However, due to
cache or MSHR hits from earlier prefetches, fewer new prefetches
are issued per demand, and they are increasingly fragmented. This
worsens DRAM access patterns—especially when prefetches cross
row boundaries.

Fig. 6b shows that in COTS with HWP, DRAM conflict rate
increases from 40% (stride = 1 line) to 65% (stride = 4 lines). On the
other hand, InterStellar maintains a consistent hit rate of 92% with
minimal conflicts by batching only row-buffer hits.

In conclusion, fusing the stream fetching in InterStellar with the
MC policies offer several benefits.

1) On one side, it allows the MC to maximize row locality beyond
its current reordering capabilities that is only limited to the request
buffer sizes of the MC (usually at the range of 16–64 cache line
requests.

2) On the other side, it guides the fetch aggressiveness of streams
since fetching beyondDRAM row sizes leads to the high row conflict
latency. Therefore, the fetching aggressiveness is now a function of
the stream stride size (provided by the HW/SW interface), and the
DRAM row buffer size (known to the MC). It is important to note
that the latter is not available to prefetchers at the cache hierarchy.

Streamsdaxpy Kernel C Code

Loop 0

Stream A Stream B

ia = 0 ; ib = 0 ;
for ( i = 0; i < N; i++ ) {

A[ia] += alpha * B[ib];
ia += strideA; 
ib += strideB; }

Figure 7: daxpy kernel C Code and its stream flow graph.

3) Moving the stream fetching to the MC enables us to delay the
issue of the prefetch requests (we denote as a stream batch) until a
demand request from the stream opens the DRAM row. Doing so,
the memory scheduler schedules all the requests to this row back
to back and uninterrupted ensuring that the row buffer locality
remains intact. If these prefetches were issued from the cache hier-
archy, there’s no guarantee they would reach the MC in time for it
to reorder them and take advantage of row locality. Several reasons
make this behavior hard to guarantee. For instance, some prefetches
may be delayed due to buffer backpressure (e.g., MSHR fullness) or
because of scheduling by Network-on-Chip (NoC) routers.

4) Compared to cache prefetching, our solution does not suffer
from known prefetch painpoints including data array pollution,
pressuring cache resources such as buffers, MSHRs, and read queue
at the MC as well as competing with genuine demand requests for
interconnect and cache bandwidth.

(5) It removes the need to tag and differentiate demand vs. prefetch
requests, a common practice used to deprioritize prefetches in lower-
level schedulers. This is unnecessary in our design because: (a) the
HW/SW co-design ensures that only data known to be accessed
next is fetched; and (b) fetches are issued just-in-time, buffered at
the MC, and forwarded to the cache only when requested.

(6) It enables coordinated stream fetching, balancing per-stream
performance and minimizing inter-stream contention. In contrast,
uncoordinated prefetching across distributed caches causes streams
to compete for shared on-chip and off-chip resources, potentially
negating performance gains.

It’s important to note that InterStellar improves the performance
under cache prefetching. We compare it against various prefetch
techniques and report the performance gain when combined with
prefetchers as shown in Section 9.3.

3.2 Illustrative Example
This section illustrates how data-driven, stream-aware intelligent
MC decisions can significantly improve memory performance. We
use the daxpys BM from the LAPACK [45, 46] as an example, which
has two direct streams as the code snippet in Fig. 7 illustrates. While
each direct stream has high intra-stream locality, they interfere and
lose this locality when conflicting on the same bank. Fig. 8 shows
this, with requests fromA and B arriving at theMC in an interleaved
manner, where one request arrives as another starts. Note that the
requests shown can be either demand or prefetch ones. Also, even
if the HWP issues these requests in close time proximity, they still
suffer the network on chip delay, bus delay, access delay, and the
bottlenecks, observed and discussed in Section 3.1, before they
reach the MC. The COTS baseline policy keeps hopping rows to
serve the requests from the two streams causing all requests to be
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conflicts. Hence, it incurs large memory delays (380 cycles to serve
8 request).
It is also important to note that currently deployed reordering
techniques in MCs (e.g. FR-FCFS) are limited to what requests
co-exist in the MC’s queues upon scheduling. So, if requests of
the same stream are spaced in time as in Fig. 8a, such scheduling
will not be able to optimize access pattern. On the other hand,
by communicating the streams information, InterStellar enables
intelligent MC decisions as follows: 1) When a request from a
stream arrives, the MC associates it with its stream. Knowing the
stream characteristics, i.e. direct stream’s stride, the MC proactively
issues future accesses for the same DRAM row (row hits) and buffer
them in the MC to serve these requests when they arrive (iBatch
technique). 2) When no more determined access to the opened
DRAM page, the MC decides to issue the last CAS command in the
batch with auto-precharge to close the row. This converts the first
request from the other stream from a conflict to a miss, reducing
its latency from 40 to 20 cycles (iPP policy). This is shown in Fig. 8,
which uses representative timing values from DDR4 [5]. As Fig. 8b
shows, combining both techniques reduces the time to serve the 8
requests from 320 to 250 cycles.

3.3 Page Policy Evaluation
Fig. 9 shows how different DRAM policies perform on certain BMs
simulated using GEM5, measuring utilization by actual versus max-
imum bandwidth. It highlights two BMs (daxpys and dscals) where
the closed policy excels over the open policy due to conflict-heavy
access patterns in these BMs. While COTS outperforms both poli-
cies in all scenarios, InterStellar shows potential for even better
utilization. The hardware-only speculative solution (COTS policy)
has two main limitations: a) It fails to recognize access patterns
in complex, multi-stream workloads. b) It cannot identify specific
streams, cores, or applications linked to requests, resulting in sub-
par performance in multi-core environments or single-core setups
with parallel streams. This occurs because the MC handles inter-
leaved accesses from conflicting streams, causing one stream to
influence policy decisions for another. This observation motivates
our proposed iPP, a stream-aware intelligent page policy detailed
in Section 3. It is important to note that although DRAM refreshes
are enabled in our setup, InterStellar’s high bandwidth utilization
can be attributed to the intelligent buffer integrated into our de-
sign. This buffer proactively batches future data ahead of demand,
enabling many incoming requests to be serviced directly without
requiring a full DRAM access. As a result, the impact of refresh cy-
cles on effective bandwidth in some BMs is significantly mitigated,
since requests can often be overlapped with refresh activity. This
behavior directly justifies the high bandwidth utilization observed
in InterStellar. As Fig. 9 shows, such iPP outperforms hardware
only solutions leading to better memory performance, specially in
complex multi-core/multi-stream environments.

4 Architecture Extensions
InterStellar architecture is shown in Fig. 10. It consists of three
main components: 1) HW/SW Interface: A standardized interface
that utilizes the Instruction Set Architecture (ISA) via compiler
modifications to convey loops and streams metadata to the cores.
2)Nucleus: InterStellar’s central engine operates at the LLC level. It
reads the passed metadata from the cores, computes useful streams’
information, tracks LLC requests. It then appends requests with
condensed data to enhance memory hierarchy performance. 3) MC
Extension: MC is extended with modules to collect a per-stream
miss rate data while using passed information from Nucleus to
determine software-driven memory policy and intelligent batching.
InterStellar parts are discussed in Sections 4.1 - 5.

4.1 The HW/SW Interface
We do not require any ISA or operating systemmodifications, which
is a key advantage for adopting InterStellar. In the used RISC-V
ISA, we utilize Control and Status Registers (CSRs) to transfer data
from software to hardware. RISC-V core has 4096 CSRs, but only
314 CSRs are allocated, leaving many CSRs for custom use [47].
RISC-V ISA has csrrw instruction for direct CSR writes. On plat-
forms without such registers, we can use store instructions to a
pre-defined reserved memory location. This suffices to serve the
purpose since the hardware can then read and use these values.
We focus on two common stream types: direct and indirect. All
streams are within a loop (can be nested). We design four descrip-
tors to encode their features then pass them to the hardware, as
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shown in Fig. 11. The descriptors store the minimal necessary in-
formation characterizing the stream and its associated loop. All

Offset PC 
Header

StepEnd ValueStart ValueELSLParent 
Loop ID

HeaderLoop

Direct
Stream

Indirect
Stream

127 120 119 114 113 112 111 48 47 32 31 0

R/VStrideBase Address (BA)SBLLoop 
Desc ID

Header

Stream SizeElement 
Size

Base Address (BA)SBLStream 
Desc ID

Header

127 120 119 114 113 112 111 80 79 48 47 32 31 0

127 120 119 114 113 112 111 48 47 32 31 0

Link 
Variable R/VSizeAddressR/VHeader

127 120 119 112 111 48 47 32 31 0

Figure 11: InterStellar descriptors format.

descriptors have a header field to encode the stream type, and
activate it.
The Loop Descriptor defines loop boundaries: Start Value, End
Value, and Step. If start or end values are linked to other variables
(e.g., Start equation is 𝑖 = 𝑗 or end condition is 𝑖 ≤ 𝑘), Start Linked
(SL) or End Linked (EL) is set to 1. The link variables ( 𝑗 and 𝑘 in the
above examples) will have associated link descriptors. The linked
variable’s descriptor ID is stored in Start Value and End Value. The
Parent Loop ID stores the outer loop’s ID in nested loops; or 0
otherwise.

The Direct stream descriptor defines a direct stream by its as-
sociated innermost Loop Desc ID, the Base Address (BA) of its
corresponding array, and the Stride length. The Stride is the byte
difference between two consecutive stream elements in the linear
address space. This depends on the induction variable’s Step value
and the stream element’s size. If the BA connects to another vari-
able, then Base Linked (BL) is set to 1, and the BA stores the link
variable’s descriptor ID.
The Indirect stream descriptor characterizes indirect streams.
The indirect streams’ accesses could be random unlike the sequen-
tial accesses for direct streams. This depends on the data values

read from the index array. Element Size field encodes each element
size in the stream. Base Linked (BL) is used in the same manner
defined with the direct stream. Stream Size field defines the total
indirect stream size.
The Link variable descriptor holds the register ID, and bytes size
of a variable stores the loop’s start or end values, or the BA of a
direct/indirect stream as defined above.
Multi-threading and Shared Data: Shared (S) field indicates a
shared stream between different threads, or cores. It is useful for
InterStellar future cache optimizations. However, it is not needed
for the current MC use-case as MC is after the coherence domain
and the iBatch is fetched once by design.
Note that all descriptors values are known at the compile time
and InterStellar is architected such that it can be easily extended to
support other stream types.

4.2 Nucleus: InterStellar’s Central Engine
Nucleus is the central component of InterStellar. It consumes the
descriptors from the CSRs, uses them to calculate further streams’
information, and track run-time information to guide all the mem-
ory hierarchy components to take better software-aware decisions.
Nucleus reads from CSRs only when they are written by the appli-
cation. It uses the conveyed knowledge from CSRs to infer further
information. For the loop descriptor, Nucleus uses Start (𝑆), End (𝐸),
and Step (𝐼 ) values to compute the loop iterations count, as follows:
𝑙𝑜𝑜𝑝_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖 = (𝐸𝑖 −𝑆𝑖 )/𝐼𝑖 , 𝑙𝑜𝑜𝑝𝑖𝑑 = 𝑖 . For nested loops, counts
of the parent loops are also considered.
Nucleus computes the Virtual Address (VA) range of the stream as
the space between its VA’s start and end.
For a direct stream 𝑖 , its start and end VAs, denoted as 𝑠𝑡𝑎𝑟𝑡_𝑉𝐴𝑖 ,
and 𝑒𝑛𝑑_𝑉𝐴𝑖 , are given by Equations 1 and 2, where 𝑏𝑎𝑠𝑒_𝑉𝐴𝑖 , and
𝑠𝑡𝑟𝑖𝑑𝑒𝑖 are its base VA and stride, and 𝑆𝐿𝑜𝑜𝑝_𝐼𝐷 [𝑖 ] and 𝐸𝐿𝑜𝑜𝑝_𝐼𝐷 [𝑖 ]
are the start and end associated loop’s values.

𝑠𝑡𝑎𝑟𝑡_𝑉𝐴𝑖 = 𝑏𝑎𝑠𝑒_𝑉𝐴𝑖 + 𝑆𝐿𝑜𝑜𝑝_𝐼𝐷 [𝑖 ] ∗ 𝑠𝑡𝑟𝑖𝑑𝑒𝑖 (1)

𝑒𝑛𝑑_𝑉𝐴𝑖 = 𝑏𝑎𝑠𝑒_𝑉𝐴𝑖 + 𝐸𝐿𝑜𝑜𝑝_𝐼𝐷 [𝑖 ] ∗ 𝑠𝑡𝑟𝑖𝑑𝑒𝑖 (2)
7
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For an indirect stream 𝑖 , its 𝑠𝑡𝑎𝑟𝑡_𝑉𝐴𝑖 , and 𝑒𝑛𝑑_𝑉𝐴𝑖 are computed
in a similar way; See Equations 3 and 4, but rather than using the
stride, Nucleus uses stream’s size (𝑠𝑖𝑧𝑒𝑖 ).

𝑠𝑡𝑎𝑟𝑡_𝑉𝐴𝑖 = 𝑏𝑎𝑠𝑒_𝑉𝐴𝑖 (3)

𝑒𝑛𝑑_𝑉𝐴𝑖 = 𝑏𝑎𝑠𝑒_𝑉𝐴𝑖 + 𝑠𝑖𝑧𝑒𝑖 (4)
Computing base and end VAs helps in identifying unique streams
even if the same page frame contains multiple streams. This extra
computed information along side the descriptor itself is stored in
the descriptor table, Desc Table in Fig. 10, where Did is the descrip-
tor ID, Cid is the core ID, Tid is the thread ID, and DType is the
descriptor type (DType = 0 for loop descriptor, 1 for direct stream,
2 for indirect stream, and 3 otherwise). As Fig. 10 shows, Nucleus
resides as a module in the cache hierarchy. In this paper, we posi-
tion Nucleus alongside the LLC to guide intelligent MC decisions.
Even with a bankized/tiled LLC, only one Nucleus is needed. Here,
all misses from the upper cache-level are simultaneously read by
Nucleus and the tiled LLC. At run-time, LLC Request Filter checks
whether an LLC request matches a stream in the Desc Table. If the
demand miss belongs to one of the streams, LLC Request Appender
appends the demand miss packet with extra information to be used
in the MC towards a software-driven hardware decision. There are
three key architectural challenges and decisions:
Challenge 1: Stream information passed from the software and
stored in Desc Table is in the VA domain, while LLC is physically ad-
dressed. To address this challenge without modifying the operating
system page mapping or complicating the HW/SW interface, we
add the Inverse Stream Translation Lookaside Buffer (Stream
TLB−1) component as shown in Fig. 10. on a TLB miss, a parallel
comparison is made between the TLB’s VA and all VAs stored in
the Desc Table. If a match occurs, the corresponding (PA,VA) pair
is added as a new entry to the TLB-1. For page or thread migration:
These migrations typically cause TLB flushes or misses, so TLB-1
will be updated without additional circuitry. While TLB−1 is essen-
tial for InterStellar’s operation, it has a small size for several reasons.
1)Nucleus only handles translations for active descriptors, focusing
on TLB misses from direct and indirect streams. 2) Data-intensive
systems use larger page sizes, enhancing performance, which sim-
plifies the TLB’s requirements [48]. 3) For direct streams or highly
localized indirect streams, only recent pages that issue TLB misses
are tracked as the stream always progresses to new pages. In cases
of poorly localized indirect streams or hugely strided-direct stream,
where stream can jump between different pages randomly, TLB−1

entries can be overwritten. InterStellar effectively manages this
by treating such incidents as non-stream activities and adjusting
policies based on a dedicated conflict tracking window for non-
stream special case. The TLB−1 is used in a recent data movement
optimization work with similar tricks to optimize its size [24]. This
is discussed in Section 6.2. The LLC Request Filtration Unit (LLC
Request Filter in Fig. 10) is responsible of submitting the incoming
LLC requests to the TLB-1 to get the request VA if it belongs to
a valid stream; then it probes the Descriptor Table to identify the
stream type and ID.
Challenge 2: It is important to keep the extra delay that Nucleus
adds to the critical path of a memory request as minimal as possible.
To do so, we operate the main logic of Nucleus in parallel to the
LLC tag access operation. LLC Request Filter takes two cycles. In

the first cycle, it accesses the TLB−1 to obtain the VA. Then in the
second cycle it accesses the Desc Table to get the corresponding
stream data. Since the LLC usually takes more than two cycles to
perform tag check and forward the miss to theMC, the LLC Request
Filter delay is off the critical path. Therefore, the only component
exists in the critical path is the LLC Pkt Appender, which simply
augments extra wires to the original memory request and hence
does not impact the critical path delay.

Challenge 3: Extra wiring is required to add additional informa-
tion to memory requests. To minimize this, we keep the extra data
from the Nucleus to the MC minimal. In our setup, the LLC Pkt
Appender attaches the Stream ID, core ID, thread-ID, and stream
type to the LLC packet. The direct stream’s stride, which is con-
stant, is only sent once in the first request to setup the MC’s stream
registers. Modern Systems-on-Chip interconnects like the ARM
AXI bus already have user-defined bits sufficient to encode this
information.

4.3 Illustrative Example
In the motivation section example, the daxpy BM features one
loop and two streams. For simplicity, assume each direct stream
containing 512 double values, resulting in an effective size of 8kB
and a stride of 8 bytes. The loop index starts from 0 to 511, with
an increment of 1. Fig. 12(a) shows the initialization details for
the descriptors. The Desc Table contains streams’ static informa-
tion, along with the end VA for the direct streams, depicted in Fig.
12(b). Specifically, stream A’s VAs range from 0x3000 to 0x3FF8,
and stream B’s VAs range from 0x5000 to 0x5FF8. In Fig. 12(c), two
LLC miss requests are received, their addresses are 0xB200, and
0x1700. The LLC Request Filter checks TLB-1 to find that 0x1700 is
not in any stream, and 0xB200 is a stream with VA=0x3200. Then it
compares the VA against all stream tuples in the Desc Table and
found that it belongs to stream A’s address range. Subsequently, the
LLC Request Filter sends the requests to the LLC Request Appender,
which will append the packets. The first request gets the stream ID
of 1, stream type of 1 (Direct Stream), and core ID of 0. The second
request gets the stream ID of 0, stream type of 3 (None), and core ID
of 0. Finally, it sends the packets to the MC for further processing.

5 Use-case: Intelligent MC
Weprovide two techniques that leverage the software access pattern
for efficiency: (i) a page policy that keeps a page open or closes it,
and (ii) a batchingmechanism that proactively, yet deterministically,
fetches stream data from an opened DRAM page.

5.1 Intelligent Page Policy (iPP) Management
unit

It is composed of two components to manage the direct and indirect
streams independently illustrated as follows:

1)Direct streamhit counters It manages direct stream conflicts
when crossing the DRAM row size boundary. Consecutive direct
stream accesses number to cross the DRAM row buffer boundary
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can be calculated by Equation 5.
Max Hit Counts 𝑠𝑡𝑟𝑒𝑎𝑚𝑖

= (DRAM Page Size)/(Stride(𝑆𝑡𝑟𝑒𝑎𝑚𝑖 ))
(5)

Here, 𝑆𝑡𝑟𝑖𝑑𝑒 (𝑆𝑡𝑟𝑒𝑎𝑚𝑖 ) represents the larger value between the
cache line size and the stride of ith stream. A dedicated counter
tracks DRAM read hits for each direct stream. When this counter
reaches the threshold from the above formula, it resets, and the iPP
management logic closes the row buffer.
2) Indirect Streams Conflicts tracking window is a module

used to track DRAM page conflicts/misses per each data stream. It
measures access locality of indirect streams and utilizes a counter to
monitor the misses for each stream. The policy for indirect stream
closes the row if the following condition is satisfied, otherwise
keeps it open:

Conflicts > 𝑇𝐻 | |
(𝑇𝐿 ≤ Conflicts ≤ 𝑇𝐻 && Prev Access = Conflict) (6)

Where 𝑇𝐻 , and 𝑇𝐿 are adjustable thresholds. If the conflicts are
greater than𝑇𝐻 , or lie between𝑇𝐻 and𝑇𝐿 with previous access was
conflict, this means that accesses tends to conflict then close the
row, otherwise leave it open. The conflicts tracking window block
diagram is shown in Fig. 13. It measures locality by comparing the
current address Crnt Addr in the MC with the previous address Prev
Addr for the same bank from the history table. Since each request
is tagged with stream ID and the stream type label, the tracking
window is implemented on a per-stream basis. This intelligent
tracking window ensures that the system is better equipped to
handle diverse workloads and varying access patterns leading to
improved efficiency in memory management and overall system
operation. By employing both the indirect streams’ conflicts tracking
window and the direct streams’ hit row buffer read access counter, we
improve DRAM page policy and ensure that the DRAM row buffer
is only closed when conflict is imminent.

5.2 Intelligent Batching (iBatch) Management
unit

Key approach to enhance MC performance is by issuing read com-
mands for future memory accesses in batches. The MC calculates
the addresses of subsequent DRAM accesses based on the current
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Figure 13: The Conflicts Tracking Window Mechanism.

request address and the stream’s stride. The read data for the future
subsequent addresses is stored in a buffer denoted as the iBuffer.
Each DRAM bank has its own iBuffer. The iBatch depth determines
the number of future requests. iBuffer size defines the maximum
iBatch future requests number to be accessed. Fig. 14 shows the
iBatch module architecture. Each iBuffer’s entry contains the ad-
dress, data, and two flags:𝑊 (Waiting) and 𝑅 (Requested). The𝑊
flag is set to 1 if an entry is waiting for its data from the DRAM. If
an incoming demand request hits in an entry with𝑊 = 1, it will
wait until valid data comes back and ’W’ reset. The 𝑅 flag labels
an entry that has already been requested, such that when valid
data arrives, the MC can respond immediately to the LLC. When a
request for subsequent elements of the stream arrives at the MC, it
will hit in the iBuffer and the W flag is cleared. Fig. 15 depicts the
iBatch module operation flowchart. The iBatch effectively reduces
the average DRAM read latency significantly.

Indirect Streams: The iBatch technique can also be applied
to indirect streams if they show good locality. To measure the in-
direct stream’s locality, the conflicts tracking window per indirect
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stream is employed (see Section 5.1). If the conflicts percentage in
the monitored window falls below a certain threshold, this would
hint reasonable locality in the indirect stream, and thus a batch for
the stream can be formed from its next N forthcoming requests. If
the conflict percentage decreases further, batch depth can increase,
accommodating higher degrees of locality.
Configurability. iPP and iBatch feature various configurable

settings tailored to application needs. In particular, tracking win-
dow size can be set for each stream allowing for customized history
depths based on stream type, such as larger windows for complex
patterns in indirect streams. Additionally, iBatch’s depth is config-
urable per stream enabling system designers to balance locality and
minimize interference delays based on stream characteristics.
Scalability. InterStellar was designed to work as a generalized

stream-based HW/SW co-design architecture. Towards this goal,
we split InterStellar into two main parts. The first is the Nucleus
which can be placed at the memory hierarchy where it is best suited
to record the conveyed hardware information as well as continue
tracking dynamic information at the hierarchy. The second is the
component-specific module that enables the component to use In-
terStellar information to optimize its performance. In our case, we
used Nucleus at the LLC cache, while the second was the stream-
specific iBatch and iPP policies inside the MC. In case for example,
LLC was bankized and distributed several design options are avail-
able and the best option depends on the platform tradeoffs. Namely,
Nucleus can be placed directly in front of the MC, in this case only
one Nucleus is needed (saves area), while it slightly increases the
miss delay (since it can no longer be parallelized with LLC tag
checking). Another design is to replicate Nucleus with every LLC

bank (larger area but better performance). InterStellar is scalable to
work with multi-MCs as only one Nucleus is needed. Each MC has
its InterStellar extensions of iPP and iBatch. Nucleus will send the
appended packet to the target MC based on its address mapping,
which will continue to do InterStellar memory optimizations.

6 Implementation
6.1 Compiler Support
The main responsibility of the compiler is to identify streams in the
target program and establish the relationship among the streams.
To achieve this, a mid-end LLVM compiler pass is developed that
implements several steps as follows.

Loop Selection: First, we select target loops that potentially
contain stream-based memory access. We first consider all hot
loops that contain memory operations based on the loop induction
variable (both directly and indirectly) to be eligible. We also use
the profile information to only focus on loop nests with relatively
large total iteration counts.

Stream Tree Formation: For every load/store instruction in
the target loop, we assign a new stream candidate. We then use a
Depth-First Search (DFS) algorithm that starts from every memory
instruction in the loop and steps through the data dependence graph
backwards to form a sequence of instructions used to generate the
memory address. Next, our pass constructs stream dependency trees
from the identified stream candidates in the target loop. For direct
streams that only depend on the loop induction variable, we identify
their base address and stride values. For the indirect streams we
identify their base address and the other streams they depend on
(both direct and indirect streams). Multiple streams within a loop
can share the same base address, with either different stride values
or being dependent on different parent streams.

Pruning: We use several criteria to prune stream candidates.
First, we select streams with loop-invariant base addresses and
stride values. We also ensure the index calculation for stream ac-
cess uses only simple arithmetic (multiplication and addition by
a constant). Currently, we do not support streams that depend on
multiple induction variables. Finally, we use profile information to
select only the streams that incur significant DRAM accesses. That
means, we remove the streams that are mostly resident in different
levels of CPU caches. This is done via sample-based profiling, map-
ping hardware events (DRAM loads/stores) to specific PC addresses.
When a stream candidate is removed, their corresponding stream
subtree is also pruned.

Stream Descriptor Generation: After pruning, the compiler
generates stream descriptor intrinsics from the stream tree in the
LLVM IR code before the loop, usually at the loop’s preheader.
These intrinsics are then converted to stream configuration CSR
instructions in the LLVM backend.

6.2 Hardware Cost
This section presents the area and energy overheads of InterStellar’s
additions across the memory hierarchy.
Below, we detail the area requirements of each major component
inside InterStellar:

1) Descriptors Implementation. On RV64 systems, each RISC-
V CSR is 64 bits wide, enabling a 128-bit descriptor to span two
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CSRs. Profiling across BMs shows that 32 CSRs are sufficient to
store 16 InterStellar descriptors per core, supporting up to 9 streams
and 4 loops per context per each core. These descriptors are mapped
to existing RISC-V CSR registers, incurring no additional hardware
cost beyond architectural support.

Nucleus (Nucleus). The main overhead in Nucleus is the Desc
Table, which stores static and runtime metadata per stream. Given
𝑆 streams and 𝐶 cores, each entry requires 128 bits (static), 2 bits
(type), and 40 bits (end VA), resulting in a total size of: 𝑆 × 𝐶 ×
(log2 𝑆 + log2𝐶 + 170) bits. For 16 streams and 8 cores, this equates
to 2.76 kB. Other logic, including the LLC Request Filter and LLC
Pkt Appender, use comparators and simple data path extensions. A
256-entry inverse TLB (TLB−1) is also used, which suffices across
all evaluated BMs.

Memory Controller Extension. The memory controller is
extended with an iBuffer and a Conflict Tracking Window. Each
iBuffer entry holds a 64-byte cache line and 42 bits of metadata.
The total size is 𝑅 ×𝐵 × 554/8 bytes for 𝑅 entries and 𝐵 banks. With
64 entries and 16 banks, this totals 69 kB, or 1.7% of a 4MB LLC.
The textsfconflict tracker Window consists of 128 compact shift
registers for an 8-core, 8-stream system, which is a minimal logic
overhead.

Energy Overhead. The dominant energy cost comes from the
largest InterStellar’s component: The iBuffer. For a rough estimate
of the energy consumed when operating on the iBuffer, [49] reports
an access cost of 2.4 pJ per 32-bit read/write for an SRAM operating
at 2500MHz. Given a 4MB working set (1,048,576 accesses), the
total energy is: 𝐸iBuffer = 2.52 𝜇J. This is negligible compared to
total memory energy consumption, accounting for less than 0.3%
for the same working set, as measured using DRAMPower [50].

Despite this minimal energy overhead, InterStellar reduces the
major bulk of energy consumption— the DRAM energy—by 24%
on average, with reductions reaching up to 60%. This is because
batching reduces the number of ACT and PRE commands, thereby
lowering the energy associated with DRAM command execution. A
full evaluation of DRAM energy savings is presented in Section 9.4.

7 System Considerations
There are several key design considerations for efficient stream-
aware memory management, they include the following:
The iBuffer Overhead Placing iBatched lines directly into the
LLC removes the need for a dedicated iBuffer, reducing hardware
complexity. However, uncontrolled insertion may cause cache pol-
lution by evicting useful data from other streams or the working set.
InterStellarmakes the batch size user-configurable: smaller batches
reduce pollution risk but would limit performance gains.
The Address Mapping In production systems, column bits are
preserved to maintain sequential locality, while higher-order bits
(bank, bank-group, channel) are randomized to enhance parallelism.
This ensures that InterStellar’s iBuffer can still exploit column-level
locality for prefetching, while benefiting from balanced load under
real-world mappings.
Tagging Hardware Prefetch Requests: As shown in Section 9.3,
InterStellar enhances memory performance when combined with

Table 1: Evaluation Parameters

OoO Core@2.4GHz 8-wide Superscalar , 64 IQ
(1, 4, 8 Cores) 32 LQ & SQ , 192 ROB entries.

InterStellar Engine iBuffer = 4 kB/bank.
iPP Unit = 256 registers

L1-I / L1-D 64 kB - 4 way - 3-cycles latency
16 MSHRs

L2 512 kB - 8 way - 10-cycles latency
32 MSHRs

L3 (Shared LLC) 2 MB - 16 way - 30-cycles latency
64 MSHRs

HW Prefetchers AMPM - BOP - IMP
- SlimAMPM - SPP - Stride (Stream)

DRAM Micron DDR4 2400MHz,
Organization 8GB x8.
DRAM Addressing RoBaBgColRaCh
DRAM Scheduling FRFCFS Priority Hit

hardware prefetchers. However, prefetchers often suffer from in-
accuracies, which can degrade InterStellar’s efficiency by batch-
ing large amounts of unnecessary data. To address this, tagging
prefetch requests allows InterStellar to distinguish between demand
requests and speculative prefetches. By integrating prefetch tagging
mechanisms, InterStellar ensures that only demand requests are
batched, preventing unnecessary data movement and improving
overall memory efficiency.
Dynamic Loop Trip Counts and Strides: The loop start, end
values, or strides are either statically known at compile time or
computed dynamically at runtime. When known at compile time,
the compiler can generate the descriptors statically. However, when
these values are computed at runtime, they must be stored in reg-
isters. The link descriptor illustrated in Section 4.1 facilitates this
process by ensuring that dynamically determined loop parameters
can be read at run-time, enabling stream-aware memory optimiza-
tions. TLB−1 Alternative Solution: Instead of placing the Nucleus
alongside the LLC, an alternative approach is to position the Nu-
cleus before the TLB, operating in the VA domain. This enables
early stream tagging before address translation occurs, offering
several advantages: 1) Eliminates the need for 𝑇𝐿𝐵−1, simplifying
the memory management pipeline. 2) Seamless integration with AXI
interfaces, allowing the propagation of the stream ID without modi-
fying the hardware interfaces. However, this approach introduces
a trade-off: Since the Nucleus must now operate in the VA domain,
it requires an instance per core rather than a shared global engine.
Although this eliminates the need for𝑇𝐿𝐵−1, it may pose scalability
challenges as the count of cores increases.

8 Experimental Environment
Platform.We implemented InterStellar in GEM5 integrated with
Ramulator. The RISC-V system uses the high-performance Neoverse
V1 memory hierarchy [51], and InterStellar parameters are shown
in Table 1. We acknowledge that gem5+Ramulator accuracy has
been revisited recently [52]. To validate our setup, we performed
basic sanity checks. For unloaded latency, we used SPMV (pointer-
chase access) and confirmed latencies align with expected DRAM

11



Abdelrhman M. Abotaleb, Maziar Goudarzi, Tomasz Czajkowski, Reza Azimi, and Mohamed Hassan

Table 2: Used BMs ID, Name, Suite, Stream type (T): (DS: Direct with small stride, DL: Direct with large stride, DM: Direct with
mixed small and large strides, and MX: Mixture of direct and Indirect stream.), # of streams (S), and Pattern (P).

ID BM Suite T S P ID BM Suite T S P ID BM Suite T S P
A atax ALGEBRA DS 1 2D B bicg ALGEBRA DS 1 2D C daxpy LAPACK DS 2 1D
D ddot LAPACK DS 2 1D E doitgen ALGEBRA DS 3 3D F dscal LAPACK DS 1 1D
G fdtd-2d Stencil DS 3 2D H floyd-warshall Dyn. Prog. DS 1 2D I gesummv BLAS DS 5 2D
J heat-3d Stencil DS 2 3D K Jacobi-1d Stencil DS 2 1D L Jacobi-2d Stencil DS 2 2D
M memcpy Memory DS 2 1D N scusumbkn LAPACK DS 2 1D O seidel-2d Stencil DS 4 2D
P daxpys LAPACK DL 2 1D Q ddots LAPACK DL 2 1D R dscals LAPACK DL 1 1D
S scusumbkns LAPACK DL 2 1D T gemver BLAS DM 9 2D U mvt BLAS DM 5 2D
V knn-1d Data Mining MX 3 2D W knn-2d Data Mining MX 5 2D X knn-3d Data Mining MX 7 2D
Y spmv HPCG MX 5 2D Z histo Parboil MX 2 2D 𝛼 stencil Parboil MX 2 2D
𝛽 needle Rodinia MX 5 2D 𝛾 srad_v2 Rodinia MX 7 2D 𝛿 histogram Phoenix MX 4 1D
𝜖 linear regression Phoenix DS 2 2D 𝜁 mm Phoenix DS 3 2D 𝜂 pca Phoenix DS 3 2D
𝜅 reverse index Phoenix MX 7 2D 𝜆 string match Phoenix DS 1 1D 𝜇 word count Phoenix MX 2 1D
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Figure 16: Single core normalized E2E to COTS E2E cycles and normalized bandwidth to COTS bandwidth results.

timing and capture row-buffer/conflict effects. For loaded latency,
we used daxpy BM to stress bandwidth and observed results con-
sistent with the theoretical and sustained bandwidth of the device.
Additionally, handcrafted microbenchmarks verified row-buffer
hit/miss latencies and bank-level parallelism. These checks give us
confidence our platform exhibits realistic DRAM behavior.

Baseline controllers. We compare InterStellar against four
solutions, two of them are COTS-based solutions: 1) Opened page
policy (FR-FCFS) and 2) COTS adaptive page policy [38], while
the other two are hardware-only research solutions: 3) Parallelism
aware batch scheduling (PARBS) [53], and 4) Blacklisted memory
scheduler (BLISS) [54]. We also evaluate using six different HWPs:
AMPM, BOP, IMP, slimAMPM, SPP, and Stride HWP[41, 55–57].
PARBS and BLISS are hardware-only techniques that utilize the
batching concept, which makes them closely related to our solution.
These techniques cluster requests based on the core ID leading to
improvements over the baseline. However, since one core can run
multiple streams, PARBS and BLISS do not address conflicts within
streams from the same core. While PARBS and BLISS target multi-
core systems, our solution improves single and multi-core setups.
So, we compare with them in multi-core scenario for consistency.

Evaluation Metrics.We use 3 metrics for evaluation:
1) Normalized end-to-end (E2E) Speedup of Policy P, where we de-
fine 𝐸2𝐸 𝑆𝑝𝑒𝑒𝑑𝑢𝑝𝑃 as the ratio between Execution time of COTS
adaptive page Policy and Execution time of Policy P.

2) Normalized Bandwidth (BW) Improvement of Policy P, For this
metric, we define memory BW (𝐵𝑊𝑃 ) as the ratio between the total
bytes exchanged with DRAM and the total active DRAM cycles
duration for policy 𝑃 . 𝐵𝑊 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑃 is the ratio between 𝐵𝑊𝑃

and COTS’s BW.
3) Normalized Energy Consumption of Policy P, Energy is estimated
using DRAMPower [50] with traces generated by Ramulator. The
energy consumption of policy 𝑃 is normalized versus COTS.
Evaluation benchmarks.We use 36 BMs with various memory
access patterns to evaluate InterStellar (Table 2). This includes 21
direct stream BMs from PolyBench [58], and 15 mixed stream BMs
from Phoenix [59], Parboil [60], Rodinia [61], and HPCG [62]. We
also conduct experiments with heterogeneous workloads, where
different BMs are executed on different cores. In total, we evaluate
eight such combinations (Z1–Z8), as summarized in Table 3.
For the LAPACK BMs, we evaluate four kernels—daxpy, ddot,
dscal, and scusumbkn—each in two stride modes (Table 2):
1) Fixed stride (C, D, F, N): Running with fixed stride of 8 bytes (one
double).
2) Stride sweep (P, Q, R, S): Sweeping strides in the range of 16–
4096 bytes; indicated by appending “s” to the kernel name. For
example, daxpy is the fixed 8-byte case, while daxpys is the stride-
sweep case (16–4096 bytes).
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Table 3: Selected BMs for the mixed-case eight-core setup.

ID C1 C2 C3 C4 C5 C6 C7 C8 ID C1 C2 C3 C4 C5 C6 C7 C8
Z1 A B F I A B F I Z2 M I T Y M I T Y
Z3 M I V Y M I V Y Z4 M U D Y C I V F
Z5 A U 𝛿 Y C 𝜖 V F Z6 T N 𝛾 M F B W I
Z7 V C F I V C F I Z8 V W A B V W A B
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Figure 17: Single core DRAM statistics for selected BMs,
where Inter* refers to InterStellar.

9 Evaluation
n this section, we present the evaluation results of InterStellar,
including analyses of single-core and multi-core performance, the
impact of hardware prefetchers, and DRAM energy consumption.

9.1 Single Core Performance (Breakdown of
Performance Gain Sources)

The single core experiments purpose is to evaluate the benefits of
InterStellar based on individual BM nature. Fig. 16 shows the nor-
malized E2E speedup and BW improvement on single core for all
BMs. InterStellar achieves average normalized speedup of 1.6x and
average BW improvement of 3.3x. The speedup is primarily due to
three factors: (a) iBatch guard against misses happening when read-
ing multiple streams data sequentially, therefore it reduces most
of the misses to iBatches. (b) iPP manages to convert most of the
DRAM conflicts to misses, and c) iBatch is able to guard consecutive
read accesses to an opened DRAM row from write conflicts, which
effectively converts some DRAM conflicts into DRAM hits. This is
shown in Fig. 17. To understand how InterStellar improves DRAM
stats, let’s discuss InterStellar optimizations on the following cate-
gories: 1) Direct Stream with Small Stride happens when direct
stream runs with strides less than cache line size. For example: BMs
A-O. in Table 2. Such BMs show high locality, if only one stream
is running such as BM A, then a huge hit rate is expected at the
DRAM, but with multiple streams running, then more conflicts and
considerable misses arise such as with BMs L-I . Fig. 17 shows how
InterStellar manages to convert most of the hits to iBatches, and
eliminates most of the conflicts and misses happen in this case.
2) Direct Stream with large Strides occurs when a direct stream
runs with strides greater than cache line size (e.g., BMs: P-U ). As
stride size increases, conflicts also rise. iPP minimizes these con-
flicts, enhancing speed. However, iBatch performs best with smaller
strides, effectively handling up to 512 Bytes. Beyond this, doubling
of the stride halves ibatchable requests but as misses dominate,

this allows for iPP to influence speedup. This is shown in Fig. 17
with sweeping stride from 512B to 8 kB with S BM. The maximum
iPP-only speedup of 1.25x is seen at a 4 kB stride in the Q BM.
3) Indirect streams mix direct and indirect streams. For example
BM: Y . iPP excels with indirect streams by managing conflicts,
while batching protects direct stream counters enhancing iPP’s
effectiveness on indirect streams.

9.2 Multi-Core Results
Fig. 18 shows the normalized speedup against COTS adaptiveDRAM
page policy for 8-cores systems tested with InterStellar, PARBS,
BLISS, and opened page policy.

InterStellar achieves a speedup up to 2.7x. In comparison, PARBS
achieves speedup up to 1.6x, while BLISS achieves speedup up to
1.2x. InterStellar offers superior speedup compared to both PARBS
and BLISS. Fig. 19 illustrates the InterStellar’s speedup components
for the 8-cores case. While PARBS and BLISS batch requests based
on the source core, this enhances the performance when running
different workloads on different cores and also excels when work-
loads running only single stream (like Z1 case). PARBS and BLISS
convert most of misses to hits but also introduce conflicts when
switch between different cores or within the same core if there are
multiple conflicting streams. On the other hand because InterStellar
works on stream basis, it effectively converts most of conflicts and
misses to hits and iBatches.

9.3 Effect of Hardware Prefetchers
The purpose of these experiments is to evaluate the InterStellar
both against prefetching techniques to illustrate the impact of the
points discussed in Section 3. Additionally, to show that InterStellar
is also orthogonal to existing cache prefetch techniques and is not a
replacement of them, we show the results when both InterStellar as
well as cache prefetching is enabled. We implemented InterStellar
on an 8-core system without HWPs and over the six HWPs in Table
1. Fig. 20 shows speedups of up to 3x against HWPs and 2.5x on top
of them. Fig. 21 shows the BW improvement of InterStellar without
HWP over COTS with HWP. The average improvement is 2.02x due
to the reduced active DRAM cycles resulted from lowever DRAM
conflicts withInterStellar. InterStellar without HWP outperform
COTS with HWP collectively due to observations discussed in Sec
3.1.

9.4 DRAM Normalized Energy Consumption
Results

Fig. 22 shows normalized energy consumption across selected BMs
for InterStellar (without HWP), COTS with HWP, PARBS, and
BLISS. InterStellar achieves the highest energy reduction over all
BMs. On average, 24% compared to COTS without HWP and 17%
compared to COTS with HWP. This improvement results from
fewer conflicts, which reduce command count and overall DRAM
energy. With BMs that contains multiple streams like daxpy, ddot,
and scusumkbn, the energy reduction reaches up to 60% comparing
COTS without HWP and up to 54% comparing to COTS with HWP.
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percentages for selected BMs on an 8-core system, where
Inter* refers to InterStellar.
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10 Related Work
Since we already covered the stream-based related work in Sec-
tion 1, we elaborate in this section on two directions of work: 1)
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Figure 21: 8-core Average normalized BW improvement of
InterStellar vs. HWPs, averaged across all BMs.
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Figure 22: 8-core Normalized energy consumption reduction
compared to COTS for selected BMs.

other generalized HW/SW frameworks, and hardware-only mem-
ory controller solutions. HW/SW Co-design General Frame-
works. Täko gives more control on memory policies to software
for certain memory regions (tagged as phantom data). Cache hard-
ware triggers software callbacks in response to cache operations
(misses, evictions, and writebacks) on phantom data. In turn, the
programmer can run specialized software routines upon these calls
based on the data being accessed. Modifications include a reconfig-
urable dataflow hardware engines to execute these routines.
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XMem [15, 63], and MetaSys [64] follows a different approach
by tagging memory regions with extra semantic information. They
utilize a specific region of virtual memory (VM) to store hardware-
software communication messages known as Atoms. These mes-
sages contain metadata related to various data structures. The ISA
is expanded to include new instructions that facilitate the creation,
mapping, and unmapping of atoms. XMem, MetaSys, and Täko
annotate memory regions requiring both ISA modification and OS
support. They also require extra delay cycles to fetch the tagging
information or for the call back execution in case of Tako. Inter-
Stellar doesn’t require these changes facilitating adoption with the
current programming paradigm. Also, in mentioned solutions if
data structures overlap in a page because they annotate a page, they
can’t differentiate, but in InterStellar granularity depends on the
data structure.

Hardware Memory Controller Solutions. On the other side,
there are many DRAM MC optimizations, through profiling data
dynamically in the MC , batching and prioritizing some memory
requests can achieve better fairness and performance for multi-core
systems [54, 65–71] , or utilize reinforcement learning towards self
optimizing DRAM controller [72] which manages to reach 1.3x
average speedup over FR-FCFS legacy controllers.

11 Conclusion
Wepropose InterStellar as a general stream-based hardware-software
co-design framework. InterStellar opens up several research direc-
tions to explore different memory hierarchy optimizations that
don’t require ISA modifications and can operate seamlessly with-
out intervention from programmers. We use InterStellar to intelli-
gently fuse stream data fetching from the off-chip memory with the
memory controller scheduling and page management policies. Eval-
uation show that InterStellar considerably outperforms hardware-
only solutions in terms of the end to end performance, as well
as DRAM bandwidth, and DRAM energy . Additionally, it shows
that while InterStellar also shows better performance than cache
prefetching, it also provides additional performance gains if enabled
on top of such prefetchers.
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