IMPRINT: In-Memory Processing with Indirect Addressing
Techniques with GPU-hosted HBM-PIM

Ersin Cukurtas
ecOhc@virginia.edu
University of Virginia
Charlottesville, VA, USA

Mircea Stan
mircea@virginia.edu
University of Virginia
Charlottesville, VA, USA

Abstract

Modern applications, like machine learning and graph/database
algorithms, demand more memory capacity and bandwidth for
efficient data access. This drives advances in memory technologies,
including the shift from DIMM-based systems to high bandwidth
memory (HBM) in some accelerators, as well as the concept of
processing in memory (PIM), which moves computation to memory.

PIM boosts memory bandwidth, reduces energy usage, and pre-
processes data. Recent industry products integrate PIM into HBM
memory[13]. These PIM-enabled systems focus on a limited num-
ber of in-memory operations to avoid excessive overhead and we
believe that enabling indirect addressing or virtual-to-physical ad-
dress translation is a crucial one. Our design enhances GPUs with
PIM-enabled HBM, adding indirect addressing through hardware
and software co-design without requiring to perform page table
walks. We achieve a general performance increase of ~ 1.4 — 1.6x
for large input sizes while providing ~ 60 — 70% energy savings
with minimal area overheads.

Keywords

Processing-in-Memory (PIM), Sparse Matrix-Vector Multiplication
(SpMV), High Bandwidth Memory (HBM), GPU, Max Pooling, Ma-
trix Transposition, Memory Bandwidth, Page Table, Virtual Address

1 Introduction

The motivation for Processing-in-Memory (PIM) primarily aims
to reduce data movement between the host processor and main
memory, addressing the growing "Memory Wall" problem, which
emerged in the 1990s due to CPU speed surpassing main memory
speed [20]. Extensive research has attempted to tackle this issue
through wide-issue architectures, better prefetching, and larger
caches, but these solutions fall short for some data-intensive applica-
tions, including machine learning, databases, and graph algorithms
[9].

Efforts to cope with the data volume include the development of
new memory technologies, like High Bandwidth Memory (HBM),
which leverages 3D stacking for higher bandwidth, lower latency,
and reduced power consumption [12], [6]. HBM utilizes new pack-
aging technology by 3D stacking multiple DRAM dies on top of
each other connected with through silicon vias (TSVs) and moving
the memory closer to the computation by placing it on the same

Kavish Ranawella

bue6zr@virginia.edu

University of Virginia
Charlottesville, VA, USA

Kevin Skadron
skadron@virginia.edu
University of Virginia

Charlottesville, VA, USA

System-on-Chip interposer as the host processor using 2.5D in-
tegration. Despite advancements in memory and interconnection
technologies, the bandwidth challenge persists as processing power
outpaces them.

PIM is an approach that mitigates bandwidth bottlenecks by
performing computations directly within memory, reducing data
transfer requirements and improving efficiency [23], [1], [2]. There
are two PIM approaches: processing near memory and processing
using memory [10]. This work aligns with the former, integrating
PIM capabilities into HBM in conjunction with GPU as the host,
following prior research [13].

Recent works have shown that even though PIM brings excellent
performance and energy benefits, it is still difficult to beat GPUs in
performance without extensive optimizations to PIM hardware. The
first two implementations of Gearbox [15] were considerably slower
compared to GPU implementations of the Gunrock benchmark [19].
The UPMEM PIM architecture shows great energy benefits com-
pared to GPUs and can outperform GPUs for specific applications
but still struggles for others [9]. TOP-PIM uses GPUs as in-memory
processors because SIMD type GPUs are better at extracting band-
width from memory due to the higher level of parallelism they
can achieve without requiring complex hardware [23]. The most
recent works that focus on accelerating SpMV through PIM[21],
[3] also compare their results to GPUs and achieve considerably
better results which will be discussed in Section 8. We see this as
an indication that PIM should be used in conjunction with GPUs,
because any kernel/application that is suitable for PIM would prob-
ably use a GPU as host and PIM can provide acceleration when
memory bandwidth becomes an issue.

1.1 Target, motivation, and contributions

Given the advantages of GPUs and recent work showcasing GPUs
with PIM-enabled HBM, this paper focuses on such architectures for
applications especially heavy in pointer translation and indirection
such as databases, key-value stores, graph processing, sparse matri-
ces and less obviously matrix reshaping or transposition operations.
Our motivation stems from the fact that given an architecture like
our baseline architecture [13], the applications that can be run us-
ing PIM is limited and our goal is to enable indirect addressing by
providing a simple way to translate virtual addresses to physical
addresses in memory to extend the number of applications that can

be run in PIM and showcase kernels that can take advantage of
in-memory address translation.

Enabling in-memory address translation for PIM will improve
performance where memory bandwidth becomes the bottleneck for
applications that require indirect access through pointers. While
previous work has studied address translation in memory [15], [11],
[8], our approach shown in Figure 3, designed for GPU-hosted
PIM-enabled memories, stands out for its simplicity as we do not
perform page table walks. Our paper’s contributions include:

e Propose enhancements to the target architecture [13] and
develop a solution called indirection engine that enables a
unique mechanism for virtual to physical address transla-
tion in memory with minimal area cost.

o Discuss a list of applications that have indirect addressing
and show if they can benefit from the indirection engine.

e Provide analytical models for why performance increase
is modest compared to some of the earlier works [21], [3]
particularly for SpMV and whether or not they can be lever-
aged in the context of in-memory address translation.

2 Background

2.1 Baseline GPU + PIM-enabled HBM
architecture

The presented architecture in [13] consists of an HBM-based GPU
in which the memory is replaced with PIM-enabled HBM memory.
We are using a modern a GPU in AMD’s MI250 for our host. A table
for comparison to NVIDIA’s A100 is provided in Table 1. This is
approximately our baseline architecture and the importance of this
architecture stems from the fact that it does not require changes to
the memory controller for launching PIM kernels and can work as
regular memory if needed. In this work, we consider extensions to
this GPU + PIM-enabled HBM architecture; specifically, we add a
simple virtual-to-physical address translation mechanism in mem-
ory to support indirect addressing using the advantages of having
a GPU as host.

2.2 HBM specific features

HBM memory differs from traditional DRAM by stacking multi-
ple DRAM dies on top of a logic layer in the same package. The
GPU+PIM enabled HBM architecture incorporates PIM components
exclusively on DRAM dies, including PIM ALUs, an instruction ta-
ble in CRF (Command Register File), a scalar register file to store
constants in SRF and two general purpose registers per two banks
as shown in Figure 1. Placing ALUs on the DRAM dies must be
done carefully to avoid reducing memory capacity.

This design offers the advantage of achieving higher bandwidth
for PIM-based computations compared to a design where PIM logic
is placed beyond the memory channel’s data bus, potentially pro-
viding up to four times more bandwidth. Additionally, the baseline
design supports All Bank and All Bank PIM commands, enabling
commands to be received by every bank in a memory channel,
which we leverage in our work.!

'We make the assumption that the baseline [13] has already addressed issues related
to the power implications of All Bank commands as well as the associated timings
(e.g., tFAW, tRRD).

Mi250 A100
Architecture CDNA Ampere GA100
Process Node 6nm 7nm
Memory Bandwidth 3.2TB/s 2.0TB/s
FP16 Performance 383 TFLOPS 312 TFLOPS
TDP 500W 400W

Table 1: MI250 is slightly better than A100. We mainly focus
on FP16 performance and all of our kernels/applications run
on FP16.

2.3 Upper bound on performance gain

It is essential to understand why the maximum performance of our
baseline architecture is limited to ~ 4x. This is entirely related to
the available bandwidth to the host versus maximum bandwidth
achieved with the All Bank and All Bank PIM access. The external
bandwidth of the memory provided to the host is fixed at 256 GB/s,
whereas the internal bandwidth reaches 1 TB/s. Considering the
HBM runs at 1 GHz with tced = 4 cycles and 256 bit data interface
from the banks to the ALUs, we get 8GB/s internal bandwidth
for every two banks. With 256 banks per stack and 128 PIM ALU
blocks, this is equivalent to 1TB/s internal bandwidth. So, whatever
we do, we cannot exceed this upper limit for PIM acceleration.
In other designs like [21], [3], the upper bound sits at ~ 8x. The
parameters for our memory configuration are provided in Table
2 for comparison to other designs. Essentially, the number banks
within a rank limits the speedup in this design. Please note that
the hardware described in [14] mentions that the number of banks
within a pseudo channel can determine the maximum speedup and
mentions different numbers such as ~ 16x and ~ 8x, but those are
theoretical numbers when all the banks have PIM ALUs attached
and tccd is not taken into account. The actual experimental memory
has PIM ALUs between every two banks and with tccd = 4 cycles
and that limits the maximum internal bandwidth to ~ 4x.

2.4 PIM-friendly GPU features

GPUgs, in particular discrete GPUs which we assume in our baseline,
have other features that more easily enable PIM designs we leverage.
As a standalone device, the GPU driver is free to manage its own
device memory. One key component is that page sizes can be more
arbitrary than what is typically controlled by the operating system
ona CPU. Larger page sizes are common in GPUs as a way to reduce
TLB pressure and provide a way to guarantee a data structure
is contiguous in both virtual and physical address space. This is
important for PIM as it enables the broadcasting of PIM commands
across multiple memory banks and channels over the address space.

Larger pages are also beneficial in the context of indirection.
When performing translations, it provides simple arithmetic to
perform translation as the physical addresses are guaranteed to be
contiguous over a wide range and reduces the translation mappings

Even Bank

Pseudo-channel _-

Decoder

HBM

~J Regutar| PM |/

Mem |enabled [\

\

\

\

| omande | \
‘\

Interposer

~~~~
N Row Buffer

Odd Bank

Figure 1: Baseline PIM architecture is based on [13]. Memory is divided into two. One half serves as regular memory (8GB)
and the other is enhanced with PIM (4GB). This is to reduce the impact on memory capacity. Our focus is to enhance the PIM

enabled portion further with the indirection engine.

Field Value
Protocol HBM?2
# of bank groups per pCH 4
# of banks per group 4
# of memory rows 65536
# of memory columns 32
Width of the data bus 256
Row Buffer 8192-bit
# pseudo channels 16
Clock Frequency 1GHz
External/Internal Bandwidth 256GB/s, 1TB/s
Capacity 4GB

Table 2: Memory parameters used in our simulations on gem5

that must be stored, similar to how larger pages reduce TLB pressure.

Translation mappings on a standalone device are additionally set
up before a GPU kernel is launched and can be more easily set up
to not change during kernel execution.

2.5 Indirection

Indirection is a commonly used technique in software to represent
data structures using pointers. An indirection occurs when reading
a pointer from memory and using the value stored in that memory
as an address to another location in memory. This process can be
repeated multiple times until a non-pointer value is reached.

Pointers and indirection are useful in several situations in con-
temporary applications. The first case is representing sparse data.
For example, machine learning matrices may be stored in a com-
pressed sparse format rather than storing a matrix that contains
mostly zero values. Graph representations of data used in graph
algorithms are typically very unstructured, where a node in a graph
may point to almost any other node in the graph, and as such, sparse
matrix or linked-list formats are common here as well. Another case
is representing a large amount of data where searching through the
data needs to be done efficiently. Databases, for example, typically
have an index consisting of pointers to traverse through a large
amount of data.

One commonly studied area in PIM is accelerating pointer chas-
ing in PIM [11]. The key insight with this acceleration is the latency
needed to repeatedly dereference a pointer and return to the host
becomes large for deep pointer traversals and is proportional to
the number of pointers dereferenced. In this work, we focus on
applications which contain many pointers with limited reuse.

2.6 Pointer layouts and PIM amenability

PIM typically excels in applications that have contiguous data. Al-
though it may not seem useful in applications that make use of
indirection, data pointers themselves sometimes are laid out in
memory in a contiguous fashion. For example, compressed matrix
formats will contain pointers in the form of offsets to non-zero ele-
ments, database indices contain a contiguous hash table that point
to data elements determined by a hashing function, and graph
formats such as adjacency matrix/lists can be laid out with a con-
tiguous vector of all graph nodes followed by a linked-list of which
nodes each is connected or represented as a sparse matrix.
Further, there are less obvious use cases, such as data layout
transformations that take a contiguous array of memory as input,
and output data which is redistributed in a different way. The output,
in this case, can be viewed as an offset to another memory location



which acts similar to a pointer. These types of transformations are
common in ML applications which commonly perform operations
to transpose a matrix, reshape or reduce data.

2.7 PIM terminology

Throughout this paper, we describe multiple ways of interacting
with PIM and PIM-related components. These terms are defined
here as they are used in this work:

PIM commands are the micro-operations which execute on the
ALUs in PIM memory. PIM commands can be issued by the host,
memory controller, or self-issued by memory. Indirect PIM com-
mands are PIM commands which interact with the PIM features
proposed in this work to support indirection.

PIM instructions are memory requests executed by the host GPU
with PIM as the destination. These are typically store instructions
with a payload containing the PIM command.

3 High-Level Ideas

Implementing indirect addressing support in PIM comes with sev-
eral challenges. We list these challenges and explain how we over-
came them in this section.

3.1 Light-weight address translation in PIM

Applications with indirect accesses to data structures store pointer
values as virtual addresses, while PIM needs to issue requests to
physical addresses. Therefore, some form of address translation is
required before PIM can access the physical address. The obvious
solutions for this address translation challenge are: (a) adding page
walk logic to PIM, and/or (b) introducing additional translation
look-aside buffers (TLBs) at PIM. Both performance and implemen-
tation considerations rule out a page walker implementation at
PIM, whereas area and coherency (to keep TLB updated with the
rest of the system) considerations make TLBs less attractive. To ad-
dress this challenge, we propose a light-weight software-managed
PIM address translation table (PTT) that leverages the fact that
our host is a GPU and this provides friendly properties which can
be summarized as: (1) We have large, flexible physical page sizes
which means that contiguous virtual addresses can be known to be
physically contiguous by looking at the page table, added to the fact
that larger pages reduce the number of translation entries that need
to be stored; and (2) It is guaranteed that virtual to physical address
translation mappings will not change during kernel execution. This
avoids problems related to translations being stale and removes the
need for TLB-like “shoot downs” to be sent to the PTT.

The PTT stores the minimum amount of information needed
to perform the translation of an indirect address. This informa-
tion includes virtual page number (VPN) to physical page number
(PPN) translation, page size, and read/write permissions. The PTT
is populated using PIM instructions, which are modified load/store
instructions executed on the GPU. An example of a populated PTT
is shown in Figure 2.

On the software side, the programmer or compiler specifies
which data structures are used with indirect PIM commands. The
base virtual addresses of these data structures are populated in the
PTT. The PIM instruction populating the PTT will be translated the
same as a regular GPU memory instruction. The GPU embeds the

Entry Virtual Base Physical Base Size Perms
(*] 7FFF’0020° 0000h 3°F020° 0000h 0x200000 RW
1 oh oh ) =
2 oh oh ) =
3 oh oh ) -

Figure 2: A populated PIM translation table (PTT). Virtual
address is specified by software while the physical base, size,
and permissions are populated into a PIM instruction gener-
ated by the GPU.

payload of these PIM instructions with a virtual address, physical
address, page size, and permissions passed onto from the OS.

Based on our evaluation of several kernels for which implementa-
tion details are discussed in Section 5, the number of data structures
tracked by the PTT in most kernels is one or two. That means the
area overhead of this PTT is small and can be modeled as a 32 entry
CAM. This small size also enables the PTT to use associative lookup
when indirect PIM commands are executed.

3.2 Range and permissions checking

To prevent malicious applications from attempting to use the PTT
feature to access data outside the range of the application, we must
check that the translated physical address is within the range of the
page size. Additionally, for our proposed architecture, we need to
ensure that address is accessible by this PIM unit, i.e., the address
must be within the same channel. The program must also have
permission to read or write the page being indirected.

The range check is performed simultaneously with the address
translation. If the result of the subtraction is negative, i.e., the virtual
address is below the base virtual address of the PTT entry, it is out
of bounds. Similarly, if the result of the subtraction is larger than
the page size of the PTT entry, it is out of bounds.

The channel bits of the translated physical address must also be
compared against the HBM channel ID to determine if the request
is in the same channel. Requests that are outside of the channel
will fail translation as IMPRINT supports channel local indirection
only.

Permission bits are checked in parallel with the translation by
comparing them against the access type (read or write) of the indi-
rect PIM command. If sufficient permissions are not granted, the
range check fails, or the channel local check fails and the translation
fails.

3.3 Handling failures

Translation failures in our proposed architecture simply return an
address of zero. Since there are many parallel translations, this
allows kernels to continue on translations that were successful.
Eventually, this may result in incorrect output of the application
however, in our evaluation, we found that checking for failures
in software after each indirect PIM command is too slow. Error
handling is more easily enabled through hardware support. This
support could be implemented as an error register populated with
the first translation failure that can be checked by the program, an



DRAM Core HBM Logic Layer

Indirect Engine (IE)

IR,

IR,

Ry

Figure 3: Diagram of memory side of proposed architecture. On the left the HBM adds logic to understand new PIM com-
mands/operands and an indirect register (IR). In the middle an indirect engine is added to the HBM logic layer which includes an
address generation unit (AGU) and PIM translation table (PTT) from Figure 2. On the right shows how the memory controller
(MC) operates. The MC operates normally if a request is not an indirect PIM command and uses IMPRINT specific timings

otherwise.

interrupt sent to the host, or similar mechanism and is a topic for
future work.

Although translation failures seem inevitable, we describe later
in Section 5 how kernels can be ported to PIM without failures.
There we show how data structures are placed in memory to ensure
that translation failures do not occur in any of the ported kernels.

3.4 Hardware-assisted data layout

Our proposed design requires data to reside within the same channel
to perform indirection without translation failures. This is because
allowing data access to any memory region, such as in another chan-
nel, would require coordination at the memory controller level to
address memory in other channels. However, this extreme scenario
would result in access patterns resembling those of GPU applica-
tions, thereby mitigating the benefits of implementing indirection
in memory.

While it is possible to lay out data using a software-only ap-
proach, we propose offloading to the DMA engine for mostly secu-
rity reasons. First, the software may not know the address mapping
scheme used by the hardware and would not be able to craft mem-
ory addresses such that data is placed correctly. Second, this address
computation may be difficult due to concepts like address hashing
used in hardware, which would change the computation based on
the physical address. Lastly, a data structure attempting to place
data in a single channel may require a large allocation in order
to place data in such a way that it is placed correctly in a single
channel.

So, we provide a way for programs to place data in specific
channels. We propose leveraging pre-existing direct memory ac-
cess (DMA) engines used for CPU-to-GPU transfer in the GPU and
augment them with support to write to specific channels. This aug-
mented DMA engine can be used to duplicate data across channels
during the CPU-to-GPU transfers and provide a different virtual
address associated with each channel to the program that can be
combined with offsets to access data.

4 IMPRINT Architecture

Figure 3 shows the overall architecture. Other than ISA enhance-
ments to PIM supporting additional indirect PIM commands, an
indirect register (IR) is also placed in the PIM unit of each bank.
The IR is a register that can be written similarly to a normal PIM
register. The IR is further connected directly to the row and column
decoders of a DRAM bank. Indirect PIM commands use the IR to
specify row and column addresses rather than using the address
in a DRAM command allowing each bank to activate a different
row number. This is combined with the All Bank support in [13] to
parallelize indirect reads, which would otherwise require multiple
DRAM commands. This key operation provides the main performance
benefit of IMPRINT as we can leverage the All Bank feature to re-
duce the total number of activation cycles that would be needed by a
traditional host performing indirection.

The IR only needs to contain pairs of row and column address
values. We size the IR in this work to be able to hold the worst-case
number of pairs needed for a single bank. Based on the number of
row and column bits possible in HBM, this makes the size of the
IR similar to adding an additional PIM register. Given that the area
is mostly dominated by ALU logic, adding a register costs little in
area.

Indirect PIM commands direct all banks in a channel to use the
IR to first perform an activate on itself. Next, the column bits in
the IR are used to select which column to read. The column data is
then shifted into a destination PIM register. For simplicity, in this
work, we assume an All Bank precharge DRAM command is issued
after each activate.

The more complex features of IMPRINT are placed in the HBM
logic layer in our proposed indirect engine (IE). These features
include translating indirect virtual addresses to physical addresses,
bounds checking the dereferenced physical addresses, and writing
the IR in each bank to trigger indirect reads.



Bank / IE
Activity

Memory Data

Cycl .
ycle Bus Activity

N

Translate
Write IR Copy
Translate
Write IR Copy

Translate
Write IR Copy

Translate
Write IR Copy

Read IR Copy0
Shift IR CopyO

Read IR Copyl
Shift IR Copyl

Read IR Copy2
Shift IR Copy2

Read IR Copy3
Shift IR Copy3

All-Bank ACT
All-Bank RD
All-Bank PRE

Indirect Setup
A

AV

i

Indirect Process
A

r

© 66 60000000

... repeat Indirect Process as needed ...

Indirect Complete

Figure 4: Example cycle-by-cycle diagram of an indirect PIM
command shown on a 4 bank memory channel. Indirect PIM
commands are segmented into indirect setup and indirect
process commands.

4.1 PIM indirection flow

In a kernel employing PIM indirection, the process begins by popu-
lating the PTT with data structures requiring indirection support.
Indirect PIM commands are issued and processed by the memory
controller (MC) and the IE (Indirect Engine). The IE handles these
commands in two steps: an indirect setup command, which con-
figures IR copies for each bank, and an indirect process command,
which triggers indirection and manages DRAM-related operations.
This two-step process ensures predictable memory controller tim-
ings. The indirect setup command reads a PIM register specified
in the indirect PIM command for all banks, with translations per-
formed in parallel using an address generation unit (AGU) and the
PTT. Afterward, the indirect process command writes the IR of
each bank based on the values in each IR copy register from the
setup command, enabling it to be divided into multiple commands
for better memory request scheduling. The top portion of Figure 4
shows an example of an indirect setup in a memory channel with
four banks and the bottom portion shows the indirect process.
Data read during indirect process commands is stored in a pro-
grammer specified PIM register until each bank’s IR is empty. The IE
is responsible for organizing the data into the final PIM register in the
order of input virtual addresses. If an IR register cannot complete all
the translations in one iteration due to physical address pointing to a
different bank, the unresolved addresses are buffered into a 32KB cache
in the logic layer and redistributed for further translation through the

IE. A High-level view of PIM register values are detailed for SpMV
in Section 5.

4.2 Overhead Analysis

Given the properties discussed in Section 3.1, we know that we will
have a small number of entries in the PTT based on property (1) and
that we will not have misses in the PTT based on property (2) and
therefore, the PTT is basically a temporary storage space that can be
modeled as a small 16 to 32 entry content addressable memory. The
address generation unit either passes the base physical page number
or adds an offset to it and therefore, this can be modeled as a 64-bit
adder. We propose to add a register per ALU block with access to row
and column decoders for self activation and another 32KB CAM for
buffering unresolved address translations for redistribution through
the logic layer.

The estimated area loss for the additional register even with a 4x
adjustment is around 1%. Because the area around banks is largely
dominated by the ALUs and we do not modify the ALUs in our
design. The indirection engine and the 32KB CAM sits on the logic
layer and we estimated entire area cost to be 0.483mm?. Given an
average of 50mm? die size, this would consume less than 1%. We use
CACTI-3DD [5] for modeling memory blocks and standard circuit
design tools for logic area estimation. Previous work have shown
that the logic design in DRAM process could be up to ~ 2x larger
than the one designed in CMOS process due to limited number
metal layers. So, everything is adjusted by ~ 2x [22].

5 GPU to PIM kernel porting
5.1 Kernels suitable for PIM indirection

The IMPRINT architecture provides indirection support and enables
indirection to occur in a more parallel fashion. As such, we expect
to see the most benefit for applications with a large number of
indirections.

Since our target is a PIM-enabled GPU, we also consider how
the data structure layout may change compared to a CPU baseline.
For example, a hash table may handle collisions on a CPU using a
straightforward linked list. On a PIM-enabled GPU this data may
be reorganized so that the linked list nodes are large enough to fit
across multiple banks worth of PIM registers. As a result of this
reorganization, much of the indirection classically seen on a CPU
is gone, as the list nodes are now much larger.

Kernels we identified as having a large number of pointers even
after reorganizing for a PIM-enabled GPU and that can take ad-
vantage of our parallel translation mechanism were sparse matrix
processing (e.g., CSR) and data transformation algorithms such as
matrix transposition, max pooling. All three types of kernels show
similar performance improvements for large matrices. The baseline
for all experiments is GPU-HBM without PIM.

52 SpMV

Sparse matrix-vector multiply (SpMV) is an application that uses a
compressed matrix format to multiply with a vector and obtain a
vector as a result. There are many compressed matrix formats, but
we focus specifically on the compressed sparse row (CSR) format. All
concepts applied to CSR apply to compressed sparse column (CSC)
and other sparse formats as well.



val = [a, b, ¢, d, e, f, g, h, .]
col = [0, 7, 1, 4, 2, 0, 3, 1, ..]
row_ptrs = [0,2,4,5,5,6,7,7,8, ..]

Figure 5: Example of compressed sparse row (CSR) used in
Sparse Matrix-Vector multiply (SpMV). We compute y = A*x
where the A matrix is represented as vectors: val, col, and
row_ptrs. Entries in the matrix with no value are zero. val
contains the non-zero matrix values which are in the column
designated by the same entry in the col vector. row_ptrs
defines the first element located in the row with that index.

An example of the CSR format is shown in Figure 5. The format
contains the values of the matrix (the val vector), the column posi-
tion of the value (the col vector), and row pointers which indicate
the range of matrix values which are in the row corresponding to
the index value of the row pointer.

The key observation for this application is that the val and col
vectors are contiguous in memory. This makes the format poten-
tially amenable to PIM processing as these vectors can be loaded
into a PIM register using a basic copy command to move data from
memory banks into PIM registers. However, the PIM register, which
reads the col vector, does not contain the values needed but rather
the offset into the vector we are multiplying matrix values with (the
X vector).

At this point, the indirect PIM command is needed to convert the
offsets into data from the x vector. The indirect PIM command will
compute the virtual addresses using the offset and the PTT, perform
an address translation, and read the values at that address into the
PIM register. After this, we can continue PIM computation using
normal PIM commands. The multiplication with the matrix values
occurs next, followed by writing the output to a temporary buffer.
Since the row pointers are difficult to work with in PIM, we choose
to reduce these values using non-PIM GPU commands. Figure 6
shows the PIM portion of the GPU kernel along with the symbolic
and numerical values in the PIM register after each command.

5.3 Matrix transpose

The GPU implementation of matrix transpose is a well-studied prob-
lem, but the PIM implementation is usually not possible without
specialized hardware in memory. In our architecture, where the pro-
cessing happens at the bank level with registers and ALUs, matrix
transposition is certainly not possible without our PIM indirection
engine. As shown in Figure 7, the matrix A will be mapped as an
array when copied over to the GPU memory, and the transposi-
tion problem is essentially relocation of numbers within this array.
Therefore, it can be seen as an indirection problem which IMPRINT
can accelerate. Since the new locations of each number within the
array are known beforehand, we can use these location “offsets” to
load the correct numbers and form the transposed matrix. In Figure
8, starting with a 4x4 matrix, we can create an offset array for the
transposed matrix and use these offsets to perform transposition in

// Read columns into register ©.
PIM_read(cols, rego);

col[0] col[1] col[2] col[3] col[4] col[5] col[6] col[7]

(0] 7 1 4 2 0 3 1

// Operation to align 32 bit input to 64 bit lanes.
PIM_align(rego, 4, 8);

col[1] col[2] col[3]
7 1 4

// Dereference virtual addr in ind@ + offsets in reg@.
PIM_indirect_offset(regd, ind@);

x[1]

Xy

// Perform val[i] * x[col[i]].
PIM_mul_f32(rego, val);

t[0] t[1] t[2] t[3]

// Write result to PIM output vector t.
PIM_copy(rego, t);

Figure 6: PIM portion of an SpMV kernel based on CSR for-
mat which uses PIM indirection. Column index values are
first read and aligned. IMPRINT then reads the values of
the col vector at the index value in the third PIM command.
Column values are multiplied by the matrix values at the
same index location and finally written to an output buffer
for completion on the GPU.

Matrix AT

Matrix A

7
1
7
9

A=[32395

S

7890123476] AT = [ A[0] A[4] A[8] A[12] ..

.. A[3] A[7] A[11] A[15] ]

Figure 7: Example Matrix Transpose Operation. The arrays
show the starting locations and desired output locations in
memory.

memory. Similar to the SpMV method, we load the first offsets to a
PIM register and align them to load the numbers at their respective
position within the array.

5.4 Max pooling

Max Pooling is a common operation in CNN algorithms used to re-
duce the dimensions and number of parameters of the feature maps
after each convolution layer. Similar to the matrix transposition
problem, max pooling is a matrix reshaping problem with a small
function attached. In Figure 9, in order to compare values in a given
window, first those values have to be retrieved from those locations



// Create offsets for AT in CPU code.
Off = [0481215913 26 10 14 3 7 11 15];

// Read offsets into register 0.
PIM_read(Off, rego);
Off[0] Off[1] Off[2] Off(3] Off[4] Off[5] Off[6] Off(7]

] 4 8 12 1 15 9 13

// Align 32 bit integer offsets to 64 bit
// lanes for pointer indirection.
PIM_align(rego, 4, 8);
Off[0] Off[1] Off[2] Offsets|[3]
(0] 4 8 12

// Dereference virtual address in ind® + offsets.
PIM_indirect_offset(regd, inde);

Al0] Al4] A[8] Al12]

3 5 9 3

// Copy result to AT
PIM_copy(rego, AT);

Figure 8: Matrix Transpose PIM Implementation. Output
offsets are read into a PIM register, aligned, an indirect PIM
command is issued, and the result is copied to an output
buffer.

Matrix B

max pool 2x2 filters
with stride 2 - 9 - 9
> ki

Figure 9: Max Pooling Operation. A small section of a matrix
defined by a filter size is selected and reduced to a single
element in the output by selecting the maximum value.

Matrix A

and retrieving those values from “offsets” to the base pointer is
where IMPRINT can help.

6 Evaluation
6.1 Methodology

We developed a model of our architecture in simulation using
the gem5 simulator [4]. The most recent version of gem5 has the
ability to run unmodified native GPU applications, which we use
as our baseline applications. Our simulations use the KVM CPU
model, which improves simulation time but introduces some non-
determinism into the simulation. To help obtain better results, we
perform multiple simulations of the same applications and average
the run times of our test kernels to help obtain more deterministic
statistics for our simulations.

Our model implements special gem5 pseudo-instructions on the
GPU to model PIM commands. Our PIM-based simulated GPU is-
sues PIM instructions containing an encoded PIM command which
is executed by a PIM functional model. The PIM functional model
contains all of the instructions demonstrated in the hardware pro-
totype in [13] to start along with the new indirect PIM commands
introduced in this work. We modify the memory hierarchy so PIM
instructions arrive at the memory controller in the same order as
the GPU executes them.

In addition, we developed a small gem5 specific runtime library
that allows for PIM commands to be executed using simple func-
tion calls within the GPU programming model. Using this runtime
library, the GPU kernels become essentially a list of PIM commands
to be executed by the GPU. The runtime library also includes var-
ious helper functions for PIM, such as allocating memory in an
aligned fashion, functions to initiate memory copies to specific
channels using DMAs and address calculation functions to target
specific channels with PIM commands.

To model the timing of the indirect commands, we implement
the indirect setup and indirect process commands as described
in Section 4.1. The indirect setup command takes a fixed latency
defined by the number of banks in each memory channel. We then
delay the next memory commands in the memory controller by a
latency determined by the maximum number of indirections that
must occur in a single bank. We simplify the scheduling logic by
assuming the indirect process commands are issued, in full, directly
after the indirect setup command. This avoids needing to develop a
more complex scheduler, which is outside the scope of this work but
is still realistic for the types of applications we are modeling that
do not mix PIM and non-PIM memory requests at a fine granularity.
Our simulator uses some of the elements described in [7]. We could
not find a repository for this work, but we did utilize the Samsung
PIM simulator repository for memory modeling [17].

6.2 Performance and Power

For Power evaluation we use the PIM Evalulation platform that
has recently been published [18]. All the performance results are
compared to a baseline of GPU-HBM with no PIM design.

SpMYV: For SpMV, we first looked at how sparsity and matrix
size affects the performance as shown in Figure 10. As it is obvious
in other kernels as well, once the matrix size reaches a critical point,
we are starting to get better speedups. And, the critical size in our
design seems to be around 4096 by 4096. Below that number, we
see an under utilization of resources and after that performance
does not seem to go much higher. A similar relationship can be
seen with sparsity levels. The less sparse the matrix is, the more
utilization we get with our resources simply because, we perform
more indirect access per iteration within IRs.

In Figure 11, we look at real benchmarks used in other works
such as [21], [3]. From this figure, we conclude that our design
accelerates SpMV based on the number of non-zero elements. All of
these benchmarks are fixed to 99% sparsity, but they have more non-
zero elements than the 95% sparse 4096 by 4096 matrix in Figure 10.
Since we do not store any zero values and given the performance
relationship to matrix size and sparsity, this conclusion makes sense.
Also, the energy savings seems to follow the performance line. The



SpMV

1.8 80 —
g
1.6 - 75 5
L wv
s 1.4 05
o £
g 63
o 1.2 1 A
wn - 60 3
1.0 - - 55 ©
c
0.8 50 W
512 1024 2048 4096 8192 16384
Matrix Size (%Sparsity) EH99% 0O 97% B 95%

Figure 10: Both matrix sizes and sparsity affects performance. Basically below 97% sparsity and 4096 matrix size the resources
are underutilized and the speedup seems to be capped around ~ 1.5x. Black line traces the average energy savings while the red

line traces the average speedup.

SpMV Benchmarks

Energy Savings (Avg.)

Figure 11: Benchmark evaluation for SpMV. Our design accelerates SpMV based on the number of non-zero elements. Purple

line traces the average energy savings.

downside of our algorithm is that the vector needs to be copied
across channels, but we do not store zero values and so, this is
negligible as opposed to storing most of the zero values as in [21],
(3].

Matrix Transpose: We use similar matrix sizes as SpMV in
matrix transpose based on commonly seen sizes in full machine
learning applications. The performance improvement here has sim-
ilar characteristics to SpMV, where the improvement is tied to how
much of the resources are utilized. The sweet spot seems to be again
around 4096 by 4096 as shown in Figure 12.

The energy reduction in this case is almost 90% when this kernel
is executed alone, because no data is moved outside the memory.
However, this is not realistic when we consider using this in ap-
plications like GPT-2. For instance, for the softmax function to be
evaluated, we would need to send the transposed matrix to the
host anyway for complex math operations like log or sqrt. This
eliminates any potential benefit for energy reduction even though
we could execute transposition slightly faster.

Also, through profiling we were able to find out that about ~
5 — 10% is spent on transposition in GPT-2. This would mean that



Matrix Transpose

100

Energy Savings (Avg.)

512 1024 2048 4096 8192 16384
Matrix Size

Figure 12: Matrix Transpose performance increases with ma-
trix size. Green line traces the average energy savings

Max Pooling

Energy Savings (Avg.)

512 1024 2048 4096 8192 16384
Matrix Size

Figure 13: Max Pooling performance increases with matrix
size. Green line traces the average energy savings

overall, we would get about 2% maximum speedup for such a large
application which is minimal.

The downside of this solution is that the entire matrix needs to
be copied across channels and executed in parallel and we have not
yet found a large application where the benefits would outweigh
the costs.

MaxPool: The MaxPool kernel is similar to matrix transpose in
how it gathers data to be processed into PIM registers using IM-
PRINT. The kernel has an additional step of finding the maximum
value in a PIM register which can easily be done in memory after
the indirection step has been performed. As a result, the perfor-
mance numbers seem to be very similar. Once again, this kernel
sees improvement due to the IMPRINT feature and improves in
performance with increasing matrix sizes as the resources start to
get utilized as shown in Figure 13.

The energy reduction in this case is slightly lower compared to
matrix transpose and it is following the performance numbers just
like in SpMV. The reason for this is that, for both SpMV and Max
Pooling, we still use the GPU for certain operations. For SpMV, the
final reduction operation is performed on the GPU and for Max
Pooling, we actually divide the pooling window across channels

and to find the max value of the entire window, we gather the max
value of smaller sections from the channels and find the final max
value on the GPU. This ends up consuming more energy due to
increased traffic to the host. But, with increased matrix sizes, the
benefits of PIM outweigh the cost of increased traffic to host.

Just like in both SpMV and Matrix Transpose, some of the data
have to be copied across the channels to actually execute this kernel
with IMPRINT. The problem here is that the matrix has to be divided
row or column wise into chunks and sent to different channels.
However, when the pooling window in a single channel starts
operating on the edge of each chunk, the window needs data from
other channels and so, some of the data have to be duplicated to
address this issue. For 3 by 3 window sizes, the duplication cost
is around 16% per channel. But, with increased window sizes, this
number would go up.

Unfortunately, Max Pooling only takes up ~ 5% of common CNN
algorithms like AlexNET or ResNet. In fact, for all CNN algorithms,
the execution time is dominated by matrix multiplication. So, the
impact of accelerating Max Pooling for these applications would
be minimal. However, there are other pooling methods, such as
Diffpool, which are used in GNNs and this method can actually take
up 30% of the total execution time. We believe that Diffpool could be
similarly implemented using our mechanism and this could result
in a net gain of ~ 10% in larger applications.

7 Discussion
7.1 Why is the performance increase modest?

We hypothesize that since with our architecture we do not utilize
a network approach as in [21], our kernels reach a point with
large matrices where they utilize all the PIM resources, but cross-
bank communication becomes a bottleneck. Given the uniform
distribution of data in our kernels, we can safely assume almost half
the data have to travel through the logic layer for the next iteration
of pointer translations. If half the data use the external bandwidth
~ 1x as opposed to the larger internal bandwidth ~ 4x, then a simple
calculation can be made to show that the maximum performance
without a smart network on memory mechanism is limited to ~
1.6x in our architecture. That is 4/(0.5x1 + 0.5x4) = 1.6. So, our
maximum gain should be limited to ~ 1.6x. More importantly, even
if our internal bandwidth was 32 times the external bandwidth,
the acceleration would be around 32/(0.5x1) + (0.5x32) =~ 2x.
So, the speedup of this mechanism is limited to 2x by expensive
cross-bank communication that goes through the logic layer. To
overcome this bottleneck, we either would need to adopt a network-
on-memory approach similar to SpaceA [21], or we would need to
layout our data in a way that cross-bank communication is limited.
Such methods are adopted in [3] and [8].

8 Related Work

Similar work has been done for memories with PIM capabilities
[11], [8]. Even though they are providing a more general solution
to virtual-to-physical address translation in memory, they are using
TLBs and dealing with page table walkers whereas our solution is
simply a software managed temporary storage space along with
basic arithmetic units. This is because GPUs have features that can
be leveraged to design a simpler solution specific to GPU hosts.



Any algorithmic approach used in [8] can be leveraged to reduce
cross-bank communication in our work and increase speedups as
discussed in previous section.

The most recent works that focus on accelerating SpMV through
PIM[21], [3] achieve a lot higher speedups compared to our work,
but these works modify the memory architecture significantly and
even though their architecture is somewhat different from ours
especially in memory density. We estimate that overall they lose
~ 10 — 20% memory capacity as opposed to our ~ 1 — 2%. Our
work does not rely on a network-on-memory model. We believe
such a model would improve the speedups to ideal case (maximum
speedup) for our architecture as well and this is a topic of future
research.

Gearbox [15] is another that lightly touches upon in memory
address translation issue, but the goal of this work was to accel-
erate sparse matrix/vector operations in the Fulcrum architecture
[16].Sparse matrix/vector operations inherently have indirect ad-
dressing due to representations of CSR/CSC formats, as discussed
in Section 5.2. However, there is no indication that the described
mechanism would work outside the range of the bank. Since pointer
indirection was not the focus of the paper, the details were not
shared. Our work solely focuses on pointer indirection, and we
describe our indirection engine in detail in Section 4.

9 Conclusions

Our goal in this work was to extend the number of applications
that can be run with PIM in a baseline GPU+PIM enabled HBM
architecture with low overhead by enabling indirection support.
The IMPRINT architecture provides the ability to perform indi-
rection in a highly parallel fashion. This provides additional per-
formance benefits by reducing memory cycles, minimizing bus
bandwidth between host and memory, and enables a new wider
range of pointer-based applications in PIM with minimal hardware
cost.

Acknowledgments

This research has been funded by LPS (Laboratory for Physical
Sciences) University of Maryland through the MIST Center. We
appreciate their continued support and thank all the reviewers for
their feedback towards improving this manuscript.

References

[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2015. A scalable processing-in-memory accelerator for parallel graph process-
ing. In Proceedings of the 42nd Annual International Symposium on Computer
Architecture. 105-117.

[2] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: A low-overhead, locality-aware processing-in-memory architecture.
ACM SIGARCH Computer Architecture News 43, 3S (2015), 336-348.

[3] Daehyeon Baek, Soojin Hwang, and Jaechyuk Huh. 2024. pSyncPIM: Partially
Synchronous Execution of Sparse Matrix Operations for All-Bank PIM Archi-
tectures. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). IEEE, 354-367.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1-7.

[5] Ke Chen, Sheng Li, Naveen Muralimanohar, Jung Ho Ahn, Jay B Brockman,
and Norman P Jouppi. 2012. CACTI-3DD: Architecture-level modeling for 3D
die-stacked DRAM main memory. In 2012 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 33-38.

G

[10

(1]

[12

[13]

(14]

[16

(17]

[18

[19

[20]

[21]

[22]

~
=

Jin Hee Cho, Jihwan Kim, Woo Young Lee, Dong Uk Lee, Tae Kyun Kim, Heat Bit
Park, Chunseok Jeong, Myeong-Jae Park, Seung Geun Baek, Seokwoo Choi, et al.
2018. A 1.2 V 64Gb 341GB/s HBM2 stacked DRAM with spiral point-to-point
TSV structure and improved bank group data control. In 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 208-210.

Derek Christ, Lukas Steiner, Matthias Jung, and Norbert Wehn. 2024. PIMSys: A
Virtual Prototype for Processing in Memory. In Proceedings of the International
Symposium on Memory Systems. 26-33.

Amel Fatima, Sihang Liu, Korakit Seemakhupt, Rachata Ausavarungnirun, and
Samira Khan. 2023. vPIM: Efficient Virtual Address Translation for Scalable
Processing-in-Memory Architectures. In 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 1-6.

Juan Gémez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F
Oliveira, and Onur Mutlu. 2021. Benchmarking a new paradigm: An experi-
mental analysis of a real processing-in-memory architecture. arXiv preprint
arXiv:2105.03814 (2021).

Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, Jodo Dinis Ferreira,
Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan
Gomez-Luna, and Onur Mutlu. 2021. SIMDRAM: a framework for bit-serial
SIMD processing using DRAM. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 329-345.

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu. 2016. Accelerating Pointer
Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation. 2016
IEEE 34th International Conference on Computer Design (ICCD) (2016), 25-32.
d0i:10.1109/iccd.2016.7753257

Hongshin Jun, Jinhee Cho, Kangseol Lee, Ho-Young Son, Kwiwook Kim, Hanho
Jin, and Keith Kim. 2017. HBM (high bandwidth memory) DRAM technology
and architecture. In 2017 IEEE International Memory Workshop (IMW). IEEE, 1-4.
Jin Hyun Kim, Shin-Haeng Kang, Sukhan Lee, Hyeonsu Kim, Yuhwan Ro, Seung-
won Lee, David Wang, Jihyun Choi, Jinin So, YeonGon Cho, et al. 2022. Aquabolt-
XL HBM2-PIM, LPDDRS5-PIM with in-memory processing, and AXDIMM with
acceleration buffer. IEEE Micro 42, 3 (2022), 20-30.

Sukhan Lee, Shin-haeng Kang, Jachoon Lee, Hyeonsu Kim, Eojin Lee, Seungwoo
Seo, Hosang Yoon, Seungwon Lee, Kyounghwan Lim, Hyunsung Shin, et al. 2021.
Hardware architecture and software stack for PIM based on commercial DRAM
technology: Industrial product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 43-56.

Marzieh Lenjani, Alif Ahmed, Mircea Stan, and Kevin Skadron. 2022. Gearbox:
A case for supporting accumulation dispatching and hybrid partitioning in PIM-
based accelerators. In Proceedings of the 49th Annual International Symposium on
Computer Architecture. 218-230.

Marzieh Lenjani, Patricia Gonzalez, Elaheh Sadredini, Shuangchen Li, Yuan Xie,
Ameen Akel, Sean Eilert, Mircea R Stan, and Kevin Skadron. 2020. Fulcrum:
A simplified control and access mechanism toward flexible and practical in-
situ accelerators. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 556—-569.

Seungwoo Seo Jin-seong kim Shin-haeng Kang, Sanghoon Cha. 2022. PIMSimu-
lator. https://github.com/SAITPublic/PIMSimulator. Accessed: 2025-08-29.
Farzana Ahmed Siddique, Deyuan Guo, Zhenxing Fan, Mohammadhosein Gho-
lamrezaei, Morteza Baradaran, Alif Ahmed, Hugo Abbot, Kyle Durrer, Kumaresh
Nandagopal, Ethan Ermovick, et al. 2024. Architectural Modeling and Benchmark-
ing for Digital DRAM PIM. In 2024 IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 247-261.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN symposium on principles and
practice of parallel programming. 1-12.

Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20-24.
Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei Deng, Ling Liang, Xing Hu,
and Yuan Xie. 2021. SpaceA: Sparse matrix vector multiplication on processing-in-
memory accelerator. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). IEEE, 570-583.

Amir Yazdanbakhsh, Choungki Song, Jacob Sacks, Pejman Lotfi-Kamran, Hadi
Esmaeilzadeh, and Nam Sung Kim. 2018. In-dram near-data approximate accel-
eration for gpus. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques. 1-14.

Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: Throughput-oriented pro-
grammable processing in memory. In Proceedings of the 23rd international sym-
posium on High-performance parallel and distributed computing. 85-98.


https://doi.org/10.1109/iccd.2016.7753257
https://github.com/SAITPublic/PIMSimulator

	Abstract
	1 Introduction
	1.1 Target, motivation, and contributions

	2 Background
	2.1 Baseline GPU + PIM-enabled HBM architecture
	2.2 HBM specific features
	2.3 Upper bound on performance gain
	2.4 PIM-friendly GPU features
	2.5 Indirection
	2.6 Pointer layouts and PIM amenability
	2.7 PIM terminology

	3 High-Level Ideas
	3.1 Light-weight address translation in PIM
	3.2 Range and permissions checking
	3.3 Handling failures
	3.4 Hardware-assisted data layout

	4 IMPRINT Architecture
	4.1 PIM indirection flow
	4.2 Overhead Analysis

	5 GPU to PIM kernel porting
	5.1 Kernels suitable for PIM indirection
	5.2 SpMV
	5.3 Matrix transpose
	5.4 Max pooling

	6 Evaluation
	6.1 Methodology
	6.2 Performance and Power

	7 Discussion
	7.1 Why is the performance increase modest?

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

