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Abstract
Continual demand for memory bandwidth has made it worthwhile
for memory vendors to reassess processing in memory (PIM), which
enables higher bandwidth by placing compute units in/near-memory.
As such, memory vendors have recently proposed commercially vi-
able PIM designs. While the challenge of efficient PIM orchestration
requires consideration of new constraints across the compute stack,
these can often be hidden from software and microarchitecture for
highly regular workloads (e.g., common machine learning, or ML,
primitives). However, these new constraints are not as easy to hide
for workloads that exhibit certain types of irregularity. To extend
PIM’s reach to a broader range of workloads, navigating these new
constraints becomes necessary at all levels of the compute stack.

In this work, we analyze the capabilities and constraints of a
promising new type of commercial PIM architectures and we de-
scribe the properties that make a workload amenable to acceleration
on such a system. Next, we explore how limitations of these PIM
designs like row activation overheads, lack of reuse benefit, and com-
mand bandwidth can expose novel bottlenecks for some workloads.
These workloads, termed PIM-potential workloads, have proper-
ties which deviate in limited ways from the identified amenability
characteristics but enjoy only minor performance gain from PIM.
The exposed bottlenecks motivate targeted hardware and software
optimizations - eager activation, increased register storage, selective
PIM command issue, and increased command bandwidth - that can
be leveraged to mitigate these performance constraints and enable
PIM acceleration for a wider range of workloads. We evaluate their
impact on PIM-potential primitive acceleration and demonstrate
that PIM can be applied more broadly than previously described
if the emergent PIM bottlenecks can be addressed. We argue that
emerging PIM architectures and programming models should take
into account these novel PIM bottlenecks and corresponding opti-
mizations in order to enhance the scope of PIM acceleration.

1 Introduction
As applications of both commercial and scientific importance con-
tinue to demand more memory bandwidth, memory vendors are re-
assessing processing in memory (PIM) as a potential solution. With
PIM, in/near memory compute units work in tandem with traditional
processors to enable higher effective memory bandwidth (potentially
an order of magnitude or more) over that available externally (e.g., to
CPUs, GPUs, ASICs, etc.). Recently, multiple memory vendors have
proposed commercially viable near-bank PIM designs [32, 33]. Go-
ing forward, we refer to such architectures as "tightly-coupled PIM"

or simply "PIM" (discussed in detail in Section 2.2 and differentiated
from other types of PIM in Section 6).

The limitations of tightly-coupled PIM mean that it is only useful
(and has only been evaluated) for workloads with PIM-amenable
characteristics (discussed in Section 3). Rather than focusing on
known-PIM-friendly workloads (i.e., extremely regular, parallel,
memory bound workloads), we choose to probe the limits of PIM
acceleration by selecting workloads that exhibit some but not all of
the identified PIM-friendly characteristics. Via careful evaluations,
we observe that while these primitives show promise in terms of
PIM amenability, this potential is not realized in practice. We term
such primitives as PIM-Potentials.

With further investigation, we identify unique challenges that
arise in such PIM designs and prevent realization of the acceleration
potential of primitives under study. First, we observe that while tech-
niques like bank parallelism allow effective hiding of row activation
overheads for a baseline system, broadcasting the same command to
multiple banks exposes these overheads for a PIM system. Secondly,
while a baseline system can often harness data reuse benefits with
large on-chip structures (e.g., register files, caches), PIM, without
large scratchpads (due to associated area overheads) fails to harness
data reuse benefits. Similarly, while computation on on-chip data
in a baseline system is cheap enough to tolerate unneeded compute
(e.g., multiplication with zero), this is not so for PIM where every
PIM command is a memory command. Finally, we observe that PIM
stresses available command bandwidth in the system. We describe
how these challenges can limit PIM performance for the studied
primitives as well as for any other workloads that exhibit similar
properties.

Finally, to address above bottlenecks, we propose targeted
hardware and software optimizations and evaluate them for
PIM-Potential primitives from different domains. Specifically, to
tackle row activation overheads we propose and evaluate careful
and eager scheduling of row activations in a PIM system. To tackle
data-reuse disadvantage and costly-compute in PIM, we propose se-
lective PIM command issue which offloads to PIM in a cache-aware
(reuse-aware) manner and also opportunistically avoids issuing PIM
commands where possible while preserving functional correctness
(e.g., sparsity-aware PIM command issue). Finally, we consider the
benefits of addressing command bandwidth bottleneck in PIM. We
show how our proposed optimizations stand to broaden the acceler-
ation reach of tightly-coupled PIM designs, achieving speedups of
up to 2.68x, 3.17x, and 2.43x in scientific, ML, and graph analytics
domains respectively (of an available upper-bound of 4x).

Overall, our work makes the following contributions:



• We introduce and focus on PIM-Potential primitives. That
is, primitives which have some characteristics that make
them amenable to acceleration with tightly-coupled PIM
systems, however, this acceleration potential is not realized
with current PIM designs.

• We identify unique constraints and bottlenecks which mani-
fest when these primitives are offloaded to tightly-coupled
PIM architectures.

• We demonstrate how simple and targeted hardware and soft-
ware optimizations can unlock the acceleration potential for
PIM-Potential primitives improving average PIM speedups
from 1.12x to 2.49x relative to a GPU baseline.

With the above analysis, this study proves that tightly-coupled PIM
can accelerate a broader range of domains than previously studied as
long hardware and software are designed with these new bottlenecks
in mind.

2 Background
In this section, we first discuss and motivate our assumed base-
line system, our assumed PIM architecture, and the domains and
primitives that we focus on in this work.

2.1 Baseline System - GPU + HBM
The left side of Figure 1 depicts the baseline system studied in this
work: a GPU coupled with HBM memory [1].

GPU: While PIM can be coupled with any processor (CPUs,
GPUs), our evaluation assumes a GPU for multiple reasons. First,
over the past decade, GPUs have emerged as performant and pro-
grammable accelerators for a diverse range of highly parallel com-
pute workloads. Second, there exists a real PIM prototype [33]
coupled with GPUs allowing us a baseline architecture to assess.
Finally, as GPU compute throughput is increasing more rapidly than
memory bandwidth, many emerging GPU workloads are likely to be
memory bandwidth bound.

High Bandwidth Memory (HBM): High bandwidth memory
is a specialized form of DRAM that attains high bandwidth and
energy efficiency via high density interconnects and 3D stacking. As
illustrated in Figure 1, each HBM module is a 3D-stack of DRAM
dies and a base logic die connected using low-power through silicon
vias (TSVs). HBM can be tightly integrated with a processor (in
this case a GPU) die on a common substrate such as a silicon inter-
poser [31] with an order of magnitude more I/O interconnects [33]
than conventional DRAM.

Each HBM DRAM die is composed of pseudo-channels (pCHs),
which further comprise multiple banks that share the data bus associ-
ated with a pCH. The address associated with a baseline read/write
request specifies the pCH and bank where the data resides along with
the row and column address within the bank. On a read request, the
specified row is activated in the bank (row activation), which causes
the data in the row to be read out to the row-buffer associated with
the bank (row open) after DRAM row activation delay. Subsequently,
the column decoder selects a DRAM word from the row buffer based
on specified column address (column access). Row activation de-
lay overhead can be mitigated in DRAM by exploiting row locality
(subsequent accesses to the open row do not incur activation latency)
and bank parallelism (column commands to different banks keep the
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Figure 1: PIM design based on PIM-HBM [33].

data bus utilized while one bank is activating a row). Note that the
basic sequence of operations for an HBM memory access is similar
to that of DDR DRAM.

2.2 Tightly-coupled PIM Architectures
Recently, two designs for DRAM-attached tightly-coupled (bank-
local) PIM have been announced by Samsung and SK Hynix. We
discuss the details of each design in this section.

HBM-PIM: Samsung’s proposed PIM architecture [27, 33]
places ALUs and associated register files on the periphery of DRAM
banks (Figure 1). This design does not disturb the bank and sub-array
structures of the memory, improving its viability for commercializa-
tion. The PIM ALU is a 256b-wide SIMD datapath that performs
sixteen 16b operations in parallel, and is matched to the input/output
width of the DRAM cell arrays of the bank. The register files can
be used for intermediate results or for staging data from an open
DRAM row to reduce the frequency of row activations. Notably,
the PIM units do not contain instruction fetch or other "frontend"
capabilities, reducing their area costs, and they execute instructions
in response to commands issued from the GPU processor. These
GPU commands are issued subject to fixed timing constraints, simi-
lar to how traditional memory operations are issued. The key benefit
of this architecture is memory bandwidth amplification, which is
achieved by broadcasting the commands to all banks (or a subset of
banks) of a pCH (normal load/store operations only access a single
bank at a time). This is possible because the data from each bank
goes to the associated PIM unit rather than being transmitted across
the shared pCH. The memory functions as a standard DRAM when
the PIM capabilities are not used.

The authors also describe a prototype implementation named PIM-
HBM that is fabricated as an extension to HBM2 and is evaluated
in silicon. In the prototype, each PIM unit is shared between a pair
of banks, demonstrating the flexibility of the design to provision a
PIM unit per bank, per pair of banks, or other grouping of banks to
tradeoff performance vs area/cost considerations. The PIM ALUs of
the prototype support a limited but generic set of ALU operations,
which can presumably be extended in subsequent implementations.

GDDR-PIM: The SK Hynix design [25, 32, 34] describes a PIM
system based on GDDR6 that is specifically targeted for ML infer-
ence applications and is tailored to matrix-vector multiplications
and non-linear activation functions. Despite the specific application
focus, this design takes a very similar approach to the PIM-HBM
in that it places compute units on the periphery of DRAM banks
and relies on the GPU for instruction triggering in place of native
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Figure 2: PIM-Potential primitives.

Table 1: Tightly-coupled PIMs relative to GPU

Property MI250-GPU HBM-PIM GDDR-PIM
Mem clock (GHz) 1.6 1.2 1.0
FP16 TFLOPS 45 1.2 1
PIM data BW (GB/s) n/a 1229 1024
Mem BW (GB/s) 400 307 64

frontend hardware. The datapath is also in a 256b SIMD configura-
tion matched to the bank input/output data width. In the evaluated
prototype implementation, a PIM unit is instantiated for each bank
of the GDDR6 memory module.

Tightly-coupled PIM Performance Space: Table 1 provides
key performance metrics for the above tightly-coupled PIM designs
(per-device compute and data bandwidth). We also include state-
of-the-art GPU (AMD Instinct™ MI250 Accelerator) performance
metrics (per-HBM stack) for comparison. As depicted, PIM data
bandwidth is considerably higher than memory bandwidth available
to the GPU, while GPU compute capability is considerably higher
than that of PIM.

PIM Strawman: For our analyses, we distill a near-bank high-
bandwidth PIM design based on the basic characteristics common
to the two memory vendor PIM proposals above but lean closer to
HBM-PIM for two reasons. First, HBM-PIM is the more flexible of
the two in terms of programmability, and our interest is in further
broadening the applicability of PIM. Second, as many modern high-
performance GPUs use HBM DRAM, HBM-PIM provides a natural
comparison point. We discuss how this assumed architecture differs
from previously analyzed PIM architectures in Section 6.

2.3 Domains and Primitives
We select three primitives from three important application domains:
scientific computing, machine learning, and graph analytics. These
primitives, which we refer to as PIM-Potential primitives, are de-
picted in Figure 2. They are chosen because of their importance
within their respective domains, and also because they represent a
type of PIM amenability that has not been thoroughly studied in
the context of tightly-coupled PIM. PIM-Potential primitives have

some characteristics that make them amenable to PIM (discussed
in Section 3.2), but also expose new challenges that are unique to
tightly-coupled PIM systems (discussed in Section 4.4).

2.3.1 Scientific - Wave Simulation. The solution of partial differ-
ential equations (PDEs) is critical to many large-scale problems in
HPC systems. One such use case, wave simulation, requires solving
the wave equation to model the propagation of waves through dif-
ferent media and is used extensively in domains including medical
imaging, earthquake modeling, oil and gas exploration, and antenna
and radar modeling.

The Discontinuous Galerkin Method (DGM) is a popular algo-
rithm for wave simulation due to its scalability [51]. Like many PDE
solvers, DGM discretizes the wave space into a mesh of elements
which are distributed among processors in the system (Figure 2a).
It then iteratively executes a volume computation and a flux com-
putation along with communication and support computations to
model wave propagation. In both volume and flux, multiple prop-
erties from neighboring data points are accumulated in multiple
intermediate reduction variables. The volume computation (termed
wavesim-volume primitive) performs computations local to each
mesh element; the flux computation (termed wavesim-flux primitive)
propagates conditions at the boundaries (faces) of each mesh ele-
ment. These two computations dominate execution time for most
simulation tasks and as such we focus on these in our work.

2.3.2 Machine Learning - Sparse Skinny GEMMs. Machine learning
(ML) continues to become ever more pervasive. At the heart of
many ML [43] workloads is General Matrix-Matrix multiplication
(GEMM). Unlike prior PIM evaluations which focus on skinny
GEMMs (the non-shared dimension is small) which are dense, in
this work, we focus on GEMMs where one of the matrix inputs
is also sparse (has many zeros, as in Figure 2b). We term these
sparse skinny gemms (ss-gemm) and they manifest in many ML
inference scenarios (e.g., Deep Learning Recommendation Model
(DLRM) [41] with small batch sizes).

2.3.3 Graph Analytics - Push-based Computation. Graph analytics
attempts to derive insights by analyzing the connectivity of graphs
and data associated with its edges and vertices. Graph analytics
is regularly used for navigation, chemical and biological modeling,
social network monitoring and analysis, and many more applications.

Many common graph analytics workloads operate by iteratively
propagating vertex properties (pull or push) across graph edges to
neighboring vertices. In pull-based algorithms, a local vertex is pro-
cessed by reading properties from each of its neighbor vertices and
updating the local vertex based on what was read. In push-based
algorithms (Figure 2c), a local vertex is processed by reading its
properties and updating neighbor vertices based on what was read
(using atomic RMWs to avoid race conditions). Push implementa-
tions have been found to offer attractive performance properties for
many graph algorithms and inputs [11, 44], and they are widely used
in GPU graph frameworks [21, 50] and benchmark suites [19, 39].
As such, we focus on a push-based algorithm primitive (termed
push-primitive).

3



Memory bandwidth 
limited

Vector-sum computation

c [i] = a [i] b [i]+

Write Read Op Read

Op/Byte = 1/6 

Low op/byte 

Memory residency and 
low on-chip reuse

x = #memory 
accesses

compute

On-chip 
structures

Memory

y = #memory 
accesses

y/x > PIM bandwidth 
multiplier

Operand locality

Bank-0

a

b

Bank-1

c

ALU ALU

a + b a + c✓

Operand interaction = 
localized

Rows

Cols Bank-0
a

c

Bank-1

Aligned data parallelism

Multi-bank read: a c✓

SIMD alignment:

Address-interleaving 
aware allocation

(a) (b) (c) (d)

a
c

✓ Need shifta0 a1
c0 c1

a0 a1
c1 c0

SIMD lanes

Figure 3: Characteristics of interest for PIM-amenability-test.

3 Tightly-coupled PIM-amenability
Here we describe what is necessary for a compute workload or
primitive to benefit from PIM execution. We then describe the ways
in which the PIM-Potential primitives exhibit PIM amenability and
non-amenability.

3.1 PIM-friendly Characteristics
We begin this section by discussing a list of characteristics which
help evaluate if a given computation is likely to benefit from PIM.

3.1.1 Memory bandwidth limited. PIM’s primary performance ben-
efit comes from increasing effective memory bandwidth.1 Therefore,
it will not improve performance for workloads that do not stress
available memory bandwidth. Memory bandwidth sensitivity will
depend on both the workload and the target architecture. This prop-
erty can be tested analytically by calculating the algorithmic op/byte
ratio (Figure 3a) and determining whether it falls in the compute-
limited or memory-limited range on a roofline model for the target
architecture.

3.1.2 Memory residency and low on-chip reuse. Even for work-
loads that are limited by memory bandwidth, residency and on-chip
reuse of computation’s inputs/outputs can preclude PIM amenability.
Should a computation’s inputs/outputs be resident in on-chip struc-
tures or manifest enough reuse when moved from memory to on-chip
structures, the computation is less likely to attain acceleration with
PIM. For the former, employing PIM would necessitate flushing
data to memory, resulting in added data movement overhead. For the
latter, with enough reuse, moving data closer to the processor to take
advantage of the fast and low energy caches and compute available
at the processor is a better solution than using slower compute avail-
able in memory. As a general rule, PIM acceleration of an access
pattern is possible if the ratio of on-chip to off-chip data access is
less than the PIM bandwidth multiplier.

3.1.3 Operand Locality. As discussed in Section 2.2, compute units
in tightly-coupled PIM designs are associated with specific mem-
ory bank(s). As such, interacting operands in a computation should

1Some forms of PIM may offer improved memory latency as well, but this work focuses
on the bandwidth benefits.

map to the same bank to effectively harness PIM acceleration (Fig-
ure 3c). We term this property operand locality in our discussion.
In the absence of operand locality, costly GPU-orchestrated data
transfers between banks will be necessary, which will eat into PIM
acceleration. As an example, consider elementwise computations
(e.g., vector sum) in which elements in a data structure interact with
the corresponding element index in another structure. In this case,
operand locality of interacting elements can be achieved via careful
co-alignment of data structures at allocation [6]. For more complex
structures (e.g., 2D matrices), operand locality may require other
types of intelligent data mapping (e.g., padding, address swizzling).
In all cases, any data mapping costs should be factored in when
assessing end-to-end PIM impact.

3.1.4 Aligned Data Parallelism. The bandwidth boost attained in
PIM is possible via execution of the same operation in parallel across
multiple banks. As discussed in Section 2.2, as memory operations
have associated row and column addresses, this bank-parallel exe-
cution can be employed when operands in different banks in a com-
putation are at the same row/column locations (e.g., see accessing
operand a across banks vs. accessing operand c in Figure 3d). Note
that, within a single DRAM word (256bit single DRAM column),
interacting operands therein (e.g., 32bit operands) also have to align
(depicted as SIMD alignment in Figure 3d). In absence of this, costly
shift operations will be necessary. We term these properties together
as aligned data parallelism. As processors often spread a contiguous
physical address chunk across multiple channels/banks, ensuring
interacting PIM operands are interleaved similarly at allocation time
can help attain this characteristic.

3.2 PIM-Potential Amenability
We evaluate PIM amenability of the PIM-Potential primitives (Sec-
tion 2.3) by analyzing them for the characteristics described in Sec-
tion 3. While these workloads exhibit many important PIM-friendly
characteristics (with careful data mapping and orchestration), they
also expose novel performance limitations unique to PIM (discussed
in Section 4.4).

Wave Simulation: With low op/byte (0.43-1.72), wave simu-
lation primitives under study (wavesim-volume and wavesim-flux)
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are likely to be memory bandwidth-limited for most architectures.
Further, for problem sizes that do not fit in cache (the common case),
these primitives manifest low on-chip reuse (although some reuse
exists in accumulation variables). While largely relying on local-
ized interaction, these primitives do manifest interactions between
neighboring mesh element faces (flux in Figure 2a). As such, careful
memory allocation is necessary to maximize mapping of interacting
neighbors to the same DRAM bank and further, not all computation
can be mapped to PIM (interactions between neighboring elements
in different banks). Finally, these primitives operate on large regular
grids of elements which can be harnessed to achieve aligned data
parallelism. Overall, wave simulation primitives show promise in
terms of PIM amenability, albeit care is necessary to attain operand
locality.

Sparse Skinny GEMMs: With one of the input matrices being
skinny (small N for GEMM M ×N ×K), the ss-gemm primitive
manifests low op/byte (0.5-2 with N ≤ 4) and low reuse of data and
can benefit from PIM for sufficiently large problem sizes (although
both op/byte and reuse increase with larger N). By streaming the
skinny matrix to PIM units and keeping the other matrix stationary
in memory, operand locality can be simplified. Further, unless the
row-size of the matrix resident in memory is considerably large,
aligned data parallelism requires considerable care for ss-gemm and
we discuss how this guided our data mapping (Section 4).

Push-based Computation: The dominant computation for push-
primitive is the access and update of neighboring nodes (Figure 2c)
which manifests a low op/byte ratio (0.25). On-chip reuse is depen-
dent on the connectivity and size of the graph, although sufficiently
large problem sizes tend to be limited by cache misses and memory
bandwidth. As long as PIM is simply performing an in-place update
on each target variable, operand locality is trivial. However, the
irregularity of accesses to neighbor nodes precludes most aligned
data parallelism. As we will discuss, this limits PIM potential for
push-primitive (Section 4).

4 Baseline PIM
We discuss in this section how PIM-Potential primitives can be
offloaded to PIM. We then evaluate PIM performance and detail
novel sources of inefficiency exposed by these workloads.

4.1 Offloading Primitives to PIM
Once a programmer has determined that a primitive has PIM po-
tential, they must determine how best to offload the operations to
PIM. As discussed in Section 3.1, ensuring operand locality and
aligned data parallelism is critical to attaining PIM acceleration. To
that end, identifying operands or data structures ( 1 ) and, more cru-
cially, identifying interactions between them ( 2 ) are the first steps
in offloading to PIM. Subsequently, operands are placed in DRAM
banks ( 3 ) such that costly inter-bank communication, cross SIMD
operations, and (where possible) inter-row interactions are avoided.
Finally, ( 4 ), a stream of pim-instructions is deduced to orchestrate
the computation over PIM units.

We next describe how we place data and orchestrate PIM com-
mands for the PIM-Potential primitives discussed previously. We
also describe this for a PIM-amenable primitive (vector sum) for
comparison purposes.

4.1.1 Wave Simulation. Data placement: Wave simulation largely
operates over arrays and employs three types of operand interaction:
elementwise, reduction, and neighboring mesh element. Of these,
while elementwise interaction can be tackled via data placement as
has been shown in past work [5], reduction and neighbor interaction
warrant more care. For the former, blocked data placement is em-
ployed (discussed below in the context of ss-gemm primitive which
also employs this). For the latter, array (grid) elements are placed
such that, to the extent possible, neighboring faces reside in the same
bank as depicted in Figure 4b.
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Command orchestration: Despite their PIM amenable proper-
ties, wavesim primitives exhibit complex interaction patterns be-
tween operands which complicate orchestration. Considerable care
is necessary to effectively utilize available registers while avoid-
ing memory spills and lowering row activation overheads. While
we hand schedule the computation in our analysis, existing com-
piler methods for register allocation [15, 17] can be adapted for
PIM-specific cost awareness.

4.1.2 Sparse Skinny GEMMs. Data placement: To harness broad-
cast pim-commands and concomitant performance, we place the
input dense matrix in a blocked format as depicted in Figure 5,
which is tailored to both the dimensions of the matrix and the ad-
dress interleaving of the system. This layout has multiple attractive
properties: skinny matrix values can be broadcast as an immediate
PIM operand on the data bus, and accumulation of partial products
avoids inter-bank, intra-SIMD, and (to the extent possible) inter-row
operations.

Command orchestration: Compute orchestration follows from
data placement: an element of the skinny matrix is loaded into the
host and broadcast to banks that contain the elements of the (larger)
dense matrix. The broadcast element is then multiplied with these
dense matrix elements using a vector pim-MAC operation at each
bank. Partial results are accumulated in pim-registers before being
written to memory.

4.1.3 Push-based Computation. Data placement: Variation in
graph connectivity precludes the use of broadcast commands and
co-location of interacting neighbors (source and destination nodes
in Figure 4d). Instead, single-bank pim-commands execute in-place
destination updates, avoiding operand locality layout constraints.

Command orchestration: Compute orchestration for push-
primitive also follows from its data placement. The source node’s
value is read from memory, then updates to neighboring nodes are
calculated and applied using single-bank pim-commands (namely,
a pim-ADD command loads the current value and adds an operand
supplied on the data bus, placing the result in a pim-register, and a
pim-store command stores this result to memory).

4.2 Performance Models
We use a combination of analytical models and detailed memory
timing models to evaluate performance. The use of analytical model-
ing is consistent with prior PIM evaluations [28, 29] and is guided
by the following reasons. First, tightly-coupled PIM designs are still
only available as functional prototypes. Second, we aim to study
primitives considering realistic problem sizes, where PIM is likely

Table 2: Parameters for performance model [2].

#Banks per Channel/4-high Stack 16 / 512
Bandwidth per Pin 4.8 Gb/s
GPU Mem. Bandwidth per Stack 614.4 GB/s
Row Buffer Size 1024 B

DRAM Parameters tRP=15 ns, tCCDL=3.33 ns,
tRAS=33 ns

PIM Parameters #PIM Units per Stack = 256
#PIM Registers per ALU = 16

Peak HBM Bandwidth 614.4 GB/s

to be beneficial. This renders GPU simulators difficult to use due
to long simulation times. Finally, we target highly parallel GPU
workloads that are principally bottlenecked by memory bandwidth;
accurate modeling of compute and caches will not impact overall
performance in such cases.

Baseline GPU Performance Model: For our GPU baseline, we
assume the execution time is primarily a function of memory band-
width (assumed to be 90% of peak) and data accessed. As a result,
compute and cache access is effectively free in our model. Further,
we assume caches are able to exploit all available reuse with two
exceptions: inter-timestep reuse is not modeled for wavesim (we
assume polynomial degree p = 2, 729 data points per element, and
65K elements per GPU, which is too large to fit in cache), and
cache locality for push-primitive is based on actual cache hit rates
measured using rocprof [3] with push-based workloads from graph-
BIG [39] (specifically, hit rates of 44%, 20%, and 57% are observed
for roadnet-usa [19], a synthetic power-law graph with 1M nodes
and 10M edges, and a synthetic power-law graph with 10M nodes
and 100M edges, respectively).

We believe this to be an fair assumption for memory-limited work-
loads which manifest low op/byte ratios as discussed in Section 3.2.
Further, we assume HBM3 memory [2] in our analysis (Table 2).
We do so to be both forward-looking and avail our baseline GPU
with the best possible memory bandwidth. As such, this provisions
a compelling baseline against which to compare PIM acceleration
benefits.

Further, for ss-gemm, we assume an optimized GPU baseline
which can exploit row-sparsity to both avoid loading the zero rows
and computing on them. We estimate this sparsity by analyzing
row-sparsity occurrence for computations in MLPerf DLRM-based
recommendation model [41] using the Terabyte Click Logs testing
dataset [18].

PIM Performance Model: For PIM, we first deduce detailed
pim-commands (Section 4.1) and subsequently model their detailed
orchestration using known DRAM timings (Table 2) and opera-
tions (row activation, etc.) to determine PIM execution time. Multi-
bank pim-commands are issued in-order at half the rate2 of reg-
ular reads/writes as is the case with the HBM-PIM design [33].
Single-bank pim-commands (used for push-primitive) can be freely
reordered and can be issued at the same rate as regular reads/writes.

2As dictated by the tCCDL timing parameter for back-to-back requests to the same bank
group, as opposed to the minimum possible time between reads/writes: tCCDS .
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Figure 6: Tightly-coupled PIM speedup relative to GPU. For
ss-gemm, N represents skinny matrix width. For push-primitive,
L2-HR represents the hit rate measured at L2 cache for each
graph evaluated.

Further, push-primitive updates are also assumed to occur atom-
ically, which can be guaranteed by existing per-address ordering
assumptions in the memory controller.

4.3 PIM Performance Analysis
We depict PIM speedups for PIM-Potential primitives in Figure 6.
For our PIM strawman design, the upper bound for performance
is about 4x assuming the baseline GPU can utilize 100% of peak
memory bandwidth (optimistic).

For the wavesim-volume and wavesim-flux primitives, PIM offers
minimal speedups, but row activation overheads prevent it from
achieving peak PIM bandwidth. For the ss-gemm primitive, except
very skinny matrices (N = 2), PIM incurs increasing slowdown (be-
tween 25-77%) as N increases compared to the GPU. This is ex-
pected because, as data reuse improves, moving data to the GPU
and exploiting the reuse on chip is more beneficial. Although PIM
enables sub-cache line access granularity which can accelerate the ir-
regular push-primitive accesses when cache reuse is low, the inability
to issue aligned PIM requests prevents significant PIM acceleration.
In addition, as the cache hit rate improves, relative PIM performance
decreases (similar to ss-gemm).

Overall, we observe that, even with considerable care to
place data appropriately and orchestrate computation efficiently,
tightly-coupled PIM designs do not attain broad acceleration for
PIM-Potential workloads.

4.4 Novel Challenges to PIM Acceleration
In this section we further analyze PIM performance, focusing on
unique challenges when computations are offloaded to PIM. We
also discuss how the identified challenges are fundamental to tightly-
coupled PIM designs and not specific to PIM-Potential primitives.
That is, addressing these challenges will likely enable broad acceler-
ation with tightly-coupled PIM.

Challenge - Row activation overhead: A key limit to PIM ac-
celeration is row activation overheads - that is, latency costs to open
DRAM rows. In a non-PIM system, row activation overheads can
impact performance, but they are often mitigated via bank paral-
lelism (row activation latency in one bank is overlapped with data
access in another bank) and exploiting row locality (scheduling as
many requests to an open row as possible before closing it). Note
that, though pseudo-channel (pCH) level data access parallelism can

be achieved by keeping all the pCHs busy at the same time (each
pCH has individual data bus), to ensure higher data bus utilization
per pCH we need bank-parallelism within the banks of a pCH.

However, in PIM-Potential primitives wavesim-volume and
wavesim-flux, row activation accounts for 27% and 50% of total
latency. This is because the benefits of bank parallelism and row
locality are limited in a tightly-coupled PIM system. PIM row activa-
tion commands are generally broadcast to all banks of a pCH, hence
hiding row activation delay by useful work in other banks of the same
pCH is not possible, prohibiting intra-pCH bank-parallelism. Also,
PIM workloads that operate on data operands residing in different
DRAM rows must read data from the first row(s) into near-memory
registers until it can be used in computation. Therefore, even if
a workload will eventually access an entire row, the row locality
that can be exploited by PIM is limited by how many elements can
fit in the near-memory registers. This is particularly limiting for
workloads such as wavesim that have multiple different operands
and intermediate values from each row that must be buffered near
memory. Additional measures are therefore needed to mitigate row
activation overheads in tightly-coupled PIM systems.

Challenge - No benefit to data reuse: Primitives whose access
patterns exhibit high cache locality are a poor fit for PIM, since on-
chip reuse exploited by the GPU can outweigh the bandwidth benefit
of PIM. In non-PIM systems, caches are used to automatically ex-
ploit data reuse where available. For data that is frequently accessed,
memory accesses are low cost because they are likely to hit in the
cache, so there is little incentive to avoid these accesses. In ss-gemm,
the cost of operating on zero values (which don’t impact the result)
is minimal since data is mostly accessed from cache, so a simple
dense matrix multiplication strategy is efficient. In push-primitive,
updates to high reuse nodes and low reuse nodes are treated the
same; caches will implicitly exploit reuse and maximize efficiency
where available.

This is not true of PIM. Each PIM operation must occupy a
memory command slot regardless of how frequently that data is
accessed. Therefore, to maximize performance, a PIM system should
be more judicious in issuing PIM requests to memory, avoiding
accesses that aren’t needed and using the GPU for accesses that
exhibit high reuse.

Challenge - Command bandwidth bottleneck: We also observe
in this work that PIM alters the balance of memory bandwidth
demand, creating a new command bandwidth bottleneck for some
workloads. In non-PIM systems, each memory command uses the
exact same amount of command bandwidth to specify a command
and data bandwidth to transfer data across the DRAM bus and
into/out of the memory bank. Therefore, provisioning bandwidth for
command and data buses is straightforward: match bandwidths to
this fixed demand proportion.

However, in a tightly-coupled PIM system, demand for command
and data bus bandwidth can vary based on the PIM command. All
PIM commands require the use of the command bus to transmit
address information, but not all commands transfer data across the
DRAM data bus. For example, push-primitive performs in-place
updates using single-bank pim-ADD commands (which use both
command and data buses) followed by single-bank pim-store com-
mands (which use the command bus only). As a result, the command
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bus becomes the bandwidth limiter while the data bus goes underuti-
lized. A rethinking of how we provision bandwidth to these channels
in a PIM system is needed to provide optimal performance for any
PIM workload that has a similarly mismatched command and data
demand.

5 Optimized PIM
We discuss in this section methods that target the PIM-specific
limitations discussed in Section 4.4 and how they impact acceleration
potential.

5.1 Targeted PIM Optimizations
Some of the exposed PIM limitations motivate relatively minor
hardware or software changes, while others motivate a reallocation
of resources to better suit the demands of PIM-Potential workloads.
We refer to all methods collectively as PIM optimizations.

5.1.1 Bank parallelism and row locality for PIM. As discussed in
Section 4.4, our baseline PIM system is unable to exploit bank paral-
lelism to hide row activation latency, and its ability to exploit row
locality is limited by near memory storage capacity. Thus, activation
overhead can be quite harmful to PIM performance, particularly
for workloads with high PIM register storage requirements (e.g.,
wavesim). To address these limitations, we describe two targeted
optimizations to the PIM system: eager row activation scheduling
to better exploit bank parallelism, and enhanced register storage to
better exploit row locality.

Bank parallelism via eager row activation: In our baseline
PIM system, the PIM unit is shared by two DRAM banks (one odd
numbered, one even numbered). While PIM column commands are
multicast to one subset of banks (odd or even) in a pCH, PIM row
activation commands are broadcast to all banks (odd and even) with
the assumption that PIM workloads exhibit high regularity and the
same row in both bank subsets is likely to be accessed. Although
this amortizes the cost of the activation over more banks, this seri-
alized latency is still exposed and can impact performance. Instead
of this schedule, we propose to first split all-bank row activations
into separate even and odd bank activations. This allows for a decou-
pled parallel schedule depicted as PIM eager-activate schedule in
Figure 7a. This schedule hides activation latency behind useful work
by eagerly activating the necessary row in one subset of banks while
compute commands are being performed in the opposite subset. It
also does not impact the order of compute commands or serialized
activation latencies and dependencies within odd and even banks,
which ensures functionally correct execution. Eager row activation
commands can be generated using a compiler pass, or in hardware
via augmented memory controllers.

Row locality via increased register resources: The second op-
timization addresses this newly exposed bottleneck in a simpler
fashion: increasing near-memory register storage. By increasing the
number of PIM registers available for intermediate data storage in
each bank, more data can be loaded out of each activated row, better
amortizing the cost of activation for that row. This optimization
comes with an increased register area cost which would likely re-
quire tradeoffs in memory capacity. However, for workloads with
high register pressure like wavesim, the performance benefits may
be worth the cost.

5.1.2 Selective PIM command issue. In GPUs, selective issue of
memory requests rarely makes sense for access patterns with reuse;
if data is likely to be cached, the cost of determining whether to
issue a request (e.g., sparse representation conversion for dynamic
sparsity) may be higher than the cost of the access itself. However,
this is not the case for PIM, which requires a memory command
for every operation; selective request issue is more beneficial in this
context.

Sparsity-aware PIM:With a sparsity-oblivious PIM design, all
operations are naively offloaded to PIM, even those that do not
impact the result. To ensure only useful work is processed by PIM,
we propose performing additional checks (at the software level) by
the GPU to opportunistically skip issuing PIM commands when
certain conditions (e.g., sparsity) are met. Figure 7b illustrates how
this works for ss-gemm. In the optimized orchestration, before
issuing a PIM command to multiply the single X0 value with the
elements of column A, X0 is inspected at the host. As X0 is zero, the
PIM command is not issued at all. This is possible because each
PIM command multiplies a single broadcast value with all target
memory elements. We term this as sparsity-aware PIM. Also note
that this software optimization will have minimal impact on a host-
only implementation because it will reduce overall memory demand
only when elements in a skinny matrix row are all zero (cache reuse
avoids repeated memory accesses to the same dense matrix column).

Prior work exploits sparsity in PIM operations by reducing read
energy when any input zero is detected near memory [49]; sparsity-
aware PIM relies on a similar principal, but it improves both per-
formance and energy efficiency by avoiding PIM command issue
entirely when a broadcast of zero value is detected in the host. Fur-
ther, in contrast to existing GPU methods to exploit sparsity [55],
this optimization does not rely on specialized sparsity formats which
incur data-transformation and metadata overheads.

Cache-aware PIM: Similarly, when workloads exhibit variable
cache reuse, statically offloading all operations to PIM leads to
inefficiency for frequently reused data. To address this performance
limitation, the decision of whether to offload to PIM can be made
for each individual operation in a reuse-aware manner. If we can
effectively predict which operands experience reuse, PIM efficiency
can be improved for such workloads by selectively performing low-
reuse operations in PIM and performing high-reuse operations in the
GPU (which can take advantage of caches).

Past work has explored multiple methods for cache reuse predic-
tion, including dynamic schemes [8] and offline schemes [4] that can
be augmented to work with described PIM designs. This work does
not investigate the optimal prediction policy for variable reuse work-
loads like push-primitive, but we do explore the potential benefit of
such schemes by modeling perfect prediction.

5.1.3 Demand-proportional bandwidth for PIM. PIM demand for
memory command and data bandwidth can vary from workload to
workload, which means the fixed bandwidth ratio used by conven-
tional memory systems may lead to underutilization. This is the
case for push-primitive, which uses single-bank commands to read,
operate on, and write elements in memory. Although PIM-add com-
mands use the data bus to send source node operands, PIM-store
commands do not. Since the data bus goes underutilized for half
of the executed PIM commands, performance for this workload is
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Figure 7: (a) Optimizations for improving PIM performance: eager row activation enables bank paralleism and (b) sparsity-aware
PIM accesses avoid memory costs exclusive to PIM for reused data.

bottlenecked by command bandwidth. With increased command
bandwidth, push-primitive could issue multiple concurrent store
commands to disjoint banks, improving PIM performance.

There are multiple ways to increase effective command bandwidth
for PIM. For in-place updates like those used in push-primitive, near-
memory registers can be used to latch the addresses of single-bank
pim-ADD commands and reuse them for a subsequent multi-bank
pim-store command to the same memory locations. Alternatively,
the data bus could be configured to transmit independent addresses
for multiple PIM banks when not being used by data, similar to
prior proposals to leverage the data bus for PIM command informa-
tion [47, 48]. A third method leverages command compression to
transmit more command information in a single command slot. This
could involve using a single command to trigger a sequence of oper-
ations at a single bank (this bank would be blocked for scheduling
until these operations completed), or it could involve leveraging com-
monalities in address information (e.g., if target addresses only differ
in a subset of bits or by a small offset, address bits on the command
bus could encode multiple target addresses relative to a previously
defined base address). Finally, more bandwidth could simply be
allocated to the command bus to match the demand of the target
PIM workload (command bandwidth is lower and can be increased
more easily than data bandwidth). All of the above cases require
changes to the DRAM architecture to be able to extract/interpret
the appropriate address and command bits from the DRAM inter-
face and use these in PIM command execution. In addition, all but
near-memory address latching would require changes to the DRAM
interface and memory controller, as they impact how address bits are
routed and/or impose additional timing restrictions on scheduling.
Nevertheless, such interface flexibility may be necessary to take full
advantage of PIM.

To investigate the potential impact of increased command band-
width on command-limited workloads, we model a 4x higher band-
width command bus (this corresponds roughly to how much more
bandwidth would be available in HBM3 if the data bus were used
for command transfer during store commands in push-primitive).
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Figure 8: Optimized PIM speedup for wavesim primitives.

5.2 Performance Analysis
We next evaluate the implications of optimizations and techniques
we discussed above on PIM performance. Optimizations are em-
ployed in a targeted manner, focused towards the primary bottle-
necks of each primitive. Since wavesim primitives require storage
of multiple accumulation operands in PIM registers, exacerbating
activation overhead, we study eager row activation and increased reg-
ister resources for these primitives. Since ss-gemm exhibits dynamic
sparsity, we study sparsity-aware PIM for this primitive. Since push-
primitive exhibits input-dependent cache locality and is limited by
command bandwidth, we study cache-aware PIM and increased
command bandwidth resources for this primitive. While these bot-
tlenecks are specific to primitives under study, we believe they will
be experienced more widely as PIM is harnessed more widely. Also
note that these optimizations are complementary and can be em-
ployed in tandem in future PIM designs.

5.2.1 Wave Simulation. Wavesim acceleration improvements with
eager row activation and increased register resources are depicted
in Figure 8. For the wavesim-volume primitive, eager row activation
improves PIM speedup from 1.5x to 2.04x. Further, this optimiza-
tion entirely eliminates row activation overheads for this primitive
such that more registers do not improve performance. This is in
contrast to the wavesim-flux primitive which exhibits higher register
pressure and row activation overheads. At lower register counts (16),
architecture-aware activation does not improve performance because
there are not enough commands per row activation to hide parallel
activation latency or to amortize serial activation latency. However,
more resources reduce register pressure, enabling this optimization
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Figure 10: PIM speedup for push-primitive with and without
cache-awareness and increased command bandwidth.

to better hide activation latency and achieve up to 2.63× speedup
over the GPU baseline.

5.2.2 Sparse Skinny GEMMs. For ss-gemm, we focus on implica-
tions of our sparsity-aware PIM optimization (depicted in Figure 9).
We observe here that sparsity-aware PIM significantly improves the
PIM speedup (more than 3×) with expected tapering in benefits with
increased reuse at the GPU (increasing N). Further, it also allows
PIM to manifest acceleration in scenarios where baseline PIM mani-
fested a slowdown (speedup of 1.07× for N = 8, while baseline PIM
suffers from 57% slowdown).

5.2.3 Push-based Computation. Figure 10 shows the benefits of
cache-aware PIM and increased command bandwidth for push-
primitive. We first consider the effects of a locality-based predictor
using a cache model (16-way, 4MB, LRU replacement) that classifies
updates to graph nodes in push-primitive as either likely manifesting
reuse (performed in cache) or not (performed in PIM). As before, we
evaluate these workloads on three graph inputs with varying degrees
of locality, each of which is labeled with its observed L2 cache hit
rate. Overall, cache-aware PIM prevents performance degradation
related to the cache reuse observed in the baseline PIM, leading to
an average speedup of 1.20× (max 1.39×).

Further, we also model an optimized GPU baseline wherein the
GPU can also leverage the locality predictor to reduce access gran-
ularity (i.e. use 32B rather than 64B accesses) for updates that do
not benefit from caching. We term this cache-aware GPU, and it
achieves up to 1.68× speedup relative to the baseline GPU. Although
cache-aware PIM reduces data transferred across the memory inter-
face relative to cache-aware GPU, it does not reduce the command
bandwidth demand, and the PIM DRAM latency requirements actu-
ally lead to worse performance for cache-aware PIM.

Additional command bandwidth only benefits single-bank PIM
commands that do not carry data (i.e., push-primitive pim-store com-
mands). With 4× as much command bandwidth, PIM performance
improves further to exceed cache-aware GPU performance for all
inputs and provide up to 2.02× speedup relative to the baseline
GPU.

Overall, there clearly is opportunity to address these emerging
PIM bottlenecks and support a broader range of primitives.

6 Related Work
Many recent PIM architectures are more loosely-coupled than the
high-bandwidth options studied here in that they add compute units
on a "base" logic die 3D-stacked under a set of DRAM dies (e.g,
hybrid memory cubes [9, 12–14, 16, 40, 53]), they add compute
cores in DDR DRAM (e.g., UPMEM [20], Chameleon [10]), or they
add application-specific capabilities near DDR DIMMs (e.g., Tensor-
DIMM [30], RecNMP [26], TRiM [42]). These architectures allow
software to offload coarse-grain functions to PIM, and this requires
allocating significant near-memory resources for intermediate data
storage and instruction fetch and sequencing. As a result, they do not
suffer from the limitations discussed in this work; register pressure
does not limit row locality, reused data can easily be exploited at low
cost, and coarse-grain function launches are unlikely to form a com-
mand bandwidth bottleneck. However, these resource requirements
also prevent loosely-coupled PIM modules from being applied at a
per-bank granularity in area-constrained HBM chips, and they are
unable to provide bandwidth uplift relative to a 2.5D stacked HBM
memory. In addition, this asynchronous implementation motivates
a programming model that uses separate memory spaces for PIM
and non-PIM accesses, requiring explicit copies in and out of the
PIM space (this overhead can outweigh PIM benefits when reuse is
low). Therefore, they are a poor fit for accelerating memory-limited
workloads on the high-throughput accelerators studied in this work.

Some PIM architectures integrate compute and memory more
tightly than HBM-PIM and GDDR-PIM. These architectures at-
tain extreme parallelism by executing bulk bitwise functions di-
rectly on bitline outputs [35, 45] or by leveraging the physical
properties of non-volatile memory (NVM) to perform analog opera-
tions [36, 37, 52]. However, these systems are more limited in the
types of primitives they can accelerate. While ReRAM efficiently
implements dot products for weight-stationary inference and bitwise
operations can be chained to implement general arithmetic, the accu-
racy, precision, and programmability of these systems are limited,
precluding their use for many compute domains. When such archi-
tectures are leveraged for irregular workloads (e.g., GraphR [46])
the focus is energy and area efficiency rather than improved data
bandwidth.

Past work has studied the role of PIM for accelerating wave
simulation [24], graph analytics [7, 38, 54, 56], sparse ML [22],
and many other primitives [23]. However, each of these targets a
PIM architecture that differs in significant ways (they use domain-
specific or loosely-coupled architectures such as UPMEM) from the
tightly-coupled PIM designs studied in this work, which gives rise to
differences in performance bottlenecks and potential optimizations.
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7 Conclusion
To the best of our knowledge, this is the first work to evaluate
tightly-coupled PIM designs across primitives from a broad set of
domains. We observe that tightly-coupled PIM designs, which today
are understandably geared toward ML primitives, do not provide
benefits for PIM-Potential workloads (i.e., workloads that fit some
but not all of the PIM-amenability characteristics). We analyze how
PIM-Potential primitives can be mapped to PIM and identify bot-
tlenecks unique to these PIM designs. Based on this analysis, we
propose targeted hardware and software methods that overcome
these bottlenecks, improving average PIM speedups from 1.12x to
2.49x relative to a GPU baseline. Our work demonstrates that, while
emerging tightly-coupled PIM designs hold promise, to unlock broad
acceleration, programmers and architects must consider the unique
challenges that arise in these systems.
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