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Abstract
Heterogeneous memory architectures, such as a mix of High Band-
width Memory (HBM) and Double Data Rate (DDR), offer flexible
performance optimization by leveraging the high bandwidth of
HBM along with the high capacity of DDR. However, these archi-
tectures present challenges in balancing bandwidth and capacity
to maximize overall system performance and complicate hardware
design.

In a flat memory organizationmixing HBM and DDR, prefetchers
must carefully reduce prefetch requests on DDRwhen transitioning
from HBM to avoid performance degradation due to potential band-
width saturation. Traditional hardware prefetchers, which typically
assume a homogeneous memory, are unaware of this circumstance,
so they may not be effective in heterogeneous memory architec-
tures. The paper enhances the aggressiveness of prefetchers in this
kind of architecture. Our technique enables a prefetcher to dynami-
cally determine the optimal prefetch degree and distance based on
memory type. It balances prefetch aggressiveness and timeliness
through an adaptive strategy informed by bandwidth utilization
and prefetch metrics learned for each memory type. We evaluated
the technique within the Stride and Stream Prefetchers at L2 in a
gem5 model of a 20-core Arm Neoverse V1-like architecture, a mix
of HBM2 and DDR5. The simulation results, focusing on scientific
benchmarks, showed that the technique effectively guides prefetch-
ers to near-optimal static configurations. On HBM2, the adaptation
strategy detects bandwidth availability and prefetches more aggres-
sively to boost performance, achieving speedups of 1.3× to 2.3×.
On DDR5, when faced with saturated bandwidth contention, the
adaptation strategy switches to conservative prefetching mode to
mitigate performance degradation.
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1 Introduction
Modern data-intensive applications require up to 80% of the total
computation time spent on data retrieval [9]. Thus, the speed at
which data can be delivered to the CPU (Central Processing Unit)
is an important performance factor, prompting the development of
advanced memory technologies such as High-Bandwidth Memory
(HBM) [29]. As reported by Li et al. [27], HBM is 1.5× faster and
exhibits higher bandwidth (up to 5×) than DDR4, highlighting its
superior performance.

Despite the increased bandwidth of high-performance memo-
ries, a key challenge is the persistent latency issues in the interface
between memory tiers and the CPU, preventing the achieving max-
imum performance. This challenge, often exacerbated by the rapid
advancements in CPU capabilities predicted by Moore’s Law, has
led to a significant performance bottleneck, commonly referred to
as the memory wall [63]. The memory wall emphasizes the differ-
ence between the exponential increase in processing power and the
slower rate of improvement in memory access times. Consequently,
this gap has emerged as a critical barrier in computer architecture,
substantially affecting system performance. Techniques implement-
ing small, low-latency caches or memory prefetching can address
these challenges. These aim to reduce latency and improve data ac-
cess times, thereby enhancing overall system performance. While
deeper cache levels or scaling cache capacities help address the
increasingly widening gaps of the memory wall, they are expen-
sive solutions [44]. In contrast, the memory prefetching technique,
which hides the large memory latency by predicting and fetching
data from slow main memory into small, fast caches to mitigate
future cache misses, may offer a cost-efficient solution [10, 36].
Therefore, recent efforts continue to advance memory prefetch-
ing [13, 16, 21–23, 34, 40, 41, 43, 46, 52, 56].

A hardware prefetching technique proves highly effective when
data are prefetched in highly accurate and timelymanner. Timeliness
in prefetching can be gained by tuning the aggressiveness; that is, the
prefetcher must decide the number of prefetch requests and how far
ahead the prefetch trigger is to operate. The level of aggressiveness
must be in a delicate balance, as being too aggressive can lead
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to cache evictions, increased energy consumption, and potential
performance trade-offs [10, 12, 56].

Heterogeneous memory architectures combine different mem-
ory technologies, such as hybrid memory architectures where two
memory types serve different roles based on their bandwidth and ca-
pacity [55, 61]. In a flat memory organization within an HBM/DDR
architecture [33], where both HBM and the conventional DRAM
are mapped into the same global physical address space, data al-
located in HBM’s region benefits from high bandwidth and faster
access but with limited capacity compared to DDR. Consequently,
this architecture introduces non-uniform memory access (NUMA),
that is, the varying performance characteristics (e.g., latency, band-
width) of memory accesses from a CPU to different memory types.
The hardware is typically exposed as distinct NUMA domains (or
NUMA nodes), where each domain groups CPUs associated with
the same memory technologies, similar to the traditional multi-
socket systems that assume memory to be homogenous 1. In multi-
socket systems, it is expected to keep all traffic locally within the
NUMA domain to mitigate inter-NUMA domain communication
and, therefore, to achieve the lowest latency. In heterogeneousmem-
ory architectures, the advantages of memory technology are more
critical, and the cost of traffic crossing NUMA boundaries may be a
minor factor compared to the characteristics of memory type across
NUMA domains. Thus, applications deployed on this architecture
must be aware of memory allocation to a specific memory type to
maximize capacity or bandwidth/latency benefits.

NUMA effects within a heterogeneous memory architecture may
lower the effectiveness of aggressive prefetching. We, therefore,
developed an adaptive technique that adjusts the prefetching pa-
rameters during runtime, dynamically identifying near-optimal
prefetch degrees and distances according to the memory type that
is being addressed. To analyze the role of prefetching in a pro-
cessor with heterogeneous memory, we developed a gem5 model
simulating a hybrid memory architecture mixing two new memory
technologies, HBM2 and DDR5 2, and using 20-cores Arm Neo-
verse V1 [4]. This model is employed to evaluate our solution. The
contributions presented in this paper are as follows:

• We introduce a heterogenous memory-aware prefetching
technique to minimize system latency within the NUMA-
style hybrid memory architecture. The technique optimizes
the balance between prefetch aggressiveness and timeli-
ness through an adaptive strategy informed by bandwidth
utilization and prefetch metrics learned for each memory
type.

• We have developed a gem5-based simulation framework
to model a detailed hybrid memory architecture. The ar-
chitecture comprises 20 Arm Neoverse V1-like cores and is
configured with 8× HBM2 and 1× DDR5 channels.

• Using the simulation framework, we explore the technique
when integrated into Stream and Stride Prefetcher, analyz-
ing their timeliness, aggressiveness, and accuracy. The re-
sults strongly show the importance of adaptive prefetching

1In a multi-socket system, each domain has its own local memory, and the CPU within
the domain accesses its local memory faster than remote memory from other domains.
2HBM2 is used in the modest A64FX processors, while the Graviton3 CPU uses DDR5.

in enhancing system performance by dynamically identi-
fying near-optimal prefetch degrees and distances across
scientific workloads.

• We investigate the limitation of static configurations of
aggressive prefetching, which require workload-specific
optimizations that are impractical to implement universally.
In contrast, our technique demonstrates notable perfor-
mance enhancements, in particular on HBM2. The adaptive
strategy can mitigate the system congestion on the DDR5
device, where bandwidth availability is limited for some
data-intensive applications, achieving performance aligned
with the best static configurations.

The paper is structured as follows. We start in Section 2 with
the fundamentals of memory prefetching and our motivation. Sec-
tion 3 characterizes the 20-core Neoverse V1-like architecture using
HBM2/DDR5 memory devices. In Section 4, we describe the hybrid-
memory aware prefetching, followed by the implementation in
Stream Prefetcher. We dedicate Section 6 to describe our evaluation
methodology. Next, Section 7 insights into the experimental analy-
sis and evaluation of scientific benchmarks. Moving forward, in the
related work in Section 8, existing research, methodologies, and
relevant findings are compared to our approach. Lastly, in Section
9, we make conclusions and suggest potential directions for future
research.

2 Background and Motivation
2.1 Prefetching terminology
Memory prefetching predicts and proactively fetches instructions
and data from the slow memory subsystem levels to faster cache
levels ahead of their actual needs. This approach significantly en-
hances overall system performance by hiding large memory laten-
cies. [10, 36].

Memory prefetching can be deployed either in hardware or soft-
ware. In the software prefetching approach, the compiler of the
programmer inserts prefetch instructions into the program code to
guide the prefetching process. In hardware prefetching, the CPU
predicts specific access patterns in applications, e.g., spatial and
temporal locality, using this knowledge to apply prefetching [10].
The simple, cost-effective hardware prefetcher Next-Line [54] as-
sumes that accessing a memory location likely leads to the next one,
and always preloads the next sequential memory block. Stride [5]
and Stream Prefetchers [20, 56] predict future data requests based on
stride access patterns, like𝑅 [𝑖], 𝑅 [𝑖+𝑄], 𝑅 [𝑖+2𝑄], 𝑅 [𝑖+3𝑄], where𝑄
is the stride. These hardware prefetchers are effective with the regu-
lar data access patterns often found in scientific computing [10, 36].
Stride Prefetcher detects stride-based streams issued by the same
Program Counter (PC). The Stream Prefetcher detects the streams
that are on the same page. More complex Markov Prefetcher [19]
utilizes a history table that stores correlations of past accesses to
predict future accesses. The Markov Prefetcher can predict com-
plex repetitive patterns like those found in linked data structures
or multidimensional arrays, which makes it efficient for database
applications dominated by repetitive query patterns [19].

Prefetches are considered useful when the data that they prefetch
is employed by future demand accesses. When the data collected
by a useful prefetch is available in the cache ahead of the demand



Data Prefetching on Processors with Heterogeneous Memory

request, it is called a timely prefetch. In contrast, a useful prefetch
is considered a late prefetch when the prefetch request has not
yet finished by the time its corresponding demand access is issued,
forcing it to wait. Such late prefetches do not fully hide large mem-
ory latency. Finally, useless prefetches are those that bring to the
cache data that is not needed, potentially evicting useful data in
the process, which can slow-down the application.

An effective prefetching technique relies on two key metrics:
prefetch accuracy and prefetch coverage. The former measures how
accurately the prefetcher predicts access patterns. The latter in-
dicates the amount of cache misses that are eliminated by timely
prefetches. Both metrics need to be high for better performance,
but they are in an inverse proportional relation: achieving high cov-
erage with improved timeliness may result in low accuracy. Hence,
a good prefetcher balances accuracy and coverage by carefully man-
aging the aggressiveness of the prefetcher - that is, determining how
many prefetches (prefetch degree) and how far ahead in memory
the prefetch trigger goes (prefetch distance), constrained with an
accuracy threshold [56]. Degree and distance are the two main
metrics of aggressive prefetching.

2.2 Prefetching in heterogeneous memory
systems and motivation

Compared to standard DRAM, emerging memory technologies are
providing orders of magnitude either more bandwidth (e.g. with
die-stacked DRAM and hybrid memory cube [29, 47]) or larger
density and capacity (via non-volatile technologies (NVM) [1, 25,
32]). A heterogeneous memory architecture integrating different
memory technologies can provide trade-off solutions to satisfy
large-capacity vs. large-bandwidth scalings. The two main ways
to organize heterogeneous memory systems are: i) to expose the
high-bandwidth [17, 18] or the low-latency memory [26] as a cache,
or ii) to map both in the same physical address space [33, 51]. For
example, the Intel Xeon Phi KNL (Knight’s Landing) processors
mixing stacked DRAM (MCDRAM) and DDR memory provides
flexible MCDRAM configurations, both using MCDRAM as a cache
(cache mode) or as part of the physical address space (flat mode) [55,
61]. For this purpose, KNL integrated SNC (Sub-NUMA Clustering)
modes, which optimize latency and bandwidth by dividing the
processor into several NUMA domains. MCDRAM is designed to
provide high bandwidth but at a lower capacity, making it ideal for
rapidly processing critical data. By contrast, DDR memory offers
a larger storage capacity suitable for less frequently accessed data
and comes with the trade-off of lower bandwidth.

Our work focuses on enhancing aggressive prefetching of hard-
ware prefetchers within a hybrid memory Arm-based architecture
that combines HBM and DDR technologies. We examine the effects
on its flat memory organization when both devices are mapped
to the same physical address space, exposing them to two NUMA
domains as the simulated architecture shown in Figure 2. Using the
Stream benchmark [31], we measured bandwidth versus average
latency of two NUMA domains, as shown in Figure 3. The band-
width utilization for both HBM2 and DDR5 saturates at around
80% of the corresponding peak bandwidths, which are 245 GiB/s
and 30.7 GiB/s, respectively. In the case of HBM2, saturation is
reached using more than 16 cores, while for DDR5, using more than

two cores suffices. The measurement result emphasizes the diverse
bandwidths and latencies within a heterogeneous memory architec-
ture. Traditional prefetchers assume homogenous memory. Thus,
tuning aggressiveness parameters at the global level, such as those
described in [12, 56], may be unsatisfactory on this architecture.
Static configuration strategies for aggressive prefetching are also
no longer relevant, given the lack of awareness of memory access
characteristics of different memory tiers.

To investigate this further, we implemented a Stream Prefetcher,
one described in [56], and evaluated the impact of different ag-
gressive prefetching levels (low, medium, and high). An analysis
with a sparse matrix-vector multiplication (SpMV) kernel (details
in Section 6.2) is shown in Figure 1, which plots speedup (execution
time normalized to the single-thread run without prefetching), and
bandwidth utilization on the two memory devices. On the HBM2,
where bandwidth availability is high, higher aggressiveness leads
to higher speedup gains. On the DDR5, however, higher aggressive-
ness can degrade performance: in the 8-thread case, the execution
without prefetching saturates memory bandwidth (80% of the peak),
and high prefetch aggressiveness leads to application slow-down.

Thus, to make prefetching more efficient on heterogeneous
memory architecture, the key optimization relies on enabling the
prefetcher to dynamically monitor the distinct characteristics of dif-
ferent memory technologies and adapt its strategy at run-time. To
address this, particularly within a hybrid HBM2/DDR5 architecture,
we propose an adaptive aggressive prefetching technique, which
guides the prefetcher to learn memory access patterns and band-
width utilization for each device. During prefetching, this learned
information is used to tune the aggressiveness parameters, thereby
optimizing timeliness and accuracy for both memory devices. Our
technique improves the effectiveness of the Stream Prefetcher, as
illustrated in Figure 1 (M.Aware). It increases prefetching aggres-
siveness when bandwidth is available, as in the HBM2, and applies
less aggressive prefetching in DDR5 when high memory bandwidth
utilization is detected.

3 Baseline Hybrid-Memory Architecture
Our baseline hybrid-memory architecture is an Arm-based design
inspired by the KNL processor. Figure 2 illustrates the mesh config-
uration of one quadrant of the simulated CPU using Arm Neoverse
V1-like architecture based on the reference design [4]. The quadrant
is connected to 8× HBM2 channels and 1× DDR5 memory channel.
The blue routers, linked to the HBM2 channels, incorporate a pair
of cores each. Orange routers, connected to the DDR5 channel, also
have two cores. Serving a critical backup role, the two red routers
act as a fail-safe for the other cores in cases of malfunction for
various reasons, and it also contains two cores. The two purple
routers are dedicated to inter-chiplet connections. In Figure 2, the
NUMA domains are distinctly illustrated: the HBM2 domain is
depicted in blue, consisting of 8 routers and thereby 16 cores, while
the DDR5 domain is represented in orange, comprising 2 routers
and the associated 4 cores. Finally, these configurations account for
a total of 20 cores inter-connected by 2D-mesh Network-on-Chip
(NoC).
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Figure 1: The impact on speedup and bandwidth utilization (BW.Util.) when statically varying the aggressiveness of Stream
Prefetcher - low (L.Agg.), medium (M.Agg.), and high (H.Agg.) - is compared with our memory-aware technique within the
Stream Prefetcher (M.Aware). The experiments are conducted for the SpMV kernel on the simulated hybrid HBM2/DDR5
memory architecture. Speedup is computed as the execution time normalized to the single-thread run without prefetching.

We have modelled the hybrid-memory architecture in the gem5
simulator. Details for the simulation setup are described in Sec-
tion 6.1. Next, we characterize the bandwidth utilization and READ
latency of HBM2 and DDR5 technologies in the simulated architec-
ture.

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

HBM2

6
7

8
9

10
11

0
1

2
3

4
5

12
13

14
15

16
17

18
19

DDR5

HBM2

DDR5

Router

HBM2 channel 

HBM2 router
+2 Cores 

DDR5 channel

DDR5 router 
+2 Cores

Yield router
+2 Cores

Connection to 
another chiplet

Figure 2: Simulated Quadrant architecture with Arm Core-
Link CMN-650 configuration: Illustrates the allocation of
16 Neoverse V1-like cores to 8× HBM2 channels (blue) and
4 cores to 1× DDR5 channels (orange routers). The two red
routers serve as yield cores, and the two purple routers en-
able inter-chiplet connections.

3.1 Bandwidth utilization
Queuing theory suggests that when bandwidth utilization is high,
i.e., once saturated or close to peak bandwidth, the system enters
into a bottleneck state and thus increases the memory latency (due
to increased queuing time) [59]. Capturing the relationship between

average memory latency and bandwidth helps to understand the
capabilities of two memory technologies. We measured memory
bandwidth utilization using the Stream benchmark (Triad kernel),
and computed the average memory latency of cache misses at L2
during execution.

Figure 3 shows curves where values on the y-axis and x-axis
are bandwidth utilization and average memory latency, respec-
tively. Figure 3a plots data for HBM2, while Figure 3b plots data
for DDR5. The solid curves correspond to the simulation of Stream-
Triad, and the data points are the number of OpenMP threads used
(1, 2, 4, 8, 16, 20). The dashed curves are generated using the M/M/1
queue model [59] to approximate the missing data points and refine
the measurement results 3. The more cores are used, the higher the
memory bandwidth consumed. Once bandwidth is saturated, the
memory latency increases significantly on both devices.

The red labels indicate splitting bandwidth utilization into low
(< 40% of peak), medium (40% − 70% of peak), and high (> 80% of
peak). For HBM2, with a peak bandwidth of 307.2 GiB/s, the low
bandwidth threshold is at 120 cycles, the medium is between 120
and 200 cycles, and the high bandwidth is reached at more than
200 cycles. For DDR5, with a peak bandwidth of 38.4 GiB/s, the low
bandwidth threshold is at 100 cycles, the medium spans from 100
to 270 cycles, and the high bandwidth is reached at 270 cycles.

The hybrid-memory-aware prefetching described in Section 4
monitors the average memory latency at runtime to estimate the
system bandwidth utilization and uses that information to adapt
aggressive prefetching.

3.2 Random read system latency
We ran the Tiny-Membench [60], a well-known benchmark, to
measure system latencies with dual random read operations to two

3The plot follows the formula noted in [15]: 𝐿 = 1
1−𝑅 ·𝑆 · 𝑆 , where 𝑅 is the bandwidth

(arrival rate), 𝐿 is the average total latency, and 𝑆 is the no-waiting service time. We
measured 𝑆 by generating memory requests without stressing the memory system.
The curve is generated by varying the fraction of peak bandwidth 𝑅 · 𝑆 .
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Figure 3: Memory bandwidth utilization vs. average total latency curves measured with Stream-Triad (solid curves) and queuing
model (dashed curves) for HBM2 and DDR5 in the baseline architecture. The red ranges partition bandwidth utilization into
low, medium, and high levels, each corresponding to average memory latency thresholds.

memory domains. Our measurements are as follows: When data
allocation is on HBM2, the execution is pinned on core-0, which is
close to HBM2 controllers. When data allocation is on DDR5, the
execution is pinned on core-19. Pinning to these two specific cores
aims to avoid NUMA effects that may happen within the NoC. The
results are shown in Figure 4 for varying block sizes.
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Figure 4: Random read latencymeasured by Tiny-Membench.

Since core-0 and core-19 have the same private L1 and L2 cache
sizes in common (see Table 1), a similar latency trend is observed for
the block size range 8 KiB to 1024 KiB. The core-19, which belongs
to the DDR5 domain, has four assigned LLC (shared Last Level
Cache) slices with a size of 4×2 MiB; thus, the impact of DDR5
latency is seen right after the block sizes 8192 KiB. Meanwhile, the
core-0, which belongs to the HBM2, has 16 assigned LLC cache
slices with a size of 16×2 MiB; the impact of HBM2 latency is seen
right after block size 32768 KiB. The plot shows that accesses to
DDR5 have a larger read latency than those to HBM2. This aligns
with previous work [27], which showed that the average random
access latency of DDR5 devices is larger than that of HBM due to

reduced queuing delay because of a higher degree of parallelism
on HBM. In our case, HBM2 has eight channels; meanwhile, DDR5
operates with a single channel.

To this end, the HBM2 domain has lower latency and higher
bandwidth than the DDR5 domain. However, DDR5 offers the ben-
efit of greater capacity over HBM2.

4 Hybrid-Memory-Aware Prefetching
Our work improves prefetchers in architectures using different
memory technologies, focusing on the optimization aspect of ag-
gressive prefetching. As shown in Figure 5, we propose a prefetch-
ing strategy for hybridmemories that dynamically tunes two critical
prefetching parameters: prefetch distance (steps ❶, ❷ and ❸) and
prefetch degree (step ❹) to match well the characteristic of each
memory technology. Prefetcher extensions include the following
features:

Memory Device Access Classification: For memory accesses
seen by prefetchers, the first necessary action is to classify memory
accesses belonging to each memory device, i.e., either accesses to
HBM2 or DDR5 of the baseline architecture. The classification can
be done by extracting memory device information from the access
addresses via a hash function, a memory address decoder typically
supported in high-end CPU architectures.

Fill Queue: Most prefetchers track and learn memory access
patterns for prefetching in the forms of access streams; for example,
Stride Prefetcher stores in its hash table access streams from the
same PC. The prefetcher is extended by a queue dedicated to each
prefetching stream to learn prefetch triggers and tune prefetch
distance. In addition, the in-flight memory request buffer (IFB)4, is
extended to track whether a pending memory request is a prefetch
request (’pf.request=1’) or not. If there is a prefetch request, the IFB
buffer also stores the prefetch trigger. Furthermore, the cache line
also has a prefetch bit (’pf.request’) to distinguish prefetch data. It is
4The mechanism handles in-flight memory requests like Miss Status Holding Register
(MSHR).
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Figure 5: Hybrid-memory-aware Prefetching Strategies: In step ❶, the in-flight request buffer and cache line are extended to
store information about the prefetch trigger(’pf.trigger’) and whether a prefetch request is made (’pf.request’). Steps ❶, ❷,
and ❸ demonstrate the distance adaptation methodology in reaction to cache events (late/timely prefetch). Step ❹ illustrates
degree optimization strategy with fluctuating bandwidth utilization and prefetch accuracy rate.

used to construct prefetch statistics, determine whether prefetches
are timely or late, and count the number of prefetches.

When a cache fill event occurs, indicating that the cache has been
filled with data returned from memory, the corresponding pending
request in the IFB is resolved. Upon the event belonging to a prefetch
request, the ’pf.request’ in the cache line is set. Furthermore, the
pending prefetch request and its prefetch trigger stored in the IFB
are extracted and queued in the Fill Queue, as illustrated (❶) in
Figure 5. If the cache fill event is from a demand miss belonging
to the access stream, that demand miss is also pushed into the Fill
Queue since it is a prefetch trigger candidate to adjust the prefetch
distance. As illustrated in Figure 5, the prefetch (marked as B) is
initiated by the trigger access A. Both B and A are queued once the
cache fill for B is done. Note that when the queue is full, the oldest
is removed.

Learning/Tuning Prefetch Distance: Prefetchers learn and
tune prefetch distance by adjusting the prefetch trigger upon late
and timely prefetch events (❷). The prefetcher is notified of a late
prefetch when the corresponding demand miss finds the prefetch
request pending in the IFB, indicated by the ’pf.request’ being set.
This implies that the late prefetch could have been timely if it had
been prefetched by a trigger stored in the Fill Queue, since memory
requests stored in that queue are completed before the occurrence
of the demand miss. Thus, the prefetcher searches in the Fill Queue
for a new trigger, which is the most recent pushed in the queue. As
demonstrated in ❸, a prefetcher operating with prefetch distance
= 3 adjusts the prefetch distance for future prefetching. The late
prefetch event associated with the demand miss A+3 causes the

prefetcher to select a trigger A-2 in the Fill Queue and adjust the
prefetch distance for the subsequent prefetch from the current value
of 3 to 5.

While the new prefetch distance can be immediately applied for
the next prefetches, collecting statistics of candidates and picking
up the most voted or the mean value from the candidate set would
be a more promising strategy. The candidate set is a mix of the
recently computed distance and those in use. In the latter case, the
candidates are the distances from which prefetches are timely. The
prefetcher is notified of a timely prefetch when the demand access
finds the ’pf.request’ set in the corresponding cache line. If so, the
recent trigger address is searched in the Fill Queue. If found, the
distance is computed, and its voting is updated in the candidate set.
Distance voting occurs over a fixed interval (epoch), similar to the
prefetch degree learning described below. Once the epoch expires,
the best distance (e.g., the most voted or the mean) is selected for
the next prefetching. We elaborate on different voting strategies in
Section 7.

Learning/Tuning Prefetch Degree: The learning and tuning
strategy of the prefetch degree takes place after each epoch period
as illustrated in Figure 5 (❹). After an epoch expires, prefetchers dy-
namically increase or decrease the prefetch degree through learning
bandwidth utilization in each memory device in conjunction with
prefetch accuracy rates. At runtime during epoch time, bandwidth
utilization and prefetch accuracy rate aremeasured; when the epoch
expires, they are categorized into low, medium, and high levels by
comparing the measured values with the configured thresholds.
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In low or medium bandwidth utilization scenarios, as the sys-
tem experiences reduced pressure, prefetchers can operate more
aggressively. Thus, prefetchers can increase their degree to bring
a larger amount of memory blocks into the cache. Conversely, at
high bandwidth utilization, it is better to maintain or even decrease
the prefetch degree to avoid increasing pressure on bandwidth.

However, bandwidth utilization is not the sole determinant in
the optimization strategy; prefetch accuracy also plays a crucial
role. Thus, dual-parameter tuning provides a balanced and efficient
prefetching strategy. For either a high prefetch accuracy rate, once
bandwidth utilization is at medium or low levels; the decision is
to increase the degree slowly or quickly up to the limited max-
imum value, respectively. The prefetch degree will be reset to 1
immediately when a low prefetch accuracy rate or high bandwidth
utilization is observed.

Memory Bandwidth Utilization Approximation: Inside the
prefetcher, gathering the information about memory bandwidth
utilization at the memory controller is costly due to the physical
distance between hardware components and may need an advanced
performance monitoring infrastructure, such as an MPAM unit in
Neoverse processors [8]. We approximate the bandwidth utilization
for each memory device and categorize it into three levels (high,
medium, and low, as shown in Figure 3), by indirectly measuring
the average latency of in-flight memory requests at the cache level
where the prefetcher is located. When a memory request allocates
an entry in the in-flight memory request buffer, a dedicated counter
starts timing and stops once the requested data returns. The la-
tency value is calculated when the entry in the buffer is deallocated.
The average value is computed once the epoch expires and then
compared with thresholds determined from the bandwidth utiliza-
tion vs. average latency curve (Figure 3) to estimate the bandwidth
utilization of each memory device.

Tuning Statistics: The tuning strategy for the prefetch de-
gree requires a statistic parameter, the prefetch accuracy rate. The
prefetch accuracy rate is calculated as the ratio of the number of
useful prefetches, a sum of timely and late prefetches, to the total
number of prefetches: useful prefetches

number of prefetches . It indicates how effec-
tively a prefetcher predicts the memory access patterns generated
by the application. Thus, timely-/late-/number-of-prefetches coun-
ters must be supported 5.

5 Integration into Stream Prefetcher
To demonstrate the integration of our approach into existing prefetch-
ers, we have chosen the Stride Prefetcher, available in gem5, and
Stream Prefetcher, our implementation based on one described
in [56]. We explain the integration within the Stream Prefetcher at
the L2 cache, as shown in Figure 6. This history table must be aug-
mented with a queue mechanism to facilitate distance adjustments.
As previously described in Section 4, upon each cache fill event,
the cache controller checks if the accessed data stream is recorded
within the prefetcher’s history table. This involves comparing the
tag of the valid entries in the history table to the address observed
5Our counters are defined as follows: Timely measures timely prefetches, where a
demand miss finds ’pf.request’ set in the corresponding cache line. Late measures late
prefetches, where, by the time the demand access is issued, it finds a corresponding
pending prefetch in the IFB;Number of prefetchesmeasures the total number of prefetch
requests issued by the prefetcher.
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Figure 6: Block diagram illustrating the integration of our
adaptive strategy into Stream Prefetcher at the L2 cache.

by the cache controller. Upon a successful match, the queue is pop-
ulated with the prefetch address and the trigger address of the
ongoing cache fill.

Additionally, the cache controller assumes the responsibility
of assessing the timeliness of incoming prefetches, employing a
’late/timely bit’ for this purpose. Depending on the outcome, the
appropriate candidate within the Fill Queue is selected, followed by
the calculation of a new distance. This is achieved by subtracting
either the late or timely prefetch address from the trigger address
found in the Fill Queue. Distance votes are collected within the
fixed epoch period. After the epoch, the most frequent vote, or the
mean vote, is applied. The prefetch degree adjustment process is
relatively straightforward, as described in the previous section. It
involves collecting the prefetch accuracy statistic and measuring
system bandwidth per NUMA domain within an epoch.

Here, we describe the extension in the Stream Prefetcher, extend-
ing our approach to other stream-based prefetchers, e.g., the Stride
Prefetcher, follows a similar way.

6 Evaluation Methodology
6.1 Simulation setup
We evaluated our hybrid-memory-aware prefetching using a gem5
model of the baseline architecture using Arm Neoverse V1-like
cores [4] as described in Section 3. The gem5 simulator was ex-
tended to model in detail the AMBA-CHI-based Network-on-Chip
(NoC) architecture [2], based on the recently released CHI Ruby
protocol [38] and the Garnet model [30]. The NoC architecture
implements Arm Neoverse CMM-650 Coherent Mesh Network ar-
chitecture [3], where each SNOOP, DATA, RESPONSE, and ACK
message type are transferred on separated link channels. Cache
hit latencies are chosen empirically for overall performance opti-
mization, though they may be more optimistic than commercial
processors. The LLC’s allocation is inclusive for CHI ReadShared
requests and exclusive for CHI ReadUnique requests.

Table 1 lists the main architecture parameters. The HBM2 mem-
ory model is based on the previous work [50], delivering a peak
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Clocks System: 1.6 GHz; CPU: 2.4 GHz; NoC: 2.0 GHz;
CPU #Armv8-A cores: 20; Branch prediction: BiMode;

Vector Unit: 2×256-bit SVE
L1-D, L1-I Line size: 64 B; Size: 64 KiB; Ass: 4-way;

Replacement policy: LRU; TBEs: 256;
Hit latency: 2-cycles (L1-D), 1-cycles (L1-I)

L2 Unified cache; Line size: 64 B;
Size: 1 MiB; Ass: 8-way; Replacement policy: LRU;
Clusivity policy: strictly inclusive;
Hit latency: 4-cycles; TBEs: 256

LLC Shared LLC (Last Level Cache); Size: 16× 1 MiB-slices;
Line size: 64 B; Ass: 16-way; Replacement policy: LRU;
Clusivity policy: inclusive/exclusive;
Hit latency: 10-cycles; TBEs: 256 per slice;

NoC Model: Garnet 3.0; Protocol: AMBA-CHI;
Flit width: 64B; Router latency: 1-cycle;
Link latency: 1-cycle; 2D-Mesh: 4×5;
#VNETs: 4; Link configuration: 4-physical channels

Memory 8× HBM2 channel; Size: 2 GiB; BWs: 307.2 GiB/s
1× DDR5 channel; Size: 4 GiB; BWs: 38.4 GiB/s

NUMA HBM2 domain: {core-0 ,..., core-15}
Assignment DDR5 domain: {core-16 , core-17, core-18, core-19}

Table 1: Parameters in the gem5 simulation of the baseline
architecture.

bandwidth of 307GiB/s. Our DDR5 model is based on the Micron
DDR5 datasheet [35], providing a peak bandwidth of 38.4GiB/s.
The simulated architecture has 16 distributed Shared LLC-slides/16-
cores assigned for 8× HBM2 channels and 4 LLC-slides/4-cores
designated for 1× DDR5 channel. The vector unit has two 256-bit
SVE engines. Each core has a private L1 cache, and the two-core
tile shares a unified L2 cache. At each cache level, in gem5 the
behavior of the Miss Status Holding Register (MSHR) responsible
for handling in-flight memory requests is modelled by Transaction
Buffer Entry (TBE) parameters, which are not only tracking the in-
flight memory requests but also the transactions of the CHI cache
coherency protocol [38]. The NoC operates with the AMBA-CHI
protocol [2] configured for four message types transferring data on
four physical-link channels.

6.2 HPC benchmarks
We have chosen four representative scientific benchmarks: three
memory-bound codes (waLBerla, miniFE, Stream) and a latency-
bound code (Ligra). These codes benefit from stream-based prefetch-
ers (as analyzed in Section 6.2.1), allowing us to assess the hybrid-
memory technique within Stride and Stream Prefetchers. All codes,
except Ligra, support ARM Scalable Vector Extension (SVE) ei-
ther through an optimized implementation using SVE intrinsics or
by leveraging compiler auto-vectorization. Paralelisation is imple-
mented via OpenMP.

waLBerla: is a specialized framework tailored for conducting
computational fluid dynamics simulations based on the Lattice
Boltzmann Method (LBM) [11]. We used the waLBerla benchmark
(release 4.1) known as UniformGridBenchmark, which implements
the D3Q19 model on a regular grid, to analyze the prefetch effects
on stencil codes.

Locality score waLBerla SpMV Ligra-BFS Triad
Spatial (𝑊 = 32) 0.807 0.782 0.689 0.999
Temporal (𝐿 = 32) 0.032 0.130 0.114 0.000

Table 2: Spatial and temporal locality scores for window size
𝑊 = 32 and 𝐿 = 32.

miniFE: is a mini-app designed to represent finite element prob-
lems [49]. We evaluated the Conjugate Gradient (CG) Solver of this
mini-app, which implements core numerical methods, including the
Sparse Matrix-Vector (SpMV) Product kernel. Our study utilizes the
SVE-ported version of the SpMV benchmark that has adopted the
SIMD-friendly Sliced ELLPACK (SELL) format [24, 37], optimized
for the ARMv8 architecture [7].

Ligra: is a lightweight graph processing framework designed for
shared-memorymulticore platforms [53].We evaluated the Breadth-
First Search (BFS) benchmark in the Ligra framework, which is
used in various data analytics applications, such as studying social
networks and supercomputer performance ratings. The graph input
is the Kronecker symmetric graph comprising 219 vertices.

Stream: This benchmark is included in our analysis due to its
regular stride-1 access patterns, making it a suitable case for ana-
lyzing prefetch effects. We used the Triad kernel [31].

6.2.1 Locality analysis. To better understand the effects of prefetch-
ing, we record the traces using the gem5 model and analyze the
benchmark’s spatial and temporal locality. Spatial locality reveals
the likelihood of nearby memory accesses, while temporal locality
reflects how memory accesses are repeated shortly.

Spatial and temporal locality are computed following the scoring
methodology described in [45, 62], which requires profiling stride
and reuse distance distributed across all memory references6. A high
spatial score (i.e., close to 1) implies that memory access patterns
tend to exhibit regular accesses with small strides. On the other
hand, a high temporal score (i.e., close to 1) means that memory
access patterns contain highly repeated access sequences.

Table 2 summarizes the locality scores computed for traces of
memory references up to 300 million executed instructions. The
Stream-Triad kernel exhibits a spatial locality score of approxi-
mately 1 and a temporal locality score of roughly 0, indicating that
it consists of entirely sequential stride-1 access patterns with no re-
peated sequences. High spatial scores across all kernels imply high
benefits when using spatial address-correlation prefetchers such
as stream-based prefetchers. Therefore, the selected benchmarks
allow us to focus solely on evaluating the aggressive prefetching
enhanced by our adaptive technique for these prefetchers. Low tem-
poral scores suggest that temporal address-correlation prefetchers,
which trigger prefetching based on learning address repetition, are
unlikely to improve performance.

6Stride is the minimum distance between the address and its neighbors within a
window of𝑊 memory references. Given a memory reference 𝑎𝑖 , the reuse distance of
𝑎𝑖 is the number of unique memory references, other than 𝑎𝑖 , accessed since the last
access 𝑎 𝑗 within a window of 𝐿 memory references
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NUMA coarse-grained memory allocation
Kernel Problem size

waLBerla UniformGridBenchmark Lattice size = 643
Kronecker graph

[(A, B, C) =
Ligra BFS (0.57, 0.19, 0.19)] :

219 vertices
miniFE SpMV Lattice size = 633

Stream Triad 1.5 × 106

NUMA fine-grained memory allocation
miniFE CG Solver Lattice size = 1283

Stream Triad 1.5 × 106

Table 3: Experimental configuration of the selected bench-
marks: NUMA memory allocations are with either coarse-
grained or fine-grained strategies.

6.3 NUMA execution
To achieve optimal performance of an application on a NUMA ar-
chitecture, a set of cores for code executions and specific memory
devices for data allocation are commonly identified, a technique
known as "pinning" or "affinity". We evaluate different NUMA exe-
cution scenarios as follows: Core affinity (’GOMP_CPU_AFFINITY’)
is utilized to pin thread execution on a specific core. Data allocation
on HBM2 or DDR5 is done by either using the ’numactl —m’ utility
or using the Linux NUMA policy library (’libnuma’). We refer to the
former strategy as theNUMA coarse-grained memory allocation
since the total memory footprint of application kernels is allocated
on a specific memory device, and no code modification is required.
In contrast, the latter strategy is referred to asNUMAfine-grained
memory allocation since code modifications are needed to gain
better data allocation.

Table 3 sketches the experimental configuration of benchmark
kernels for NUMA execution. The problem sizes are chosen large
enough, e.g., exceeding the total LLC size, to ensure meaningful
assessments.

7 Experimental Results
We evaluate four prefetchers using full-system (FS) mode in gem5.
The Stride Prefetcher and the Stream Prefetcher. The other two
are the newly developed hybrid-memory aware Prefetchers: the
Timely-Aware Stride Prefetcher (TiA) and the Aggressive Prefetcher
(Agg). The TiA and the Agg Prefetchers correspond to our integra-
tion of hybrid-memory aware prefetching techniques within the
Stride and Stream Prefetcher, respectively. For TiA and Agg, the
high prefetch accuracy rate is set to 0.8, and the epoch period
is 128000 cycles. Prefetches are issued upon demand access, and
prefetches whose addresses cross the page boundary (4KiB) are
dropped.

7.1 Prefetch effects of NUMA coarse-grained
memory allocation

7.1.1 Adaptive prefetching behavior within NUMA domain. Figure 7
demonstrates the adaptive behavior of the Agg Prefetcher compared

to a static aggressiveness configuration of the Stream Prefetcher on
the HBM2 domain for single-thread runs of Stream-Triad. The Agg
Prefetcher (Figure 7a) dynamically tunes both the prefetch degree
and distance, while, the Stream Prefetcher (Figure 7b) is configured
with the prefetch distance=2 and degree=2. Note that statistical
metrics are accumulated per epoch and are reset at the beginning
of each new epoch. The x-axis (number of epochs) and the demand
accesses are different left and right because the overall runtime of
the benchmark varies when applying different prefetchers.

The upper left quadrants in both Figures (7a and 7b) reveal a
correspondence between total prefetches (orange curve) and use-
ful prefetches (green curve) per epoch, reflecting high prefetch
accuracy in both prefetchers. This is expected since Stream-Triad
presents stride-1 access patterns, which are straightforward for
stream-based prefetchers to detect.

However, the Agg Prefetcher shows a much closer proximity
between useful prefetches (green curve) and demand accesses (blue
curve). That implies useful prefetches potentially avoid cachemisses
since demand accesses within Stream-Triad are typically demand
misseswithout prefetching. In fact Agg Prefetcher achieves a prefetch
coverage 7 of 0.95, much higher than that of 0.5 (shown on the
bottom right quadrants in the figures) observed in the static con-
figuration in Stream Prefetcher. This indicates a higher efficacy in
improving prefetch timeliness via adapting aggressiveness when
compared to the static configuration of the Stream Prefetcher. The
variation in the degree used, observable in the bottom left quad-
rants in both Figures (blue curve), accounts for this discrepancy:
The Agg Prefetcher, operating under high bandwidth availability
(via low bandwidth utilization) and demonstrating high accuracy in
pattern prediction, adjusts its degree up to 16 as per the guidelines
from the prefetch degree tuning.

The investigation into late prefetches, depicted in red curves,
initially shows a greater occurrence in the Agg Prefetcher, rapidly
diminishing in the following epochs as a result of the implemented
adaptation strategies, in contrast to the static configuration. This
difference is influenced by the greater volume of prefetches issued
by the Agg Prefetcher. In addition, the gap between useful and late
prefetches is significantly wider in the Agg Prefetcher, indicating
that the distance adjustment strategy effectively minimizes late
prefetches, thus improving overall workload performance. Hence,
it shows both more demand accesses per epoch and shorter epochs,
outperforming the static configuration of Stream Prefetcher. This
demonstrates the advantage of the adaptive strategy in adjusting
to this workload demands, especially with the high bandwidth
available on the HBM2 domain.

The Agg Prefetcher behavior on the DDR5 domain is shown
in Figure 8 for a 4-thread execution. High bandwidth utilization
(top right) indicates substantial stress on this memory device. The
prefetcher detects this, stays at a low prefetch degree, and simulta-
neously attempts to adjust the prefetch distance for timeliness. The
situation stabilizes after epoch 9500, where a prefetch distance of 34
is found optimal. It then gains better timely prefetches by showing
a significantly wider gap between useful and late prefetch curves.

7Coverage rate is computed as useful prefetches
useful prefetches + demand misses . When more demand

misses are eliminated by timely prefetches, the coverage approaches 1.0.
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(a) Agg Prefetcher (b) Stream Prefetcher

Figure 7: Stream-Triad (single thread) on HBM2 domain: 7a) Agg Prefetcher with adjustable degree, distance, and voting en-
abled. 7b) Stream Prefetcher in static configuration with both degree and distance = 2. The figure compares tuning operations,
bandwidth utilization, prefetching accuracy, and coverage versus static prefetching configurations. The Agg Prefetcher outper-
forms the static configuration of Stream Prefetcher.

Figure 8: Stream-Triad (4-thread) in the DDR5 domain with
Agg Prefetcher: The adaptation maintains a low prefetch de-
gree to avoid bandwidth congestion in the system due to the
saturated bandwidth while simultaneously prefetching with
greater distance to enhance timeliness.

7.1.2 Exploration. We explore different adaptive configurations in
the Agg and TiA Prefetcher, with and without the voting mechanism
for distance (Figure 9). With voting (𝑣 = 1), the prefetch distance
is set either to the most voted (𝑣 = 1; 𝑣𝐴𝑣𝑔 = 0) or the mean vote

(𝑣 = 1; 𝑣𝐴𝑣𝑔 = 1) at the beginning of the epoch. Without voting
(𝑣 = 0; 𝑣𝐴𝑣𝑔 = 0), the adjusted distance will be used immediately
for the next prefetch request. We compared all configurations of
the two prefetchers (Agg and TiA) with the various static configu-
rations of the Stream and Stride Prefetcher, showing the speedup
(ratio of execution time with prefetching vs. the baseline with no
prefetching), their bandwidth utilization, prefetch accuracy, and
coverage.

Stream-Triad. Figure 9a to Figure 9e show results of Stream-Triad
for various threads on HBM2 and DDR5 domains, with very high
prefetch accuracy across all prefetch configurations.

On the HBM2 domain, the single-thread execution (Figure 9a)
shows the least effective static configuration of the StreamPrefetcher
(degree=2 and distance=2) with a speedup of 1.05×, while the most
effective configuration (degree=4 and distance=32) resulted in a
speedup of 1.37× due to higher coverage from improved timeli-
ness. The Agg Prefetcher with two voting strategies enabled, (𝑣 =

1; 𝑣𝐴𝑣𝑔 = 0) and (𝑣 = 1; 𝑣𝐴𝑣𝑔 = 1) shows speedups of 1.36× and
1.34×, respectively, closely approaching the optimal static config-
uration. The marginal difference between both voting strategies
suggests negligible impact, indicating their near-optimal efficacy
and outperforming the no-voting strategy. The TiA Prefetcher con-
figurations show similar results.

The transition to more threads introduces a new dimension of
complexity and performance dynamics. The execution of more
threads (Figure 9b and 9c) amplifies the demand on the HBM2 de-
vice, leading to an intricate interplay of memory requests and data
traffic. Thus, we test the scalability of prefetching strategies and
examine the efficacy of adaptive prefetching mechanisms when
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(a) Triad [HBM2;#thr=1] (b) Triad [HBM2;#thr=8] (c) Triad [HBM2;#thr=16] (d) Triad [DDR5;#thr=1] (e) Triad [DDR5;#thr=8]

(f) SpMV [HBM2;#thr=1] (g) SpMV [HBM2;#thr=8] (h) SpMV [HBM2;#thr=16] (i) SpMV [DDR5;#thr=1] (j) SpMV [DDR5;#thr=8]

(k) waL. [HBM2;#thr=1] (l) waL. [HBM2;#thr=8] (m) waL. [HBM2;#thr=16] (n) waL. [DDR5;#thr=1] (o) waL. [DDR5;#thr=8]

(p) Ligra [HBM2;#thr=1] (q) Ligra [HBM2;#thr=8] (r) Ligra [HBM2;#thr=16] (s) Ligra [DDR5;#thr=1] (t) Ligra [DDR5;#thr=8]

Figure 9: Performance evaluation of the selected benchmarks for various threads on HBM2 (three left columns) and DDR5
domains (two right columns). ’NoP’: No prefetching, ’P’: Stride Prefetcher, ’S’: Stream Prefetcher, ’A’: Agg Prefetcher, ’T’:
TiA Prefetcher, ’v’: voting flag, ’vAvg’: average vote flag, ’dg’: prefetch degree and ’dt’: prefetch distance.

confronted with increased memory access concurrency. For both
Agg and TiA Prefetchers, the 8-thread executions with the voting
mechanism activated achieved the highest speedups of 1.2× and
1.18×, respectively. Although slightly below the optimal configura-
tions, this still underscores the adaptability of both prefetchers to
environmental stress. However, due to bandwidth saturation with
16-thread execution (even without prefetching on the HBM2), no
benefit of prefetching is observed despite high prefetch coverage
gains.

Transitioning from HBM2 to DDR5 domain introduces a trade-
off between increased capacity and reduced memory bandwidth.
This trade-off is evident in the performance results illustrated in Fig-
ure 9d and Figure 9e. Compared to single-thread runs on the HBM2
domain, DDR5 shows no prefetching benefit due to limited available
bandwidth. The least effective static configuration of the Stream
and Stride Prefetchers (using large degree and distance) results in
speedup drops of 0.97× and 0.77×, respectively. This decrease is
attributed to more memory requests and consequently increases
latency, leading to delayed data delivery. Conversely, maintaining a
distance=32 while reducing the degree is the most efficient method.

This suggests that a balanced degree is crucial for optimal prefetch-
ing performance on DDR5. The adaptive configurations of both
TiA and Agg Prefetchers demonstrate performance enhancements,
emphasizing the potential benefits of adjustable parameters.

Advancing to eight threads might intensify the challenge of
prefetching effectiveness due to increased demands on the memory
system. The least effective static configurations show a speedup
drop of around 0.75×. However, TiA and Agg Prefetcher show low-
performance drops, emphasizing the effectiveness of self-adjustment
strategies, which are capable of adapting to diverse memory envi-
ronments and securing benefits, even under adverse conditions.

SpMV. MiniFE, designed to emulate finite element generation,
assembly, and solution processes for unstructured grid problems,
relies on the SpMV kernel as a core component in its iterative
solvers. The SpMV kernel has stride access patterns similar to
Stream-Triad, along with temporal and indirect memory access
patterns. High spatial locality scores (in Section 6.2.1) explain the
high accuracy and effectiveness of prefetching configurations when
evaluating SpMV across HBM2 and DDR5 domains (Figures 9f to
Figure 9j).
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The static exploration shows that when the prefetch distance
is large (e.g., distance = 32), the Stride Prefetcher gains the least
effectiveness, while the Stream Prefetcher gains the highest. The
main difference impact lies in the fact that the Stride Prefetcher
issues prefetch with addresses starting from the prefetch distance,
while the Stream Prefetcher continues to issue prefetch until the
monitored window is filled. Thus, fewer prefetches are sent when
a large distance is configured for Stride Prefetcher.

As expected, the adaptation strategy in the Agg and TiA Prefetcher
shows high coverage, nearly matching the most effective static con-
figurations. Under single-thread evaluations on HBM2 and DDR5
with high bandwidth available, they achieve speedups close to the
optimal static configurations. Moving to multithreaded executions
on HBM2 still demonstrates their ability to utilize high-bandwidth
memory effectively, achieving significant speedups, e.g., over 2.0×
with Agg Prefetcher for 8- and 16-threads. The shift to eight threads
on DDR5 reveals challenges due to increased bandwidth contention.
Even though both Agg and TiA Prefetcher can switch to less aggres-
sive prefetching to mitigate memory contention impacts.

waLBerla. waLBerla’s exploration results (Figures 9k to Figure
9o) show trends similar to SpMV. As expected, the D3Q19 stencil
computation exhibiting high spatial locality (Section 6.2.1) explains
the benefits of the prefetchers. High coverage with Agg and TiA
Prefetcher highlights the advantages of the adaptation strategy.
WaLBerla ismore sensitive to PC-based prefetching, showing higher
speedups with Stride and TiA Prefetcher compared to Stream and
Agg. In single-thread runs, TiA achieves a speedup of 1.6× on HBM2
and DDR5. However, high bandwidth utilization on DDR5 with
8-thread runs shows no significant speedup.

Ligra-BFS. Ligra-BFS exhibits high spatial locality but with a
score lower than other kernels (Section 6.2.1) due to random node
traversals in the graph processing patterns. Low memory band-
width utilization on HBM2 and DDR5 makes it beneficial for all
prefetching configurations, as shown in Figure 9p to Figure 9t. The
random node traversals reduce prefetching accuracy, especially
with high aggressiveness, as seen in the results with the static con-
figuration of Stream (degree and distance = 32) and Agg and TiA
Prefetcher. The adaptive strategies of Agg and TiA improve time-
liness (higher coverage gains), maintain accuracy above 0.8, and
achieve speedups between 1.15× and 1.3×, close to the most effec-
tive static configurations. Due to BFS’s low bandwidth utilization,
the 8-thread evaluation on the DDR5 shows significant speedup
gains (e.g., 1.15× with Agg), which are not observed with other
kernels.

The exploration results for four kernels emphasize the advantage
of the adaptation strategy as it approaches the performance of the
best static configurations across threading levels and memory types.
Among voting configurations, the most vote strategy (𝑣 = 1; 𝑣𝐴𝑣𝑔 =

0) shows the most effective for Agg and TiA Prefetcher.

7.2 Prefetch effects of NUMA fine-grained
memory allocation

We evaluated the effectiveness of the TiA and Agg Prefetcher using
the most vote strategy for various NUMA fine-grained memory
allocation strategies.

7.2.1 Stream-Triad, fine-grained. Table 4 presents the results of
single-thread executions for the Stream-Triad, comparing the effi-
ciency of various NUMA memory allocation strategies of vectors
𝑎,𝑏, and 𝑐 . Here, 0 indicates their allocation on the HBM2 and 1 on
the DDR5. To analyze prefetching, we compare scenarios where
prefetching is enabled both on HBM2 and DDR5 with cases where
prefetching is solely on HBM2 or DDR5.

When prefetching is disabled, allocating vectors on DDR5 results
in more significant performance drops than allocating all vectors on
HBM2 (a=0,b=0,c=0 [000]), as seen in the eighth column (Speedup
w.r.t HBM (%)). In particular, when all vectors are allocated on
DDR5 (a=1,b=1,c=1 [111]), a slowdown of almost a speedup of 0.63×
is observed. This happens because of the constrained bandwidth
availability of the single-channel DDR5.

Once prefetching is enabled, prefetchers benefit from the higher
bandwidth available on HBM2, resulting in stronger improvements
when more vectors are allocated on HBM2. This explains the higher
prefetching effectiveness, as noticed on the ’Only HBM’ column
compared with the ’Only DDR’ column, where individual prefetch-
ing is activated either on HBM2 or DDR5, respectively. In particular,
allocating all vectors on HBM2 (000) shows the most substantial
improvement (1.25×). Conversely, allocating all vectors on DDR5
(111) saturates bandwidth on DDR5 quickly, showing no benefit
from prefetching as, in this case, the prefetchers operate in a more
conservative prefetching mode.

For the memory NUMA allocation strategies where vectors are
allocated across both memory devices, performance improvements
depend on achieving balanced prefetching effectiveness for three
vectors 𝑎, 𝑏, and 𝑐 due to data dependence (𝑎 ← 𝐶 · 𝑏 + 𝑐). When
allocating two vectors on HBM2 (001, 010, 100), prefetchers are
likely benefiting from the available bandwidth both on HBM2 and
DDR5 (HBM2: BW-Util.(RD+WR) up to 8% of the peak; DDR5:
BW-Util.(RD+WR) up to 38%). Meanwhile, allocating more vectors
on DDR5 (011, 101, 110) reduces prefetching effectiveness due to
increased bandwidth utilization on DDR5 (BW-Util.(RD+WR) up to
48%) despite the high bandwidth available on HBM2. In these cases,
the number of demand requests on DDR5 memory puts more pres-
sure on the bandwidth, leading to increased memory contention.
In particular, prefetchers for the case 011 slightly decrease per-
formance due to the high bandwidth utilization (RD) on DDR5
(43%). In this case, prefetchers likely switch between conservative
or aggressive prefetching, potentially leading to adverse effects.

In some instances, enabling prefetching on bothDDR5 andHBM2
brings less improvement than on HBM2 or DDR5 alone (001, 010,
101, 110). That phenomenon could be the impact of eviction or
contention on cache, which needs further investigation. Finally, we
prove that the low effectiveness of prefetchers on single-channel
DDR5 can be avoided when doubling DDR channels for the Stream-
Triad benchmark (not shown in the Table).

7.2.2 MiniFE-CG-Solver, fine-grained. The CG-Solver in miniFE
uses not only SpMV but also various other kernels. Figure 10 illus-
trates all kernels using different colors. SpMV is marked in multvec
in light blue as a core component. Other key kernels include Ap.dot
in orange, daxpy in grey, norm2 in yellow, and daxpby in green,
which present streaming behavior similar to Stream-Triad. Here,
the vectors representing the sparse matrix are denoted as 𝐴, the
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No Prefetching (NoP) Prefetching Enabled (Speedup w.r.t NoP)

HBM:BW-Util (% peak) DDR:BW-Util (% peak) Speedup HBM and DDR Only DDR Only HBM
a b c RD WR RD WR w.r.t HBM Agg TiA Agg TiA Agg TiA

0 0 0 9.38 2.82 0.0 0.0 1.00 1.25 1.24 1.00 1.00 1.25 1.24
0 0 1 5.74 2.45 22.96 0.0 0.92 1.08 1.04 1.00 1.00 1.11 1.06
0 1 0 5.75 2.45 22.98 0.0 0.92 1.04 1.02 1.01 1.02 1.07 1.02
0 1 1 2.70 1.93 42.87 0.0 0.86 1.00 0.96 0.98 0.96 1.03 1.00
1 0 0 4.90 0.0 19.63 18.17 0.79 1.07 1.04 1.05 1.00 1.04 1.04
1 0 1 2.04 0.0 32.61 15.64 0.65 1.03 1.01 1.05 1.03 1.01 1.01
1 1 0 2.02 0.0 32.25 15.47 0.65 1.00 0.98 1.06 1.04 1.00 1.00
1 1 1 0.0 0.0 47.25 15.32 0.63 1.02 1.00 1.02 1.00 1.00 1.00

Table 4: Stream Triad (Single-thread) for various NUMA memory allocation strategies: HBM2 and DDR5 are encoded as 0 and 1,
respectively. The column ’Speedup w.r.t HBM’ is the execution time for each memory NUMA allocation normalized to that of
HBM2 𝑎 = 0, 𝑏 = 0, 𝑐 = 0, where all memory is allocated onto HBM2 without prefetching. The ’Agg’ and ’TiA’ columns show
speedups, either enhancements or reductions, against the no prefetching for each specific NUMAmemory allocation. RD=Read,
WR=Write.

Figure 10: 16-thread evaluation of miniFE-CG-Solver NUMA
version.

resulting dense vector as 𝐴𝑝 , and 𝑥 , 𝑟 , 𝑝 , and 𝑏 serve as vectors uti-
lized for the kernels. To investigate the impact of utilizing different
memory technologies and the effectiveness of our prefetcher in a
NUMA-optimized workload operation, we allocate these vectors
across two NUMA domains. The figure presents the outcomes of a
16-threaded evaluation, where lower values are better.

The notation “HBM2(all)” indicates that all vectors are allocated
on the HBM2, whereas “HBM2(A,Ap,x,r)” specifies which vectors
are allocated on the HBM2, with the remaining vectors allocated
on the DDR5. Similarly, “DDR5(all)” denotes that all vectors are
allocated on the DDR5. The x-axis illustrates the memory allocation
scenarios, differentiating between no prefetching, Agg, and TiA
Prefetcher. The y-axis depicts the execution time normalized to
HBM2.

When excluding prefetching, it becomes evident that allocating
vectors leveraging spatial locality on HBM2 while assigning others
to DDR, such as those involving indirect accesses (“HBM2(A,Ap,x,r)”),
results in enhanced performance as it increases the overall available
bandwidth. Conversely, allocating all vectors solely to DDR5 leads
to a performance deterioration of 2.1× compared to HBM2.

Our optimization strategies, as implemented in the Agg, have
shown their benefit by significantly reducing the runtime to 0.4×
for all vectors allocated on HBM2. This benefit persists even with
partial memory allocation across HBM2 and DDR5, as observed
previously. It is noteworthy that while certain kernels, such as
SpMV, benefit from this partial allocation due to indirect memory
accesses, others like daxpby and Ap.dot show small drawbacks.
Despite these variations in kernel performance, the overall runtime
remains unchanged. Allocating all vectors exclusively on DDR5 re-
sults in a performance degradation of 2.17× due to the reduction in
available memory bandwidth. The TiA Prefetcher notably reduces
the runtime by a factor 0.58× and 0.52× when allocating all vectors
or partially allocating them on HBM2, respectively. Similar to Agg,
allocating all vectors exclusively on DDR5 results in a performance
decline. Overall, while the Agg Prefetcher exhibits slightly more
influence on this workload, both prefetchers effectively enhance
performance by intelligently adapting their parameters to the uti-
lized memory technologies and the measured statistics.

8 Related Work
One of the most notable techniques for dynamically adapting the ag-
gressiveness of the prefetcher is the Feedback-Directed Prefetching
Mechanism (FDP) [57]. The FDP Prefetcher analyzes prefetch ac-
curacy, timeliness, and cache pollution during execution, allowing
immediate adjustments to prefetch aggressiveness and cache inser-
tion policies. Moreover, the paper presents a windowing technique
designed to dynamically monitor memory accesses within a defined
range for Stream Prefetcher. Our prefetcher draws inspiration from
this methodology. Further efforts have also aimed to dynamically
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control the aggressiveness of the prefetcher. For example, the tech-
niques described in [12, 64] target improving timeliness, and the
bandwidth-aware techniques described in [6, 39] aimed at avoiding
high-contention bandwidth consumption. Our work aligns in the
same direction; however, we focus on improving prefetching for
hybrid memory scenarios.

Some recent prefetchers support dynamic adjustments for aggres-
sive prefetching [16, 22, 23, 34, 40]. For instance, the Berti Prefetcher
is a local-delta prefetcher attached to the L1 data cache [40]. Berti fo-
cuses on refining prefetch decisions based on the difference between
successive cache line addresses initiated by the same instruction.
By differentiating between deltas and strides, Berti’s methodology
mirrors the approach of learning timeliness by employing a history
table to discover new prefetch triggers and utilizing latency mea-
surements to issue prefetch requests. T-SKID Prefetcher decouples
the timing of prefetch operations from their address predictions [23].
T-SKID leverages temporal correlation between load instruction
Program Counters (PCs) to pick the best prefetch trigger and gain
more timely prefetches. Access Map Pattern Matching (AMPM)
Prefetcher [16] utilizes a memory access map and pattern-matching
logic to predict and prefetch data. AMPM learns about bandwidth
consumption and adjusts the prefetch degree dynamically to avoid
high-bandwidth contention at runtime. Our work aligns with the
AMPM approach. However, ours focuses on classifying memory
access and tuning the prefetch degree for each memory device.
The SPP Prefetcher [22] adaptively throttles only prefetch degree.
The Best-Offset Prefetcher [34] attempts to fine-tune the prefetch
offset, which is the difference between successive addresses. Both
techniques aim at achieving more timely prefetches. Arm recently
introduced the Completer Busy (CBusy), which detects system con-
gestion and dynamically guides the aggressiveness of advanced
prefetching engines in Neoverse processors [8, 48]. Our technique
can combine with Cbusy to adapt aggressiveness for heterogeneous
memories.

In heterogeneous memory architecture, we noticed a few works
aimed at improving prefetchers’ effectiveness. In [28], a stream-
based prefetcher located at the main memory controller is pro-
posed to improve the long latency of flash memory within a hybrid
DRAM/NAND flash memory architecture. The prefetcher tracks
multi-stream of page access and prefetch pages in NAND flash
into DRAM to mitigate the long latency of the flash accesses. The
prefetcher implements a Global History Buffer (GHB) structure
[42] to store missed pages and uses the historical info to select bet-
ter candidates for future prefetching. Our multi-stream prefetcher
also supports multi-stream tracking, but our work is dedicated to
on-cache prefetching. In our proposal, the ’Fill Queue’ is also an
implemented GHB structure; it is not globally used. Instead, each
queue is dedicated to each prefetch stream.

Barrera [58] introduced a NUMA-aware L1 Stride Prefetcher
within a two-socket NUMA system. This prefetcher tunes the
prefetch degree parameter for access streams targeting local or
remote memory locations. A prefetch request to the remote loca-
tion, where the request address is near the trigger address, will
fetch data directly in L1. Meanwhile, the prefetch, where the ad-
dress is far from the trigger address, places data in L3. By doing
that, high latency for remote access can be mitigated. More closely

related to our work, an effort to optimize timeliness for stream-
based prefetchers within a NUMA architecture is described in [14].
In this approach, the aggressiveness associated with each memory
device is tuned using a prefetch degree threshold, and prefetching is
throttled by monitoring the wrong prefetch fraction. Our approach
differs from both these techniques in that the prefetcher learns
timeliness and bandwidth consumption at run-time, dynamically
adjusting both prefetch distance and degree parameters for either
more aggressively prefetching or not.

9 Conclusion
In this paper, we optimized hardware prefetchers in a mixing HBM2
and DDR5 memory architecture using a gem5 model with 20 Arm
Neoverse V1-like cores. We analyzed the characteristics of HBM2
and DDR5 memory technologies and their impacts on hardware
prefetchers within a global physical address configuration. The
exploration of static configurations of prefetchers showed that
memory-bound kernels (SpMV, waLBerla, Stream) benefited from
increased aggressiveness when accessing data on HBM2, while
higher latency and lower bandwidth on DDR5 make a low aggres-
siveness strategy necessary to avoid performance slow-downs. That
emphasizes the need to dynamically adjust prefetching aggressive-
ness for each memory technology used in the architecture.

We have introduced a hybrid-memory-aware prefetching tech-
nique that dynamically tunes the aggressiveness of prefetchers,
leveraging run-time bandwidth feedback for prefetch degree adjust-
ment and the queuing structure for prefetch distance adjustment
specific to each memory type. This technique has demonstrated
significant advantages when integrated into Stride and Stream
Prefetchers. Evaluation with four HPC kernels, either with coarse-
grain or fine-grain NUMA optimized codes, shows our technique’s
ability to guide both prefetchers to near-optimal static configu-
rations and thus improves overall system performance. Looking
ahead, our future work includes investigating prefetching across
page boundaries potentially for higher timeliness gain, examining
the hardware cost of implementation, and evaluating the technique
integrated into more hardware prefetchers.
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