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ABSTRACT

There is a growing need to support high-volume, concurrent trans-
action processing on shared data in both high-performance and
datacenter computing. A recent innovation in server architectures is
the use of disaggregated memory organizations based on the Com-
pute eXpress Link (CXL) interconnect protocol. While CXL memory
architectures alleviate many concerns in datacenters, enforcing
ACID semantics for transactions in CXL memory faces many chal-
lenges.

We describe a novel solution for supporting ACID (Atomicity,
Consistency, Isolation, Durability) transactions in a CXL-based
disaggregated shared-memory architecture. We call this solution
HTCXL for Hierarchical Transactional CXL. HTCXL is implemented
in a software library that enforces transaction semantics within
a host along with a back-end controller to detect conflicts across
hosts. HTCXL is a modular solution allowing different combinations
of HTM or software-based transaction management to be mixed as
needed.

We perform experimental evaluation of HTCXL using micro-
architectural processor simulation and several STAMP benchmarks.
Our method shows a significant speedup over a software approach
on CXL fabric.

CCS CONCEPTS

« Computer systems organization — Processors and mem-
ory architectures; - Computing methodologies — Concurrent
computing methodologies; « Information systems — Storage class
memory.

1 INTRODUCTION

Recent years have witnessed a sharp shift towards real time data-
driven and high-throughput applications. This shift has spurred
a broad adoption of in-memory and massively parallelized data
processing. across business, scientific, and industrial application
domains Most recently, Artificial Intelligence (AI), Machine Learn-
ing (ML) based applications have exploded in popularity, pushing
the limits of memory performance. Applications in these cutting-
edge domains require access to large volumes of low-latency, high-
throughput data coupled with commensurate computational power
for data operations. Fortunately, hardware developments like Com-
pute eXpress Link™ (cXL™) [8], an open standard for a cache-
coherent interconnect for processors, accelerators, and heteroge-
nous memory, have the potential to support a scalable distributed
processing infrastructure, providing high-bandwidth access to large
shared memory pools with reasonable latencies.

Emerging CXL-based memory architectures create new opportu-
nities and challenges for managing concurrency in multi-threaded,
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high-throughput, data-sharing applications. A common approach
to handle the complexity of concurrency control is to structure the
critical sections as transactions. Transactions provide ACI (Atom-
icity, Consistency and Isolation) guarantees to memory-resident
(volatile) data structures, making it easier to program and verify
the correctness of in-memory concurrent applications. By adding
Durability requirements to a transaction, crash-resistant operation
can be supported using non-volatile memory. The responsibility
for providing transaction support is delegated to the processor
hardware or system software.

This paper describes a novel technique for transaction manage-
ment in CXL-supported disaggregated memory architectures, for
both partitioned and shared memory organizations [8]. It supports
volatile transactions as well as persistent ACID transactions. An
earlier paper [55] proposed hardware augmentation to support
unbounded-size transactions in a Hardware Transaction Memory
(HTM )-enabled host connected to a pooled CXL memory subsystem.
Another work [19] describes a method to support small transac-
tions across multiple HTM -enabled hosts sharing CXL memory with
contention resolution at the CXL controller. This paper describes a
hierarchical approach where transaction management within the
host and the CXL controller work synergistically using a simple
contention resolution algorithm. Our approach does not rely on
HTM support at the host, can handle unbounded transaction sizes,
and is sensitive to the latencies of CXL access by avoiding frequent
fine-grained synchronous memory accesses.

Our paper makes the following contributions:

e We introduce Hierarchical Transactional CXL (HTCXL) which
adds ACID support to memory based transactions over CXL.
Our approach introduces no changes to processor, cache, or
cache-coherency mechanisms, relying solely on software
techniques and back-end processing at the controller.

e HTCXL decouples Atomicity, Isolation, and Durability into
independent components that are managed synergistically
by host-managed software and the CXL controller.

e HTCXL supports and inter-operates with both HTM and non-
HTM based transactions, retaining the desirable properties
of existing HTM implementations.

e We evaluate HTCXL using a cycle-accurate simulator and
multiple microbenchmarks and transactional benchmarks
from the STAMP suite. We demonstrate that HTCXL contin-
ues to scale well across multiple nodes in the CXL fabric,
achieving significant improvements over an STM approach.

The remainder of the paper is organized as follows. Section 2
discusses CXL and TM (Transaction Management) technologies.
An overview of our solution (HTCXL) for hierarchical transaction
management in CXL is presented in Section 3. Section 4 describes the



HTCXLimplementation: intra-node processing and the operations of
the CXL controller are described in Sections 4.1 and 4.2 respectively.
Section 5 presents evaluation results. Related work is discussed in
Section 6 and the paper is summarized in Section 7.

2 BACKGROUND

In this section, we provide an overview of Compute eXpress Link
(CXL) and Transaction Memory (TM) implementation technologies.
We summarize previous work in these areas and compare them
with our proposal.

2.1 Compute eXpress Link (CXL)

CXL (Compute Express Link) is a cache-coherent interconnect pro-
tocol that facilitates sharing and reduces software stack complex-
ity [8]. The recent CXL 3.1 Specification [45] adds Global Fabric
Attached Memory (GFAM) functionality that enables sharing be-
tween distributed nodes (hosts, accelerators, CXL memory pools).

Two proposed use cases of the CXL interconnect are Memory Pool-
ing and Memory Sharing. In the former, a remote pool of (possibly
heterogenous) memory devices are accessed by distributed servers
through a CXL link. The memory pool is divided among the hosts
based on their anticipated memory requirements. At any time a
partition is dedicated to a single host although coarse-grained mem-
ory repartitioning can be performed if desired. In Memory Sharing,
the applications running on the hosts share a common pool of
memory, logically akin to multiple cores (sockets) sharing system
DRAM (NUMA). While the specification includes hardware-managed
cache-coherence across the CXL fabric, system-wide implementa-
tion and performance issues in a distributed shared-memory model
are currently unknown.

1

/ Compute eXpress Link (CXL) Fabric
Memory Memory Memory

Figure 1: Disaggregated CXL Memory Architecture. In Mem-
ory Pooling CXL memory is partitioned among the hosts. With
Memory Sharing hosts can share CXL memory.

2.2 Transaction Memory (TM)

A transaction is a unit of execution that satisfies ACID properties:
Atomicity (either all or none of a transaction’s updates are reflected
in transaction memory), Consistency (an application-dependent
set of invariants that must hold before and after transaction execu-
tion), Isolation (the updates of a transaction are not visible to other

Ellis Giles and Peter Varman

transactions till it completes), and, optionally, Durability (the state
of a committed transaction must survive power failure by being
persisted to non-volatile storage).

Transaction semantics can be enforced using either hardware
or software mechanisms. HTM is a mechanism available in high-
performance processors from Intel [22], ARM [1], and IBM [29],
which provide hardware support for memory based transactions
satisfying ACI semantics on a cache-coherent multi-core processor.
For instance, in Intel’s Restricted Transactional Memory (RTM) [23,
24] transaction code sections (demarcated by begin_HTM and
end_HTM instructions) can execute concurrently on different cores.
Hardware monitors the transactions and uses the L1 cache coher-
ence mechanism to detect read/write conflicts. A write (read) by
a transaction to a transaction variable held in any state (modified
state) in another core’s L1 cache will cause one of the transactions to
abort. Transaction variables are buffered and pinned to the L1 cache
for the duration of the transaction. On transaction commit, they are
atomically made visible to all cores and released for eviction to mem-
ory. Transactions must be aborted if there are capacity or conflict
misses in the L1 cache, limiting their size. Proposals for overcom-
ing the size restriction using software interception and logging of
overflow variables have been proposed for in-memory transactions
in [51] and for persistent memory transactions in [25, 26], while a
hardware-based scheme using a victim cache for both memory and
durable transactions in CXL memory was presented in [55].

Software Transaction memory (STM) employs software inter-
vention to maintain ACI semantics for transactions within a host.
Most implementations require extensive locking or version mainte-
nance leading to low performance. An extensive set of approaches
are described in [21]. Our software technique uses ideas from the
HTM implementation to allow for a simple and fast implementation,
which can be replicated at different levels of the memory hierar-
chy. Furthermore, our hierarchical approach is modular and an
unbounded transaction HTM implementation could be substituted
for out software approach if appropriate hardware were available.

3 OVERVIEW

We introduce Hierarchical Transactional CXL or HTCXL, which
supports ACID requirements for transactions running on hosts con-
nected to remote shared memory over a CXL interface. A transaction
consists of a single sequential thread that runs on a core and ac-
cesses memory variables stored in shared CXL memory. Multiple
transactions that may share memory variables run concurrently on
cores on the same or different nodes.

HTCXL is a two-level solution: a local concurrency control pro-
tocol enforces ACI transaction semantics between transactions
running on a host, while conflicting transactions running on dif-
ferent nodes are serialized by a similar protocol running at the
CXL controller. If durability is desired the protocol at the CXL con-
troller can be easily extended to persist transactions atomically on
non-volatile media at the CXL node. without altering the rest of the
protocol.

3.1 Intra-node Transaction Management

The mechanisms within a node provide atomicity and isolation be-
tween the threads running on the cores. Since a transaction may
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abort during its execution, updates made prior to the abort could
leave the memory in an inconsistent state; the system should ensure
that either all or none of a transaction’s updates are reflected in the
CXL memory. Isolation hides the updates made by in-progress trans-
actions so that they are not visible to other transactions. Ignoring
isolation could lead to a violation of the fundamental serializability
requirement of transactional execution. For instance, if two trans-
actions both read variables updated by the other transaction, it
implies a circular dependence preventing serializability. We discuss
both these issues below.

Atomicity requires that updates made by a thread are treated
as speculative until the transaction completes. One approach is
to make all transaction updates to temporary memory locations,
and update CXL memory only on transaction commit!. In high-
performance processors with hardware support for Transaction
Memory (HTM) [1, 22, 29], updates are held in the cache hierarchy
or in write buffers until a transaction commits. In Intel’s Restricted
Transaction Memory (RTM) [23, 24], for instance, all updates are
restricted to the core’s L1 cache, and cache conflicts that overflow
the cache cause the transaction to abort. A mechanism to handle the
cache overflow of transaction variables using a hardware structure
called a transaction victim cache was proposed in [11, 14, 40, 55],
while software techniques based on memory logging of overflow
variables and log search for access are described in [25, 26, 51].

An alternate approach that was proposed for atomicity in a host
equipped with persistent-memory is to use aliasing [15]. In this tech-
nique, accesses to transaction variables are redirected from their
actual home memory to alternate aliased locations that are tracked
using a software alias table. In [19] the aliasing was performed
at the CXL controller, which aliased CXL transaction variables to
alternate CXL locations, thereby allowing hosts to freely spill trans-
action variables and to ease durability implementation. The home
CXL memory locations are only updated on a transaction commit.

In this paper we use aliasing to enforce atomicity within nodes
that may not have HTM support. However, instead of a global alias
table at the CXL controller that maps transactional CXL addresses
to aliased CXL locations [19], we use local aliasing at each node.
The alias table at a node maps global CXL transactional variables
to local host memory addresses. Cache overflows simply update
these host-local memory locations. A transaction abort discards
the transaction’s variables from the alias table, while a commit
will initiate the update of the actual CXL memory locations. Note
that alternatively, we can achieve in-host atomicity automatically
using HTM (in hosts that support it) or with extensions to sup-
port unbounded-size transactions. More details are presented in
Section 4.1.

Isolation can enforced using either conflict avoidance or detec-
tion and rollback. Conflict avoidance is usually implemented using
locks; coarse-grained locking can serialize transaction executions
but, although easy to implement, generally results in poor perfor-
mance. Two-phase locking is a fine-grained locking scheme at the
granularity of individual variables. However, to avoid deadlock, the
locks need to be globally ordered, which restricts its use for ad-hoc

!An alternative approach updates the memory locations immediately but makes a
copy of the current value to allow transaction rollback.

transactions or requires complex deadlock detection and recovery
schemes.

Optimistic concurrency control mechanisms allow transactions
to execute concurrently without explicit locking, and rely on the
transaction manager to detect potential access conflicts. HTM lever-
ages the cache coherence mechanism on multi-core processors to
implement conflict detection in hardware. The conflict detection
mechanism is often simpler than the coherence protocol; for in-
stance a write by a transaction to a cache line currently held in the
read state by one or more other transactions can simply abort the
writing thread; for coherence, the write must invalidate the copies
in all the other threads and grant exclusive access to the writer. Soft-
ware Transaction Memory (STM) uses software intervention of the
memory accesses of a transaction, similar to a database transaction
manager, to detect conflict and arbitrate transaction aborts.

In this paper we use a directory-based approach to maintain
the transactions’ access information and detect conflict. Using a
software-based directory dovetails naturally with the alias table
by simply maintaining additional status bits with the alias table
entries and checking for conflict during table lookup. As in the case
of atomicity enforcement, a hardware-based HTM , optionally ex-
tended for unbounded transactions, can be used to enforce isolation
with the appropriate host hardware. More details are presented in
Section 4.1.

3.2 Inter-node Transaction Management

The back-end controller must check a completed transaction for
conflicts with transactions running on other nodes before allowing
it to commit, and update CXL memory with the results of committed
transactions.

Atomicity is easier to enforce at the back-end controller which is
invoked only after a transaction has either aborted or completed
at a node. Once a transaction variable has been accessed by any
transaction running on a node, it remains in the node’s memory
hierarchy until it is explicitly written to the HTCXL controller on
a transaction abort or commit. In the former case, the updates
within the node are discarded, and HTCXL does not need to update
CXL memory. If the transaction has completed, the HTCXL controller
will check for potential conflicts with transactions on other nodes;
if this transaction can safely commit, it writes all the updates of
the transaction to CXL memory; else it asks the node to abort the
transaction and erase all its buffered variables.

An additional consideration arises if the transaction requires
full ACID semantics. In this case, the durability guarantees require
that the updates of the transaction must be written atomically to
non-volatile memory before allowing the transaction to commit. To
guard against failure at the CXL subsystem, the updates must first
be logged onto stable storage and then written to their persistent
home locations. With a suitable recovery protocol in place, the
transaction can be committed as soon as its updates are logged in
stable storage, while the update of home locations occurs in the
background. This step is not necessary for volatile transactions that
typically only require ACI semantics.

Isolation at the CXL interface requires checking whether there is a
conflict between a transaction on one node with a transaction on
some other node. One of the guiding principles in our design is to



avoid frequent synchronous communication between the CXL con-
troller and the nodes. Hence, we do not try to exploit the inter-node
coherence mechanism proposed in the CXL 3.1 standard to detect
concurrent access between nodes. There are currently no known
implementations of this or performance studies that may suggest
this is a viable approach.

For the HTCXL controller, we adopt a simplified directory-based
scheme similar to the structure within a node. The controller keeps
an access vector for each variable accessed by an active transaction.
The access vector records the ids of the nodes that have checked out
the variable. When a transaction aborts or commits, the HTCXL con-
troller deletes the node from the access vectors of variables no
longer cached in the node. These will be the variables written by
the transaction (its write set) and the variables for which it was
the only reader on that node (its read set). The proposed scheme
is significantly simpler than the controller proposed in [19] using
the global alias table with versioning information to detect conflict.
More details are presented in Section 4.2.

4 OUR APPROACH

The two major components of our HTCXL design are shown in
Figure 2. The first component is the intra-host transaction manage-
ment system to serialize the transactions running on the host. We
describe an implementation based on using the software aliasing
technique [15, 19] to provide atomicity augmented with directory
information to detect conflicts and enforce isolation. Alternatively,
on an appropriate host, an HTM implementation could be used.

ENn
l !

Host. Local Alias Table
DRAM Directory

HTCXL
Controller

3
Compute eXpress Link (CXL) I

CXL Controller

Figure 2: A high-level view of the placement of the
HTCXL Controller within a system. Multiple hosts connect
to the HTCXL Controller, which can either be embedded on
the CXL Controller, operate as a stand alone CXL Device, or
as a software only solution executing on a CXL Host.

The second component of our design is the inter-host back-end
HTCXL Controller. The controller is concerned with detecting con-
flicts between transactions running on different nodes, aborting
or committing transactions, and updating CXL memory with the
results of committed transactions. If durability is desired, the con-
troller must reliably persist the updates atomically on non-volatile
storage despite unexpected failures. The HTCXL Controller can be
implemented in a number of ways including embedded within a
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CXL Controller, implemented as a stand alone CXL device, or imple-
mented as a software only solution executing on a CXL host.

The lifecycle of a thread is shown in Figure 3. Normally a core is
executing non-transactional code of an application in the TxIDLE
state. On executing a BEGIN_Tx instruction, the thread enters the
TxEXECUTE state during which its reads and writes are arbitrated by
the Local Alias Table manager. If a conflict with a transaction exe-
cuting on another core in the same host is detected in the directory,
one of the conflicting transactions must abort. If a transaction re-
ceives an NODE_ABORT (either a spontaneous self-abort or because
it is the victim of a conflict), it returns to the non-transactional state
from which it will retry the transaction after a random delay. When
the transaction executes the END_Tx instruction, it transits to the
TxEND state. At that time it interacts with the HTCXL controller to
resolve any conflicts with transactions running on other nodes. The
HTCXL controller will return a CXL_ABORT if it detects a conflict
requiring this thread to abort; else it will return a CXL_COMMIT
signal and the thread will successfully enter the TxCOMMIT state,
and subsequently resume normal non-transactional execution.

BEGIN_Tx

TxIDLE TXEXECUTE
NODE_ABORT

CXL_ABORT END_Tx

CXL_COMMIT

Figure 3: Transaction Lifecycle

4.1 Intra Node Transaction Management

In this section we present the design of the transaction manage-
ment system within a node. It includes a local Alias Table that
maps CXL addresses of transaction variables to node-local memory
locations. An access vector is associated with each alias table entry
creating a directory that tracks which cores have read or written
the corresponding transaction variable. A software management
system and library similar to that described in [15] converts trans-
actional loads and stores to calls into the library, which provides
the routines to manage the alias table.

Figure 4 shows the operation of the Alias Table with an example.
Two transactions are running on cores 0 and 1 of some node. In
Snapshot 1, core 0 makes a load request for transaction variable x;
the library routine reads x from CXL memory and adds it to the local
Alias Table implemented as a key value store. The access of x by
the node is also noted by the HTCXL controller (see Section 4.2). A
presence bit for core 0 is set to 1 in the Access Vector and the State
field is set to to S (shared) indicating the variable is in a read state.
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Core0: Core1: Core0: Core1:
LOAD x; STOREYy; LOAD x; STOREYy;
LOAD x; LOAD x;
STORE x;
Snapshot 1 Snapshot 2
Aliased CXL Value Access State
Host Memory Vector
Addresses Address
&x Xv1 [11--] S
&y Yvq [-1--1
Alias Table (Snapshot 1)
Aliased CXL Value Access State
Host Memory Vector
Addresses Address
&x Xv1 [14--] S
&y Yv1 [-4+--] M

Alias Table (Snapshot 2)

Figure 4: An example fragment of the Local Alias Table on a
host with four cores. Two CXL variables x and y are aliased
to the locations shown in the Alias Table. The Access Vector
indicates which core(s) hold a copy of the variable. The STATE
indicates whether the variable has been read (state S) or been
written (state M). The Value field is the latest value of the
variable on this node, which may be inconsistent with the
values on other nodes.

The store access of y by core 1 reads y from CXL memory and installs
it in the Alias Table in M state; the updated value of y is written
to the Alias Table?. Core 1 then makes a load access for x whose
value is read locally from the Alias Table and returned to core 0,
without accessing CXL memory or informing the HTCXL controller.
The access vector for x is updated to set the presence bit for core 1.
The corresponding alias table following the operations of Snapshot
1 is shown in the first Alias Table of the figure.

Snapshot 2 shows a continuation of execution where core 1
makes a store request for x. At this point the access vector indicates
a conflict for x since core 0 has already read the older value of x,
and one of the transactions must be aborted. In our protocol we
abort the requester, core 1, while allowing core 0 to continue its
execution without disturbance. This has the advantage of always
aborting only one transaction even if multiple cores had copies
of x at this time, and synchronously aborting it immediately. The
figure shows that the Alias Table entry for y has been freed and
the presence bit of core 1 for x has been deleted.

Handling Transaction Aborts: When a transaction aborts, its
presence bit in the access vectors in the Alias Table must be reset; if
no other presence bits are set, the entry can be reclaimed by setting
its State to I. The HTCXL controller must be informed that these
variables are no longer active at this node; the controller updates

2Note the updates to the Alias Table occur asynchronously through normal processor
cache writebacks.

the state of the checked-out variables to avoid reporting false inter-
node conflicts. A hardware-implemented directory can speed up
this flash-reset operation in the node considerably.

Handling Transaction PreCommit: When a transaction executes
END_Tx it signals its readiness to commit (pre-commit). However,
it still needs to be checked for conflicts against transactions on
other nodes. The node updates the access vectors just as in an
abort operation, and creates a list of all variables that are no longer
required in the node. The list is qualified by indicating whether the
variables in the list are in the write or read set of the transaction.
The list of addresses and the values of the variables in the write set
are sent to the HTCXL controller, and the transaction waits for either
a final commit or abort signal from the controller. An abort would
cause it to retry the transaction after a random delay, otherwise it
can continue with a fresh transaction.

4.2 Inter Node Transaction Management

In this section we describe the HTCXL controller that checks for
inter-node transaction conflicts and updates home locations in
CXL Memory with the final values of committed transactions.

Commands to HTCXL
Load, Tx_Abort, Tx_Commit

HTCXL

Controller CXL Table

Load
value

Successful
Tx_Commit

(a) HTCXL Organization

CXL Memory | CheckOut Node 0:
Address Vector LOAD x;
&x [110...0] Node 1:
STOREYy;
&y [1 00 O] LOAD x;
(b) CXL Table

Figure 5: A high-level view of the operation of the HTCXL Con-
troller with the transactions of Figure 4. A checkout bit
is added to a CXLTable entry on a Load and deleted on a
Tx_Abort or a Tx_Commit. The Read_Set and Write_Set are
used to detect conflicts with the CXLTable state. Values are
transferred to CXL Memory home locations if the transaction
succeeds.



Algorithm 1 HTCXL Controller Implementation

function HaNDLECOoMMAND(hostid, threadid)
ABORT=FALSE;
TxData = GetTxnInfo(hostid, threadid);
case CXL Command:
Load:
Add hostid to CXL_Table[load_address]
Read CXL Memory[load_address]
Return memory value to hostid
Tx_Abort:
foreach address in UNCHECK
Delete hostid from CXL_Table[address]
Tx_Commit
foreach address in WRITE_SET
Check for conflict in CXL_Table[address]
if conflict: ABORT = TRUE; break;
foreach address in WRITE_SET
Delete hostid from CXL_Table[address]
if (ABORT== FALSE)
Store data in CXL Memory[address]
foreach address in READ_SET
Delete hostid from CXL_Table[address]
if (ABORT== TRUE) return TX_Abort
else return TX_Commit
end function

The HTCXL controller receives Load, Tx_Abort and TX_Commit
commands from a node as shown in Figure 5. The controller main-
tains a table called the CXL Table that tracks the cache blocks that
have been read from the CXL Memory; on receiving a Load com-
mand, the HTCXL controller adds the id of the requesting node to
the Checkout Vector for that variable. When a transaction aborts,
the node sends the controller a Tx_Abort command along with
the list of variables that are no longer cached at the node; the
HTCXL controller deletes the node id from the CXL Table entries for
each of those addresses. On a TX_Commit, the controller receives
a list of variables as a write set and a read set; HTCXL checks the
Alias Table entry for each address in the write set to see if there
is a conflict with another node. If the CXL Table indicates the vari-
able has been checked out by another node then the transaction
is marked and will be aborted. If none of the write set variables
conflict, the transaction can safely commit. In either case, the node
id must be removed from the checkout vectors for these variables
in the CXL Table.

Note that the commit of multiple nodes can be checked simul-
taneously by concurrent threads at the HTCXL controller. While
this may sometimes result in unnecessarily aborting a transaction
due to unlucky timings, it should be noted that determining the
optimal order to test for conflicts even in the off-line case is NP-
complete [46], and any heuristic optimizations in our on-line and
concurrent environment are unlikely to provide significant, if any,
benefits.

Ellis Giles and Peter Varman

( Modified DRackSim
User Space

Simulation Space
Multiple Nodes

PIN Tool

(thread & extended f
instruction sets )

Processor

Out-Of-Order ]

[ User Program ] w
C
B
] i
Memory (" CXL R
Controller Controller

1

W W

EOC
DRAMSim2
\ CXL Fabric

Figure 6: HTCXL simulation extends the DRackSim simulator.
Applications are executed in user-space with HTCXL API, and
PIN based traces are sent to Out-of-Order simulation with
extensions for out HTCXL controller and memory backed by
DRAMSim2.

5 EVALUATION

In the absence of readily available CXL 3.1 Memory Sharing systems
with our embedded controllers, to evaluate our protocol and con-
troller, we extend a cycle-accurate CXL simulator DRackSim [41] to
model our controller and communicate with our library. We create
an HTCXL library that is linked to benchmark applications. We com-
pare our approach using both microbenchmarks and benchmarks
from the Stanford Transactional Applications for Multi-Processor
(STAMP) benchmark suite [34]. We utilize the Chameleon cluster
infrastructure [28] for executing simulations.

5.1 Experimental Setup

DRackSim models the out-of-order processor micro-architecture
at the cycle level and includes a detailed initialization and timing
configuration, including CXL fabric topology. DRackSim utilizes
DRAMSim?2 [44] for cycle-accurate memory simulation and Pin, a
dynamic binary instrumentation tool [33], to decouple execution
from simulation. Instruction traces are execution-driven and piped
to the simulator in real-time. Traces may also be saved for offline
analysis. The simulator, along with our modifications, is outlined
in Figure 6.

The rate of incoming transactions is determined, in effect, by the
rate at which the PIN instrumented program runs. To synchronize
timing in the decoupled environment, we capture timing events
in the instrumented program evaluated and align the events in
the simulation space of the HTCXL simulated hardware. We made
several extensions to the DRackSim based setup:

o Added PIN support for streaming (non-temporal) stores and
persistent memory flushes.
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Figure 7: Micro-benchmark of transactional updates into a CXL based hash table using concurrent processing threads on a
CXL Fabric of 4 Nodes. Each transaction is 50 writes to random locations.

o Implemented statistics gathering routines for operation
counting.

o Added write-combining and internal buffering for pending
write requests in the controllers.

e Added instrumentation for determining bounding memory
regions for local DRAMand remote CXL regions to pass to
corresponding evaluations.

o Extended the simulator to support our HTCXL controller
operations, checking out memory reads, capturing write-
sets, and notifying a node of transaction completion.

o Added support to map multiple simulation execution traces
from threads in a single application across a configurable
number of simulated nodes. This allows a single multi-
threaded benchmark to easily share a concurrent address
space across the simulated CXL fabric.

We build each benchmark using a configuration for our approach
and a configuration for Software Transaction Memory, STM. To
evaluate performance against an STM, we utilize the TL2 or Trans-
actional Locking approach [10]. The approach utilizes software to
capture loads and stores, and forward stores to future loads. Loads
are held until the transaction commits, at which point the software
validates that transactional variables do not conflict before copying
the successful transaction write set to main memory. We augment
the TL2 library to utilize the begin and end simulation library calls,
along with notifications for memory allocations. Memory alloca-
tions for transactional bookkeeping internal to a transaction are
made to local memory to ensure the comparison does not create
extra CXL traffic.

In our HTCXL implementation, the Hierarchical Transactional
CXL controller handles multiple nodes attached. In this configu-
ration, multiple nodes, each with its own concurrent transactions
on the local node, are connected via CXL to our HTCXL controller.
For our evaluation, we create a local HTCXL library for intra-node
conflict detection. When performing a transactional write, the write
is forwarded to our controller asynchronously to avoid bulk send-
ing on transaction end. The controller validates the read and write
sets as described above, utilizing pipelined comparison buffers that
check the latest versions of the read set and acquire locks on the

write set. Once the transaction is validated, the node is notified,
and the core can continue execution of the thread.

For our evaluation, we set the number of nodes to 4 and the
number of cores for each node to 32. We extend the interleaving of
thread traces across the nodes, and simulate up to 64 threads spread
evenly across the nodes. Each node has enough cores to schedule
100% execution of each processing thread on the hardware. With
HTCXL across multiple nodes, we send the read and write sets to
the controller.

5.2 Micro-benchmarks

In our micro-benchmarks, we create a simple hash—table in CXL mem-
ory spread across the nodes and perform a series of transactions on
the table. Each transaction performs a configurable number, by de-
fault 50, random updates into the table. The number of concurrent
thread workers is configurable along with the number of reads and
transaction size. This workload stresses the underlying memory
system and implementation of transactional guarantees without
performing much computation work itself.

We first vary the number of processing threads for a transactional
update of 50 elements into the table. Figure 7 shows the benchmark
total time in cycles to perform 256 transactional updates into the
CXL hash table. As shown in the figure 7a for one node, all conflict
detection is performed locally, and our HTCXL controller is not used
for conflict detection between nodes. Since the simulated out-of-
order processor is configured for 32 cores, the simulation for one
node only is up to 32. For a single node, we scale slightly better
than STM due to using block-based locations for read and write sets
instead of linked lists. Additionally, we perform conflict detection
in the alias table directly and eagerly at and within the node, which
is beneficial for this workload.

In figure 7b, when using two nodes, both the STM and our method
HTCXL perform better. However, HTCXL realizes a larger decrease
in application performance time with the controller. Similarly, for
four nodes in figure 7c, there is a slight increase in STM for com-
munication across the fabric while HTCXL improves through our
protocol. This improvement is highlighted in Figure 8, where we
show that, with 16 and 32 threads, the decrease in application time
is greater using our approach.
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Figure 9: Execution time for micro-benchmark hash-table with
32 threads performing a varying number of transactional
writes in each update.

Next, we examined the effect of transaction size on the execu-
tion time of the workload. Figure 9 shows the effect of increasing
the number of writes in a transaction. In this setup, we spawn 32
threads, and each thread performs the configured number of writes
in each transaction. We analyze from 10 to 60 writes in a transaction
and record the benchmark execution times. On a single node, our
approach is more affected by the number of writes when compared
to STM . In this case, we are performing eager aborting and conflict
detection, and in the absence of reads, an abort is not needed. As
more nodes are added, our HTCXL approach is less affected by the
size of the transaction.
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Figure 10: Execution time for micro-benchmark with a vary-
ing number of writes in a 50-element transaction and 32
threads.

Finally, in figure 10, we show increasing the percentage of writes
in a 50-element transaction. In both the STM and our HTCXL ap-
proaches, using software, a read to a memory location in a trans-
action must be checked against previous writes in the transaction.
Our approach is more affected by reads as we must read a value
from CXL memory into the local node alias table while also notify-
ing our HTCXL controller that the variable has been checked out
for reading.

5.3 Benchmarks

In this section, we evaluate our approach using two benchmarks
from the STAMP benchmark suite [34]. For each benchmark, we
examine both a low and high contention for shared data among
concurrent threads. In each configuration, we utilize four nodes in
the CXL fabric with concurrent threads spread evenly across the
nodes.

We first examine kmeans, the machine learning K-means algo-
rithm benchmark from MineBench [36], where data is partitioned
into K clusters from objects in an N-dimensional space. In this
benchmark, as the means are calculated and cluster centers up-
dated over each partition, the critical sections are protected by
transactions, where the size of the transaction is proportional to
the N-dimensional space. Transactions in the kmeans data set are
generally categorized with small read/write set lengths and short
transaction times with lower contention.

In the first configuration of kmeans, kmeans-low, the number of
clusters is configured to 40 with 512 data points, eight dimensions,
and eight centers. Figure 11 shows the application execution time
for the number of processors. As shown in the figure, due to the
lower contention, both STM and HTCXL methods scale well until
about 16 processes. At this point, STM starts to incur more overhead
and communication among the nodes, and its scalability stops, while
HTCXL continues to scale to 32 processing threads. At 64 threads,
HTCXL outperforms STM by a factor of almost nine. Figure 12 shows
the number of aborts for HTCXL broken down at the controller and
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Figure 11: Execution time for calculating 40 clusters in the
application kmeans-low benchmark using mutliple processes
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Figure 12: The number of aborts from the node and controller
with HTCXL method for the application kmeans-low bench-
mark on CXL Fabric of 4 Nodes.

local node-initiated aborts. The figure illustrates the critical time
required to transition from 32 to 64 concurrent processes, or 8
to 16 threads at each node. The controller begins initiating more
inter-node aborts when the system processes increase from 8 to
16, corresponding to the diminishing returns in lower execution
times for HTCXLwith increasing processing threads. Additionally,
the local node initiates more aborts when the number of concurrent
threads on a node increases from 8 to 16 (corresponding to an
increase from 32 to 64 processing threads in the system).

The kmeans-high configuration is depicted in the next set of
figures. In this configuration, the same number and dimensionality
of input data points are used as in the prior experiment; however,
the number of clusters is reduced from 40 to 15, which increases
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Figure 13: Execution time for calculating 15 clusters in the
application kmeans-high benchmark using mutliple processes
on one or more nodes on CXL Fabric of 4 Nodes.
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Figure 14: The number of aborts from the node and controller
with HTCXL method for the application kmeans-high bench-
mark on CXL Fabric of 4 Nodes.

contention and decreases overall execution time. With the increased
contention from concurrent calculating processing threads, the scal-
ability of the benchmark is reduced, and more aborts are incurred.
Figure 13 shows the execution time for both STM and HTCXL for an
increasing number of threads. The execution time for calculating
only 15 clusters, as compared to 40 in the previous experiment,
is reduced. While the execution time is reduced, the scalability
of adding additional processing threads is also reduced due to in-
creased contention. This slower performance is due to an increase
in contention and aborts, as shown in Figure 14. STM outperforms
HTCXL for a select number of processes due to the high number of
aborts. When compared to kmeans-low, there is a 50% increase in
aborts during transactional updates with 64 concurrent processors,



Millions
[ - - -
(=)} @ (=] N - =)}

Execution Time (cycles)

'S

1 2 4 8 16 32 64
Concurrent Processing Threads

~#-STM (4 Nodes) -@-HTCXL (4 Nodes)

Figure 15: Execution time for the application vacation-low
benchmark using mutliple processes on one or more nodes
on CXL Fabric.
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Figure 16: The number of aborts from the node and controller
with HTCXL method for the application vacation-low bench-
mark on CXL Fabric of 4 Nodes.

and over double the number of aborts for a lower number of con-
current processors. At 64 concurrent processing threads across the
CXL fabric, our approach HTCXL still outperforms STM by a factor
of seven.

Our final benchmark evaluation is vacation, which implements
an online travel reservation transaction processing system. It uti-
lizes a set of trees to store customer information, and threads inter-
act with this information transactionally to maintain the integrity
of the data. The characteristics of the workload include medium-
length transactions and read/write sets with long execution times.

In the first configuration, vacation-low, the database maintains
16k records with concurrent update threads. Each transaction up-
dates at most 2 records over 90% of the database. The execution time
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Figure 18: The number of aborts from the node and controller
with HTCXL method for the application vacation-high bench-
mark on CXL Fabric of 4 Nodes.

for increasing numbers of processors for the same number of up-
dates is shown in Figure 15. Both STM and our HTCXL methods scale
well to 8 concurrent threads, with data processing in separate areas
of the tree. After eight threads, our approach continues to scale well
across the four nodes and conflict detection is split between the
nodes and the controller. The number of aborts initiated by nodes
and our controller is shown in Figure 16. Due to the low contention,
only a few aborts are initiated in either area, with the controller
initiating only six aborts for 64 concurrent processing threads. At
64 processing threads, our approach outperforms STM by a factor
of over ten.

The following configuration is vacation-high, which simulates
the same database but with a different transactional profile. In the
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vacation-high profile, contention increases, with sessions reducing
to a smaller fraction of the database (60%) to concentrate operations
while also doubling the number of operations in each transactional
session. Figure 17 shows the execution time for vacation-high for
both STM and HTCXL. In higher contention with increased conflicts
among concurrent updates, both approaches are much slower, with
nearly a 40% increase in benchmark execution time. The number
of aborts is shown in Figure 18, where at 64 concurrent processing
threads the number of aborts jumps by over a factor of four at
the node and over doubles at the controller. With the increase
in contention and transaction aborts the benchmark scalability
flattens for HTCXL. Still, at 64 processing threads and four nodes,
our approach outperforms a pure STM approach on the CXL fabric
by a factor of ten.

6 RELATED WORK

The hardware technologies Compute eXpress Link (CXL), Persistent
Memory (PM), and Hardware Transactional Memory (HTM) are
discussed in Section 2 above. The combination of these technologies
to create ACID support for Memory Transactions in a disaggregated
memory architecture are reviewed in detail throughout this section.

Related CXL Work: CXL [8] can have significant benefits in
scale-up architectures for database engines and systems [30]. Pond
is a CXL memory pooling systems for cloud platforms [31]. CXL over
Ethernet was explored in [49] using FPGA, data caching and conges-
tion controls. DirectCXL [20] connects a host processor with remote
memory resources enabling loads and stores to remote memory
resources. However, the above works do not address Persistent
Memory, much less any ACID requirements for transactions in CXL-
based memory servers.

Recent work such as [52] creates a distributed memory man-
agement system based on reference counting. However, these ap-
proaches do not address ACID requirements for transactions in
CXL-based memory servers.

Related Persistence Work: Analysis of consistency models for
persistent memory was considered in [39]. Changes to the front-
end cache for ordering cache evictions were proposed in [7, 27,
47, 53]. BPFS [7] proposed epoch barriers to control eviction order,
while [47] proposed a flush software primitive to control of update
order. Snapshotting the entire micro architectural state at the point
of a failure is proposed in [35]. A non-volatile victim cache to pro-
vide transactional buffering was proposed in [53], with the added
property of not requiring logging, but requires changes to the front-
end cache controller to track pre- and post- transactional states
for cache lines in both volatile and persistent caches, atomically
moving them to durable state on transaction commits.

Memory controller support for transaction atomicity in persis-
tent memory have been proposed in [11, 14, 16, 40, 42, 54, 56].
Adding a small DRAM buffer in front of persistent memory to im-
prove latency and to coalesce writes was proposed in [42]. The
use of a volatile victim cache to prevent uncontrolled cache evic-
tions from reaching PM was described in [11, 14, 40], but requires
software locking for concurrency control. FIRM [54] describes tech-
niques to differentiate persistent and non-persistent memory traffic,
and presents scheduling algorithms to maximize system throughput
and fairness. Low-level memory scheduling to improve efficiency of

persistent memory access was studied in [56]. Except for [11, 14, 40],
none of these works deal with the issues of atomicity or durability
of write sequences. Our approach effectively uses HTM for concur-
rency control and does not require changes to the font-end cache
controller or use logs for replaying transactions to PM.

Related Concurrency Work: Existing non-HTM solutions, such
as Mnemosyne [48], ATLAS [5], and REWIND [6], tightly couple
concurrency control with durable writes of either write-ahead logs
or data updates into persistent memory to maintain persistence
consistency. Software that employs these approaches generally
means they must extend the duration for which they remain in
critical sections, leading to longer times to hold locks, which reduces
concurrency and expands transactional duration.

Other concurrency related work [15, 32] decouples concurrency
control so that post transactional values may flow through cache
hierarchy and reach PM asynchronously; however, the write ahead
log for an updating transaction has to get committed into PM syn-
chronously before the transaction can close so that the integrity
of the foreground value flow is preserved across machine restarts.
Another hardware-assisted mechanism proposes hardware changes
to allow a dual-scheme checkpointing that writes previous check-
pointed values in the background while collecting current transac-
tion writes [43].

Related HTM Work: The capacity of HTM transactions are in-
creased by introducing a software layer for version implementation
using Snapshot Isolation [12]. Some work addresses improving
conflict management for HTM such as LosaTM [13], which pro-
vides a low-overhead conflict manager, and other hardware based
strategies such as PleaseTM [38], a requestor-wins strategy [9], and
ForgiveTM [37]. LogTM-SE [51] proposes decoupling HTM from
caches using an undo log and signatures, allowing for an update to
memory in-place and unbounded nesting, context switching, and
other migrations and allows values to spill from the L1 all the way
to memory, since the original value of an aborted transaction can be
restored from the undo log. However, these works do not address
persistence and durability of transactions onto a non-volatile media
such as persistent memory.

Related Persistence + HTM Work: Some work [4, 17, 18] uti-
lizes un-modified HTM for concurrency control decoupled from per-
sistence to HTM. cc-HTM [17] introduces the concept of adjustable
lag whereby users can allow transaction execution to continue in
fast cache with selectable PM durability guarantees on the back-end.
NV-HTM [4] must wait for prior transactions to complete before
making forward progress. Hardware Transactional Persistent Mem-
ory, or HTPM [18], utilizes HTM for concurrency control and isola-
tion, with a back-end memory controller based on [11, 40]. While
HTPM requires no changes to current HTM semantics or additions
to the cache policies, it is bound to a single host and HTM limits.

Other work [2, 3, 26, 32, 50] requires making significant changes
to the existing HTM semantics and implementations. For instance,
PHTM [3] and PHyTM [2], propose a new instruction called Trans-
parentFlush which can be used to flush a cache line from within a
transaction to persistent memory without causing any transaction
to abort. Similarly, for DUDETM [32] to use HTM, it requires that
designated memory variables within a transaction be allowed to
be updated globally and concurrently without causing an abort.
Durable HTM (DHTM) [26], changes the coherence protocol through



hardware changes, and using re-do logging provides for durability
of PM transactions. DHTM is size limited to the LLC and log writes
bypass the LLC. Logging based software approaches are problem-
atic for HTM transactions (e.g., Intel TSX) which cannot bypass
the caches in order to flush the log records synchronously into
persistent memory ahead of transaction closings. To log within a
transaction, PTM [50] proposes changes to processor caches while
adding an on-chip scoreboard and global transaction id register
to couple HTM with PM. Unbounded HTM (UTHM) [25] provides
unbounded transactions using address signatures for overflowed
blocks and hybrid logging with an undo log for DRAM and a redo
log for NVM.

7 SUMMARY

To support high-performance applications across cutting-edge do-
mains, modern servers need to handle concurrent applications on
shared data sets. To support these applications, disaggregated mem-
ory servers using CXL are becoming increasingly popular. However,
standard mechanisms to handle memory transactions on multi-
node CXL systems face many challenges.

In this paper, we introduced HTCXL, which provides ACID sup-
port for memory transactions in a CXL-based memory architecture.
A hierarchical approach where transaction mechanisms at the nodes
and the CXL controller work synergistically, with each domain using
the most suitable mechanism. Atomicity, Isolation, and Durability
mechanisms are decoupled, allowing the best approach to be used
at different entities.

We evaluated HTCXL using a cycle-accurate simulator and mul-
tiple microbenchmarks and transactional benchmarks from the
STAMP suite. We demonstrated that HTCXL continues to scale well
across multiple nodes in the CXL fabric, achieving significant im-
provements over an STM approach.
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