
HOME: A Hierarchy-Oriented Memory Evaluation Framework for
Fast Contention Analysis

Dhruv Gajaria
Pacific Northwest National Laboratory

Richland, WA, USA
dhruv.gajaria@pnnl.gov

Andrés Márquez
Pacific Northwest National Laboratory

Richland, WA, USA
andres.marquez@pnnl.gov

ABSTRACT
Memory bottlenecks caused by contention in modern multicore
systems limit scalability for many HPC and scientific workloads.
To support rapid, actionable contention analysis, we introduce
HOME (Hierarchy-Oriented Memory Evaluation), a lightweight
framework that processes sparse PTWRITE traces by temporally
interpolating sampled events (implemented as timestamp scaling
and count rescaling) to restore the time-varying memory access
pressure; HOME then applies cache-and-memory modeling and
confidence conditions to flag under-sampled runs. HOME targets
the middle ground between slow cycle-accurate simulators and
coarse hardware-counter summaries: it preserves time-aware ac-
cess intensity where it matters while running far faster than full
simulation.

We validate HOME on 19 applications drawn from five bench-
mark suites, comparing against hardware performance counters
(perf), Dinero, DRAMsim3, and Sniper. HOME achieves average
LLC cache contention error rates of 9.92% and memory bandwidth
utilization error rates of 7.33% compared to measured hardware,
while running approximately 26.8 times faster than Sniper on our
GAP workloads. We also present sampling diagnostics and confi-
dence conditions that identify workloads for which temporal in-
terpolation is unreliable, and we provide guidance for increasing
sampling density (e.g., merged runs) when needed. HOME is de-
signed to be reproducible and practical for HPC researchers and
system engineers who need quick, interpretable contention diag-
nostics.

1 INTRODUCTION
High-performance computing (HPC) systems underpin scientific
advances across various fields, including AI, physics simulations,
molecular dynamics, astrophysics, and weather forecasting. The
growing demand for these applications has driven rapid advances
in both hardware and software capabilities [35]. At the same time,
increasing core counts, concurrency, and data volumes place rising
pressure on shared memory resources: simultaneous accesses to
caches and DRAM often produce contention that degrades through-
put and execution efficiency [26]. Typical HPC workloads run with
hundreds to thousands of threads, amplifying spatial and temporal
interference and exposing complex contention phenomena [10, 13].
Measurements indicate that memory contention can account for a
substantial fraction of observed slowdowns (on the order of tens
of percent for some workloads) [15, 28], making accurate, practical
contention diagnostics a priority for both system designers and
application developers.

Cycle-accurate and interval-based simulators (e.g., gem5, Sniper,
SimpleScalar) provide detailed emulation of processor and memory

behavior and are valuable for examining microarchitectural causes
of contention [2, 7, 9]. However, their high computational cost,
long runtimes, and complex configuration make them ill-suited
for rapid exploration across many workloads or parameter sweeps
representative of realistic HPC studies; moreover, simulators can
omit platform-specific low-level effects that influence contention,
limiting their fidelity in certain cases [32].

As a lightweight alternative, contention models built on hard-
ware performance counters measure runtime metrics such as cache
misses, bandwidth utilization, and processor stalls with minimal
overhead [3, 13, 20, 36]. These counter-based approaches are attrac-
tive for in situ analysis and rapid iteration. Still, because they report
aggregated summaries, they often cannot resolve per-address, time-
aware interactions across multiple levels of the memory hierarchy
or easily support “what-if” architectural explorations. Those trade-
offs motivate hybrid approaches that retain the speed of counter-
based monitoring while providing finer-grained, address-level in-
sight when needed. To address the limitations of both cycle-accurate

M
on

ito
rin

g
ov

er
he

ad
s

Level of details

PMCs: Low
overheads,
low details

HOME: low to
medium overheads,
moderately high
details

Simulators: very
high overheads,
high details

Figure 1: Monitoring overhead vs. level of detail. Cycle-
accurate simulators provide the highest microarchitectural
fidelity at very high cost; hardware performance counters
(PMCs) provide low overhead but coarse summaries; HOME
targets the middle ground by consuming sparse PTWRITE
traces and producing time- and address-aware pressure pro-
files with modest overhead.

simulators and coarse hardware-counter models, we present HOME
(Hierarchy-Oriented Memory Evaluation). HOME is a lightweight
framework for identifying and analyzingmemory contention across
cache levels and DRAM, balancing per-address fidelity with practi-
cal runtime. Figure 1 illustrates HOME’s design point: it provides
more address- and time-aware detail than counter-based models
while incurring far lower overhead than full simulation.

1

MEMSYS 2025, October 7–8, 2025, Washington, DC, USA Dhruv Gajaria and Andrés Márquez

HOME leverages MemGaze [25] and Intel PTWRITE to collect
low-overhead trace events (timestamps, instruction pointers, and
access types). Because PTWRITE traces are sparse and can lose
samples due to hardware buffering and interrupts, HOME does not
recreate the original load/store sequences or unobserved addresses;
instead, HOME performs temporal interpolation, which is imple-
mented by timestamp scaling and count rescaling. HOME utilizes
these estimated temporal pressure profiles as inputs to configurable
cache and DRAM models, applying confidence conditions that flag
runs where interpolation-based estimates are likely unreliable. This
hybrid approach enables fast, scalable “what-if” exploration of ar-
chitectural configurations and helps pinpoint code regions that
correlate with contention without attempting to synthesize unre-
coverable per-access data.

The key contributions of this paper are:
• HOME framework.We introduceHOME, amodular pipeline
that ingests PTWRITE traces, performs timestamp-scaling
interpolation and sampling-ratio scaling to estimate tem-
poral access pressure, and applies cache/DRAM models for
contention analysis.

• Interpolation and confidence conditions. We formalize
temporal interpolation (timestamp scaling) as a practical
estimator of access intensity from sparse traces, and we
define confidence checks that detect undersampled runs and
bound expected error.

• Configurable hierarchy modeling. HOME integrates con-
figurable cache and memory hierarchy models, enabling
rapid evaluation across different architectural parameters.

• Empirical validation.We evaluate HOME on 19 applica-
tions from five benchmark suites, comparing against hard-
ware counters (perf) and simulators (Dinero, DRAMsim3,
Sniper). HOME achieves low average errors for cache and
bandwidth metrics while running substantially faster than
full simulation (approximately 26.8× on our GAP experi-
ments).

• Practical diagnostics.Weprovide sampling diagnostics and
practical recommendations (e.g., merged runs) to improve
accuracy for workloads that violate confidence conditions.

Finally, the organization of this paper is as follows: Section 2
provides an in-depth overview of related work on existing tools and
models for memory analysis. Section 3 introduces the architecture
and mechanisms of HOME, highlighting how it addresses the chal-
lenges of sampling drops. Section 4 provides a detailed explanation
of the proposed interpolation techniques and boundary conditions.
Section 5 presents a comprehensive evaluation of HOME, compar-
ing its performance and accuracy with state-of-the-art simulation
tools and real hardware. Section 6 discusses HOME’s potential for
addressing fine-grained contention in the future, and Section 7 con-
cludes the paper, outlining future directions for extending HOME’s
capabilities.

2 BACKGROUND AND RELATEDWORK
We summarize prior approaches for diagnosing memory contention
and position HOME relative to them. Prior work ranges from de-
tailed, cycle-accurate and interval-based simulation to lightweight
counter-based modeling, and more recently, low-overhead trace

collection. Each approach occupies a different point in the fidelity-
overhead design space and exhibits complementary strengths and
weaknesses, motivating a hybrid, practical tool such as HOME.

2.1 Contention modeling using simulations
Detailed simulators emulate processor, cache, andmemory behavior
to expose microarchitectural causes of contention. Cycle-accurate
tools (e.g., gem5 [7]) provide fine-grained latency and ordering
information useful for debugging coherence, prefetching, and con-
troller interactions. Interval- or sampling-based simulators (e.g.,
Sniper [9]) trade per-cycle fidelity for much higher scalability and
have therefore been used to study larger workloads and parame-
ter sweeps [17, 19, 30]. Formal models (e.g., timed Petri nets [23])
can complement simulators by validating timing and concurrency
properties at an abstract level.

Despite their utility, simulators pose two practical challenges for
routine contention diagnosis. First, cycle-accurate and detailed in-
terval simulations are often computationally expensive and slow for
realistic HPC workloads, which limits interactive exploration and
broad parameter studies [32]. Second, simulators can diverge from
real hardware in platform-specific behaviors (microcode, memory-
controller scheduling, undocumented optimizations), and recent
work has documented notable simulator-hardware discrepancies
for memory-system experiments [16]. For these reasons, we treat
simulation outputs as informative but not absolute ground truth.

HOME adopts a hybrid approach: rather than simulating every
cycle and attempting to reproduce every microarchitectural detail
from first principles, HOME ingests low-overhead PTWRITE sam-
ples (via MemGaze) and feeds timestamp-scaled event profiles into
configurable cache and DRAMmodels. This design preserves useful
address- and time-aware fidelity for contention diagnostics while
avoiding the cost of full cycle-accurate replay and sidestepping
many simulator-specific implementation gaps.

2.2 Performance counters and lightweight
monitoring

Hardware performance counters provide low-overhead, in-situ met-
rics (such as cache misses, bandwidth, and stall cycles) that are con-
venient for profiling production runs and identifying bottlenecks
quickly [3, 22, 37]. Common tooling such as Linux ‘perf‘, PAPI,
and vendor-specific utilities expose counters that are inexpensive
to collect and can be aggregated across long or distributed runs,
making them well-suited for scalable, production-oriented studies
and regression-style performance tracking [4, 38]. For many opera-
tional tasks—e.g., identifying whether an application is memory-
or compute-bound, or tracking coarse changes after an optimiza-
tion—counters provide actionable signals with virtually no pertur-
bation to normal execution.

Despite these strengths, performance counters have essential
limitations for diagnosing fine-grained contention. Counters are
typically aggregated (per-core, per-socket, or per-un-core block)
and do not provide per-address or sufficient temporal resolution,
so they cannot directly reveal which cache sets, address ranges, or
short-lived phases are responsible for observed stalls or bandwidth
peaks. In practice, counters are also constrained by a limited num-
ber of simultaneous events, vendor-specific event semantics, and

2

HOME: A Hierarchy-Oriented Memory Evaluation Framework for Fast Contention Analysis MEMSYS 2025, October 7–8, 2025, Washington, DC, USA

multiplexing artifacts that complicate interpretation. Furthermore,
counters may not expose low-level effects, such as set conflicts, row-
buffer timing interactions, or undocumented controller policies [11].
These factors reduce the usefulness of counters for detailed root-
cause analysis and for architecture “what-if” exploration.

2.3 Traces and emerging low-overhead
sampling

Recent tools (e.g., MemGaze [25]) utilize low-overhead mechanisms,
such as Intel PTWRITE, to collect sparse address/timestamp sam-
ples that are far more informative than counters, while remaining
significantly cheaper than full simulation. Such sparse traces re-
quire careful processing—HOME employs an explicit temporal in-
terpolation (timestamp scaling and count rescaling) and confidence
conditions to estimate time-varying access pressure from sampled
events, rather than attempting to recreate unobserved per-access
sequences. In practice, we measure sampling ratios 𝑟 in the range of
1–4%. Under approximate assumptions, timestamp-scaling provide
a simple and unbiased estimator of time-varying access intensity
(detailed in Section 4.1). This design point allows HOME to support
both fast, in-situ diagnostics and configurable hierarchy modeling
for exploratory analyses.

Summary. Simulation, counter-based monitoring, and trace sam-
pling are complementary tools: simulators offer detailed microar-
chitectural insights at high cost, counters provide fast but coarse
summaries, and sampled traces offer a practical middle ground.
HOME targets this middle ground by combining low-overhead
trace collection with lightweight interpolation and configurable hi-
erarchy models, enabling rapid yet informative contention analysis
suitable for realistic HPC studies.

3 PROPOSED APPROACH
In this section, we introduce HOME, a novel framework designed to
address memory contention by integrating efficient trace collection,
hierarchical memory modeling, and architectural optimizations.
By leveraging the MemGaze tool alongside HOME’s configurable
architectural components, we demonstrate how HOME provides
precise analysis of contention hotspots while enabling compati-
bility with detailed memory simulators. The key components of
HOME include MemGaze-based trace collection, page map manage-
ment, coherence space optimizations, and customizable memory
hierarchy models.

3.1 Trace collection using MemGaze
HOME begins with trace collection using MemGaze [25], a light-
weight tool that leverages Intel Processor Tracing (PTWRITE) [21]
to capture detailed information related to program execution and
memory access behavior. Processor tracing is a hardware-assisted
mechanism integrated into modern CPUs, enabling the recording
of runtime execution details, including executed instructions, mem-
ory accesses, and timestamps, with minimal overhead. Figure 2
illustrates the flow of MemGaze using processor tracing. As shown
in the figure, the collection process involves instrumenting the
binary with PTWRITE operations to record load-store addresses

Target application
binary

Binary
instrumentation

CPU

Intel
PTWRITE

Intel
Software
decoder

Runtime Data

Memory access
traces:

IP, address, CPUid,
timestamps etc.

CPU

Intel
PTWRITE

CPU

Intel
PTWRITE

CPU

Intel PT

Add PTWRITE
instructions

Compressed
trace

Binary

Figure 2: MemGaze + PTWRITE workflow (trace collection
pipeline). Instrumentation inserts PTWRITE events, traces
are compressed on-chip, decoded offline, and the decoded
samples (timestamp, IP, address, CPUid, access type) are fed
into HOME for timestamp-scaling and hierarchy modeling.

during program execution. The instrumented binary is then exe-
cuted on hardware systems that support Intel Processor Tracing
(PT). During execution, the processor generates compressed traces
containing the memory access information captured by PTWRITE.
This compressed trace is subsequently decoded using Intel’s decod-
ing utilities, yielding detailed trace data including:

Instruction Pointers (IPs): Track specific instructions being
executed, enabling researchers to correlate memory accesses with
their corresponding code regions.

Access Types: Identify whether a memory access follows a
constant, strided, random, or store pattern. Recognizing these ac-
cess patterns is essential because they substantially affect memory
contention dynamics across hierarchical levels.

Virtual Addresses: Provide the virtual memory addresses of
each load and store operation, enabling MemGaze to map memory
requests to cache lines, memory banks, and other architectural
components of the memory hierarchy. This mapping is critical for
identifying contention hotspots.

Cycle-Accurate Timestamps: Deliver precise timing infor-
mation for every memory operation, offering the high temporal
resolution needed to diagnose latency and contention events.

CPUid : Indicates the specific CPU or core responsible for ini-
tiating each memory request. This information is beneficial for
profiling multi-threaded workloads and evaluating contention be-
haviors in multi-core environments, making MemGaze well-suited
for modern high-performance computing (HPC) workloads.

Processor tracing provides fine-grained, low-perturbation sig-
nals that are especially useful for memory-contention analysis in
HPC workloads. By emitting per-event timestamps, instruction
pointers, and access-type annotations, low-overhead mechanisms
such as Intel PTWRITE (collected via MemGaze) give far richer,
address- and time-aware information than aggregated counters
while remaining substantially cheaper than cycle-accurate replay.
This makes processor tracing an attractive input for fast, practical
contention diagnostics.

A key practical limitation of PTWRITE-style traces is their spar-
sity and occasional sample drops, as hardware buffering, interrupt
handling, and other platform constraints can cause some events to
be omitted from the recorded stream. These gaps reduce the raw
per-access coverage but do not preclude recovering informative

3

MEMSYS 2025, October 7–8, 2025, Washington, DC, USA Dhruv Gajaria and Andrés Márquez

pressure profiles (time-varying access intensity). HOME, therefore,
treats sampled events as noisy, thinned observations of the actual
access stream. It applies a temporal interpolation step (implemented
as timestamp scaling and count rescaling) to estimate the original
access pressure used by our hierarchy models. Importantly, HOME
does not attempt to recreate unobserved load/store sequences or
synthesize missing addresses; instead, it produces an estimated tem-
poral pressure profile that feeds the cache/DRAMmodels. Section 4
formalizes the interpolation operator, the underlying assumptions,
and the confidence conditions that flag runs where interpolation is
likely unreliable.

HOME ismodular by design.MemGaze is the default trace source,
but the pipeline accepts any data producer that supplies the mini-
mal fields required by our models (timestamp, address, core/CPU
identifier, and access type). When inputs are restricted (for exam-
ple, missing instruction pointers or limited sampling), HOME still
operates, but some higher-fidelity diagnostics are disabled; con-
fidence checks inform the user of these limitations. HOME also
uses lightweight hardware counters as complementary signals for
validation and for triggering additional diagnostics when counters
and interpolated pressure profiles disagree.

3.2 HOME architecture
Building upon the trace collection capabilities of MemGaze de-
scribed in the previous section, this section presents the complete
HOME architecture, which is designed to analyze memory con-
tention and bottlenecks across different levels of the memory hier-
archy. The input traces collected by MemGaze are passed through
configurable cache and memory models, facilitating contention
analysis while maintaining adaptability for diverse hardware con-
figurations. The goal of HOME is to capture detailed insights into
performance bottlenecks at lower levels of the hierarchy, where
timing and latency properties become more critical.

Table 1: Cache configuration inputs for HOME (parameters
used to configure the cache hierarchy and coherence behav-
ior).

Parameter Description
Capacity Cache size (e.g., 32KB for L1)
Associativity Number of ways per set
Line Size Size of the cache line (e.g., 64 bytes)
Access Latency Cache access latency (in cycles)
Directory-Based Coherence Coherence tracking enabled at di-

rectories

3.2.1 Configurable Cache Hierarchy models. HOME’s architecture
is designed for computational efficiency and scalability, employing
a modular design for modeling the cache and memory hierarchy as
seen in Figure 3. At higher levels of the hierarchy, such as private L1
caches and shared L2 caches, contention metrics are analyzed in an
event-driven manner, without relying on explicit timing informa-
tion. Metrics such as miss rates serve as key indicators of contention
patterns at these levels. To simplify coherence tracking and improve
simulation speed, HOME combines all private caches into a unified
model, also unifying coherence directories into a single directory

structure at the private cache level. Within the unified private cache,
memory requests are checked for hits or coherence misses, lever-
aging coherence metadata to avoid unnecessary inter-hierarchy
communication.

Requests that result in coherence misses propagate directly to the
last-level cache (LLC), which acts as the unified memory buffer for
resolving unresolved requests. The LLC serves as the final arbiter,
ensuring consistency across cores and efficiently managing cache
misses. By assuming cache requests are ultimately determined at the
LLC, HOME reduces computation complexity while maintaining
the hierarchical integrity of the memory system. Using Dinero, a
state-of-the-art cache simulator, we empirically evaluated HOME’s
unified directory and private cache approach across 19 applications
from 5 benchmark suites (as detailed in Section 5.1). Our evaluation
demonstrates that this approach introduces cache miss rate errors
of less than 1%, while improving simulation speed by an average of
38.76% compared to traditional multi-level cache architectures.

HOME’s cache hierarchy configuration inputs, summarized in
Table 1, include essential attributes such as capacity, associativity,
line size, access latency, and whether directory-based coherence
is enabled. These configurable parameters allow HOME to adapt
to diverse architectural designs, ensuring flexibility and scalabil-
ity for various applications and workloads. Importantly, all traces
and addresses filtered through the cache hierarchy retain and pass
down the original metadata collected by MemGaze—such as in-
struction pointers (IPs), timestamps, and CPU identifiers (CPUid).
This detailed metadata is critical for identifying low-level causes of
contention across the hierarchy.

HOME’s modular design also enables detailed examinations of
cache behavior beyond traditional metrics. By combining cache
access information with address metadata, HOME can identify
frequently accessed cache regions, detect cache set conflicts, and
analyze whether cache accesses are distributed across different
sets or concentrated on a few overburdened sets. Such insights
offer researchers a deeper understanding of cache bottlenecks and
opportunities for optimizing memory systems.

3.2.2 Page Map Collection. After memory accesses are filtered us-
ing the cache hierarchy models presented in Section 3.2.1, their
virtual addresses must be translated into physical addresses us-
ing page maps before further analysis at the memory models. To
accomplish this, HOME integrates a lightweight page map collec-
tion script that operates alongside MemGaze to gather physical
address information essential for analyzing hardware-level memory
behavior. Although MemGaze primarily collects virtual addresses
of load-store operations, physical address resolution is crucial for
understanding deeper memory characteristics, such as DRAM row
activation patterns, bank-level contention, and resource utiliza-
tion. The script leverages kernel-level information exposed through
/proc/<pid>/pagemap and /proc/<pid>/maps, dynamically extracting
virtual-to-physical address mappings during program execution.
These mappings serve as a critical input for HOME’s memory hier-
archy analysis.

The page map collection script continuously monitors the tar-
get process (PID) for changes in memory usage statistics, includ-
ing Resident Set Size (RSS) and Proportional Set Size (PSS), using
/proc/<pid>/smaps_rollup. Upon detecting significant changes that

4

HOME: A Hierarchy-Oriented Memory Evaluation Framework for Fast Contention Analysis MEMSYS 2025, October 7–8, 2025, Washington, DC, USA

I
n
t
e
r
p
o
l
a
t
i
o
n

Confidence conditions

CPU CPU CPU CPU

LLC

L2 L2 L2 L2

L1 L1 L1 L1

Coherency directory Event driven
analysis

Can unify
private
cache

Trace and page map
collection

Application PID

MemGaze
Traces

PSS,RSS
changed?

Collect pagemaps using
/proc/<pid>/maps and

pagemaps

Page map
collection

MemGaze
traces

Cache
parameters Page maps Memory

parameters

Yes

Channel

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Channel

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Channel

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Channel

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank

Bank Bank
Time
driven
analysis

Cache misses, Cache set
conflicts

Row buffer locality, access latency, bank-level
parallelism, bandwidth, and contention analysis

Figure 3: HOME system architecture: trace/page-map collection, configurable cache hierarchy, and time-driven DRAM models.
The figure highlights how sampled events and page maps are combined, how cache filtering produces L3→DRAM events, and
where interpolation and confidence checks are applied.

exceed predefined thresholds, the script retrieves virtual address
ranges from /proc/<pid>/maps and resolves these addresses to Phys-
ical Frame Numbers (PFNs) via /proc/<pid>/pagemap. The resulting
virtual-to-physical address pairs are stored in timestamped output
files, ensuring trace completeness and alignment with MemGaze’s
collected data.

Beyond collecting page map information, HOME also utilizes a
secondary script to aggregate all collected physical address map-
pings and resolve potential address conflicts. This step ensures
consistency in the address translation process and addresses inac-
curacies arising from dynamic memory remapping or conflicting
data. The final compiled page map provides the necessary input
for accurate address translation within HOME’s analysis frame-
work, enabling reliable identification of hardware-level behaviors
such as memory access latency, DRAM row locality, and bank-level
parallelism.

The page map collection process is performed concurrently en-
suring real-time monitoring without disrupting the execution of
the target process. By seamlessly integrating trace collection and
physical address resolution, HOME delivers reliable, fine-grained
memory analysis across the hierarchy while remaining adaptable
for diverse applications and system workloads.

3.2.3 Configurable memory models. At lower levels of the mem-
ory hierarchy, such as memory channels, ranks, and banks, timing
and contention properties become the primary focus. These lev-
els experience significantly higher access latencies and greater
contention, making precise timing information essential for un-
derstanding memory access pressure and resource utilization. To
address sampling issues in MemGaze traces—where timing gaps
may arise—HOME employs interpolation techniques (discussed in
Section 4.1) to reconstruct missing timestamps, ensuring accurate
representation of memory behavior. This approach allows HOME

to integrate both high-fidelity simulation capabilities and efficient
real-time modeling workflows.

HOME’s memory models feature detailed configurable parame-
ters, similar to those in advanced simulation tools, including chan-
nel, rank, bank, and timing settings, as well as address mapping
configurations, as shown in Table 2. These parameters allow HOME
to adapt to a wide range of hardware architectures and workloads,
providing researchers with the ability to model memory contention
patterns. Unlike cycle-accurate simulation tools, such as DRAM-
sim3, which update memory states at every clock cycle, HOME
adopts an interval-modeling approach for latency modeling that
significantly improves computational efficiency. Instead of contin-
uously updating memory states, HOME evaluates requests only
at arrival times. Upon the arrival of a new request, HOME ana-
lyzes the completion status of earlier requests, updates the queues
of memory components such as banks, bank groups, ranks, and
channels, and schedules the new request accordingly. This event-
driven process eliminates unnecessary updates during idle periods
with high inter-arrival latency, making it considerably faster than
granular per-cycle analysis.

This modeling approach is efficient for workloads with bursty or
unpredictable patterns, where requests are spaced out by varying
inter-arrival times. HOME’s selective evaluations ensure accurate
modeling of contention and latency metrics while avoiding the
computational overhead associated with cycle-by-cycle simulations.
Additionally, this design retains key insights into queued request
behavior, resource utilization, and access latencywithout sacrificing
accuracy.

HOME’s configurable memory model also enables granular anal-
ysis of contention dynamics at lower levels of the hierarchy. It
provides insights into key metrics, including:

5

MEMSYS 2025, October 7–8, 2025, Washington, DC, USA Dhruv Gajaria and Andrés Márquez

Table 2: Memory configuration parameters for HOME (con-
figurable DRAM channel, timing and queue parameters used
by the DRAMmodel).

Parameter Description
Channels Number of memory channels
Ranks Number of ranks per channel
Bank Groups Total bank groups
Banks per Group Banks within each group
Rows Rows per bank
Columns Columns per row
Channel Size (MB) Size of each memory channel
DRAM Size (MB) Total DRAM size
Transaction Queue Length Maximum length of the transac-

tion queue
Command Queue Length Max length of the command

queue
Command Queue Per Bank Whether queue is per bank
tCK Clock cycle time (ns)
CL Column access latency
CWL Column write latency
tRCD Row-to-column delay
tRP Row precharge delay
tRAS Row activation time
tWR Write recovery time
tRTP Row-to-precharge delay
tCCD_S Short col-to-col delay
tCCD_L Long col-to-col delay
tRRD_S Short row-to-row delay
tRRD_L Long row-to-row delay
tRTRS Rank-to-rank switch latency
Address Mapping Address mapping scheme used

Row Buffer Locality (RBL): Determines how efficiently con-
secutive memory accesses use the same row in DRAM, reducing
contention and improving performance.

Bank-Level Parallelism (BLP): Measures the ability to overlap
multiple memory accesses across different DRAM banks, reducing
stalls and increasing throughput.

Bank Access Pressure: Evaluates the intensity of contention
at individual memory banks, highlighting potential bottlenecks.

Access Latency: Tracks delays caused by contention, providing
an understanding of how resource utilization impacts performance.

Memory Bandwidth Utilization: Assesses how contention
reduces overall memory throughput, particularly at shared memory
channels.

Transaction Queue Length: Measures the number of requests
waiting in memory transaction queues, which directly influences
latency under high contention.

Stall Cycles: Tracks cycles wherememory operations are stalled,
helping quantify periods of heavy contention and resource satura-
tion.

Metrics such as bank access pressure, transaction queue length,
and stall cycles are crucial for evaluating the impact of bursts and
flurries of memory requests that cause resource contention. On

the other hand, metrics such as Row Buffer Locality (RBL) and
Bank-Level Parallelism (BLP) offer insights into how aligned data
access patterns can be optimized for memory operations and min-
imized to reduce contention delays. By combining these metrics
with metadata from MemGaze, such as instruction pointers (IPs),
HOME can trace contention back to specific functions, enabling
researchers to identify application-level behaviors that adversely
impact memory performance.

4 ERROR MITIGATION
Random sample drops during trace collection produce gaps that
can distort timing-driven memory analyses by underestimating
the instantaneous access pressure in memory-bound applications.
If left unaddressed, these gaps cause contention metrics (e.g., in-
stantaneous pressure or bandwidth utilization) to deviate from
real-world execution trends. To mitigate this problem, HOME inte-
grates error-mitigation strategies based on temporal interpolation
and confidence conditions; our experimental validation shows these
measures keep analysis errors small under a wide range of practical
sampling regimes.

4.1 Interpolation algorithm

Original trace
Trace with timestamp

interpolationtime

time

Time Gaps
due to
trace

behavior
and

sample
drops

Minimizing
time gaps

due to
sample
drops

Samples
collected

Samples
collected

Timestamp interpolation rate based
on % of samples collected

Figure 4: Temporal interpolation (timestamp scaling) exam-
ple. Left: raw MemGaze sample timeline with gaps caused by
sample drops. Right: timestamp-scaled and count-rescaled
pressure profile used by HOME’s time-driven models. Note:
HOME **does not** synthesize unobserved addresses; it
rescales observed timestamps and counts to estimate time-
varying intensity.

Figure 4 summarizes HOME’s temporal interpolation workflow.
PTWRITE-style traces are often thinned by platform effects (buffer

6

HOME: A Hierarchy-Oriented Memory Evaluation Framework for Fast Contention Analysis MEMSYS 2025, October 7–8, 2025, Washington, DC, USA

overflows, interrupt latency, etc.), so the recorded timestamps form
a sparse, noisy sampling of the true event stream rather than a
complete log. HOME therefore treats sampled events as thinned
observations and produces an estimated temporal access-pressure
profile rather than attempting to reconstruct unobserved per-access
sequences.

Concretely, let 𝑟 ∈ (0, 1] denote the measured sampling ratio
(fraction of true events observed). For an observed sample with
timestamp 𝑠𝑖 , HOME computes a scaled timestamp

𝑡𝑖 = 𝑟 · 𝑠𝑖 ,

Intuitively, under approximate random thinning of the event
stream, these operations restore the time-varying intensity of the
original process: scaling compresses the sampled timeline and
count-rescaling compensates for omitted events. We refer to this
procedure as temporal interpolation (implemented via timestamp
scaling and count rescaling) and use the resulting pressure profile
as input to the cache and DRAM hierarchy models. This temporal
interpolation has been widely used in previous studies [12, 13, 37]
due to its effectiveness in enabling coarse-grained or macro-level
analyses.

HOME determines the sampling ratio 𝑟 by comparing MemGaze-
sampled counts to lightweight hardware counters (e.g., mem_inst_
retired.any, collected via perf). These counters can either be cap-
tured concurrentlywhile recordingMemGaze traces or by running a
separate instance of the program during the trace decoding process.
Since the trace decoding stage takes significantly longer than the
actual application runtime, capturing these counters does not add
overhead to HOME’s execution. Since the PTWRITE trace decoding
stage takes considerably longer than the actual application runtime,
capturing these counters does not add overhead to HOME’s execu-
tion. Typical 𝑟 values were on the order of a few percent (commonly
1–4%) for the MemGaze settings used. When 𝑟 is sufficiently large
and the access stream is not dominated by extremely short, high-
intensity bursts, temporal interpolation provides reliable pressure
estimates for macro- and function-level analyses.

We emphasize the assumptions and failure modes of this method.
Timestamp-scaling interpolation assumes sampling is approximately
random (thinning) and that the process is locally stationary enough
for scaling to be meaningful; it performs poorly when the workload
exhibits synchronized, sub-window bursts or highly non-stationary,
phase-like behavior that sparse samples cannot capture. To detect
such cases, HOME applies explicit confidence conditions (described
below) that combine sampling diagnostics and counter comparisons
to flag estimates that are likely unreliable. When confidence fails,
HOME recommends remedy actions (increase sampling density, run
merged/replicated traces, or instrument for shorter phases) rather
than presenting possibly misleading fine-grained timing results.

HOME’s current linear interpolation / temporal-interpolation ap-
proach is effective for whole-application and coarse function-level
analyses (memory bursts, throughput trends, bandwidth estimates).
It is less precise for instruction-level or very short basic-block anal-
ysis; as future work we plan to explore IPC-aware and phase-aware
interpolation refinements to improve fidelity for highly localized
timing analyses.

HOME dynamically adjusts interpolation parameters based on
the computed sampling ratio and the confidence checks. The result

is a pragmatic balance: lightweight sampling plus temporal inter-
polation yields time-aware pressure inputs that are adequate for
cache/DRAM modeling in many HPC scenarios, while confidence
conditions and diagnostics guide the user when higher-fidelity
collection is required.

4.2 Confidence conditions
Confidence conditions establish guidelines for achieving accept-
able error rates in contention metrics across different levels of the
memory hierarchy. These thresholds, derived through empirical
observations of real-world workloads, ensure that sampling density
is sufficient to produce reliable results, even for sparse sampling
scenarios. While synthetic workloads can satisfy certain confidence
criteria, they often represent only a subset of possible memory
behaviors, failing to capture the diverse and non-uniform address
distributions observed in real applications. HOME explicitly es-
tablishes and validates its thresholds using practical benchmarks
with varied memory access patterns—such as random, strided, and
compute-intensive phases—ensuring its heuristics are robust and
applicable to real-world conditions.

Additionally, these thresholds have an error tolerance up to
30%. In computer architecture research, simulation models with an
error margin up to 30% are often considered sufficient for guiding
architectural decisions, given the trade-off between accuracy and
simulation speed. Previous work has shown that simulators such
as Sniper [9], gem5 [7], and Tejas [33] consistently achieve error
rates in the range of 10% to 40% when validated against commercial
hardware for various workloads. These error margins are widely
recognized as a reasonable trade-off between simulation speed
and modeling fidelity, especially when performing architectural
exploration or system-level studies [1, 8, 24].

To establish its confidence conditions, HOME estimates sampling
density by leveraging the perf counter mem_inst_retired.any,
as described in Section 4.1. By combining sampling density metrics
with empirically validated thresholds, HOME ensures reliable mod-
eling of memory hierarchy contention metrics for a diverse range
of applications.

4.2.1 L2 Cache. At higher levels of the memory hierarchy, such as
the L2 cache, frequent memory accesses naturally result in robust
sampling densities, improving reliability for whole-application-
level or larger-function-level analysis. Thanks to the law of av-
erages (and pathological cases rendering the L2 ineffective), L2
contention metrics are statistically accurate even if sampling den-
sity dips slightly below optimal levels. This makes analysis at the
L2 level more resilient to gaps in sampling and extremely effective
for evaluating broader workloads with high access rates. The confi-
dence condition for L2 cache, although arbitrary, our heuristic is
shown to be:

Error Rate (L2) < 10% if Sampling Density (L2) > 0.0005 (1)

This condition requires at least 8 samples per 1000 memory ac-
cess events, ensuring consistent results when modeling contention
dynamics at the L2 level. The frequent memory accesses at this
level inherently contribute to more statistically valid sampling re-
sults, making L2 cache analysis highly reliable across a variety of
applications.

7

MEMSYS 2025, October 7–8, 2025, Washington, DC, USA Dhruv Gajaria and Andrés Márquez

4.2.2 L3 Cache (LLC). In contrast, shared caches such as the L3
cache (LLC) experience fewer memory accesses in workloads with
limited spatial locality or low access rates. Sparse sampling at this
level can result in scenarios where the L3 cache is not sufficiently
warmed up during trace collection. This leads to compulsory misses,
where every memory access fails to find relevant data in the cache.
Our experimentally validated heuristics demonstrate that for re-
liable modeling of contention, cache warming conditions require
that the number of accesses to L3 exceed twice the number of cache
lines available to ensure sufficient data population and minimize
inaccuracies. The confidence condition for L3 cache is given by:

Error Rate (L3) < 30% if Sampling Density (L3) > 0.001 (2)

For warming conditions, the L3 access threshold is:

Accesses (L3) ≥ 2 × Cache Lines Available (3)

These conditions are specifically tailored for shared cache levels
like LLC, where sparse trace sampling or low workload locality may
result in unreliable contention metrics without sufficient warm-
ing. Ensuring that enough accesses populate the cache reduces
inaccuracies caused by compulsory misses during evaluation.

4.2.3 Memory Bandwidth Utilization. Metrics for memory band-
width utilization rely heavily on the behavior of shared caches,
such as the L3 cache (LLC), since bandwidth modeling examines
interactions across the memory hierarchy. Sparse workloads may
exhibit lower accuracy in bandwidth utilization analysis unless the
L3 cache sampling and warming criteria are met. Therefore, mem-
ory bandwidth shares the same thresholds as L3 cache evaluation.
The confidence condition for memory bandwidth utilization is:

Error Rate (BW) < 30% if Sampling Density (BW) > 0.001
(4)

Meeting these thresholds ensures that memory bandwidth con-
tention trends are accurately reflected in HOME’s analysis. Work-
loads with low access rates or bandwidth-intensive applications
may require additional sampling techniques to improve reliability.

4.2.4 Enhancing Sampling Density Through Merging. If the sam-
pling density criteria for any level of the hierarchy are not met,
future work will focus on running multiple sampling iterations and
merging traces to improve coverage. During this merging process,
functional granularity (FG) elements—such as instruction pointers
(IPs), timestamps, and CPU identifiers—can serve as references to
ensure consistency across aggregated traces. This approach will en-
hance sampling robustness, particularly for workloads that require
finer-grained fidelity or exhibit limited locality. These initial con-
fidence criteria establish the reliability of analyses obtained from
limited sampling, while advancements in merging workflows will
further improve the accuracy and scope of contention modeling.
By defining these conditions, HOME establishes a solid foundation
for scalable and reliable modeling across diverse workloads while
maintaining flexibility for enhancements.

5 EXPERIMENTAL RESULTS
Accurately modeling memory contention across the hierarchy re-
quires evaluating the framework’s ability to balance modeling ac-
curacy, computational efficiency, and practical applicability. This

section presents the results of HOME’s framework through com-
parisons with state-of-the-art simulation tools and real hardware
systems, validating its effectiveness across cache emulation, mem-
ory modeling, and computational speedups. By analyzing HOME’s
outputs across diverse workloads, we assess its applicability in both
synthetic scenarios and real-world environments.

The experimental setup used for these evaluations is described
in Section 5.1. Trace data was collected using MemGaze, leveraging
Intel PTWRITE functionality to generate timestamps, instruction
pointers, memory addresses, and CPU identifiers. Benchmarks in-
cluded multi-threaded HPCworkloads with varying memory access
patterns (e.g., random, strided, and streaming). HOME’s results were
compared against simulation tools like Dinero, DRAMsim3, and
Sniper, as well as validated against real hardware metrics to test
the impact of sampling drops and establish modeling accuracy. The
subsections analyze HOME’s performance across key components:
cache modeling, memory hierarchy analysis, and computational
speedup evaluations.

5.1 Experimental Setup
Experiments were conducted on the system specified in Table 4,
with the goal of capturing reliable trace data and evaluating HOME
across diverse workloads. Traces were collected using MemGaze
and processed uniformly across simulation tools and hardware vali-
dation workflows. Benchmarks included high-performance comput-
ing (HPC) applications drawn from widely used suites, such as GAP
[5], NAS Parallel Benchmarks (NPB) [6], miniVite [18], algebraic
multigrid (AMG) [27], and Sw4lite [31], covering a range of random,
strided, and streaming access patterns. Tools such as Dinero [14],
DRAMsim3 [29], and Sniper [9] were configured consistently for
fair comparisons.

Table 3 lists the applications used in our evaluation, together
with their source benchmark suites and a short description of their
dominant memory access pattern. We include all benchmarks ac-
tually executed (and mark the few dropped workloads with expla-
nations). These workloads were chosen to cover a diverse mix of
memory behaviors (irregular graph traversal, streaming/stencil,
strided, compute-bound), and were not selected to favor HOME’s
results — the set is intended to exercise interpolation and confidence
checks across representative HPC patterns.

5.2 Analysis of cache hierachy models
In this section, we analyze HOME’s accuracy in single-threaded and
multi-threaded environments. To validate the accuracy of HOME’s
cache model, we first compared its results with those of Dinero, a
widely used cache simulator that supports single-core, multi-level
cache hierarchy simulations. Since HOME and Dinero can process
the same trace inputs, Dinero was used as a baseline for validating
HOME’s accuracy across single and multi-level cache hierarchies
under various cache configurations. Our analysis demonstrates
that HOME estimates cache miss rates with an error of less than
0.5% compared to Dinero across different workload types and cache
configurations. These experiments underscore HOME’s reliabil-
ity in emulating cache behavior at higher levels of the hierarchy
efficiently.

8

HOME: A Hierarchy-Oriented Memory Evaluation Framework for Fast Contention Analysis MEMSYS 2025, October 7–8, 2025, Washington, DC, USA

Table 3: Benchmarks used in the evaluation: suite, dominant access/workload type, and usage note. ’Used’ denotes run in
experiments; ’Dropped’ lists excluded benchmarks with reason. This set covers irregular, streaming, strided, and compute-bound
patterns.

Application Suite Access / Workload Type Notes (Used / Dropped)

amg AMG stencil / streaming (multigrid) Used

bc GAP betweenness-centrality (irregular graph) Used
bfs GAP breadth-first search (irregular graph) Used
pr GAP PageRank (irregular graph / streaming) Used
cc GAP connected components (irregular) Used
sssp GAP single-source shortest path (irregular) Used
tc GAP triangle counting (irregular, heavy) Dropped – runtime issues

bt NPB block tridiagonal solver (strided / compute-bound) Used
cg NPB conjugate gradient (sparse linear algebra) Used
ep NPB embarrassingly parallel (compute-dominated) Used
ft NPB FFT (strided / global communication) Used
is NPB integer sort (random access / memory-traffic heavy) Used
lu NPB LU decomposition (dense / strided) Used
mg NPB multigrid (stencil-like / streaming) Used
sp NPB scalar pentadiagonal solver (stencil/streaming) Used

miniVite (v1–v4) miniVite Louvain community detection (irregular graph accesses, communication-heavy) Used (variants v1–v4)

sw4lite SW4lite seismic wave solver (stencil / streaming) Used

Table 4: Experimental Setup of real hardware system, vali-
dation simulators, as well as our benchmark suites used for
validation

Specification Details
Processor Intel Core i9-12900KF(24 cores, 48

threads)
RAM 128 GB DDR5 @ 4800 MT/s
Cache Hierarchy 40 KB L1, 1.4MB L2, 30 MB shared

L3
Operating System Ubuntu 22.04.5 LTS (Kernel: 6.8.0-

52-generic)
Sampling Tool MemGaze[25]: Intel PTWRITE with

trace output (timestamps, IPs)
Simulation Tools Dinero, DRAMsim3, Sniper
Benchmark suites used GAP, NPB, AMG, Sw4lite, miniVite
Trace Content Timestamps, instruction pointers,

virtual memory addresses, CPU IDs

However, Dinero is limited to single-core environments and
does not account for multi-core scenarios. To evaluate HOME’s
performance in multi-core environments, we utilized Sniper, which
supports multi-core and multi-threaded workloads. For this ex-
periment, we also compared HOME’s outputs with real hardware
results, as described in Section 5.1. Both HOME and Sniper were
configured with the same cache hierarchy parameters (summarized
in Table 4), with the number of threads set to 4. Hardware miss
rate data was collected using perf during execution on real hard-
ware systems. However, Sniper’s evaluation was limited to GAP
benchmarks due to compatibility constraints.

Figure 5 showcases the error rates of HOME and Sniper’s cache
models compared with real hardware results. As seen in the figure,
HOME exhibits lower error rates for L2 cache compared to Sniper,
with average error rates of 2.64% for HOME and 4.67% for Sniper.
This high accuracy at the L2 cache level can be attributed to the
higher number of accesses occurring in L2 cache, where the law of
averaging smooths out the effects of sampling drops in MemGaze-
generated traces. However, for L3 cache, the impacts of sampling
drops are more evident in HOME’s outputs, leading to error rates of
20.08% and 24.10% for workloads such as bfs and sssp, respectively.
On average, Sniper outperforms HOME at the L3 cache level with
an error rate of 4.67%, compared to HOME’s average error rate of
13.82%. This is primarily because Sniper collects every single cache
access trace accurately, while HOME uses interpolation techniques
to handle sampling drops, prioritizing computational efficiency over
full trace completeness. However, Sniper’s cycle-accurate approach
incurs significant computational overhead, as discussed in Section
5.4.

To evaluate the performance of HOME’s confidence conditions in
low-sample scenarios, we analyzed 19 applications from five bench-
mark suites (detailed in Table 3) against hardware-derived cache
miss data collected using perf. Figure 6 shows per-application error
rates for the L2 and L3 cache models together with the percentage
of trace samples captured by MemGaze. For clarity, we report two
averages: AWOCC (average without confidence conditions, i.e., us-
ing all traces) and AWCC (average with confidence conditions, i.e.,
excluding traces that failed the checks).

At the L2 level no application was filtered by the confidence con-
ditions; the maximum single-app error was 8.08% (the mg bench-
mark) and the average error (both AWOCC and AWCC) was 2.10%,

9

MEMSYS 2025, October 7–8, 2025, Washington, DC, USA Dhruv Gajaria and Andrés Márquez

0.00%

6.00%

12.00%

18.00%

24.00%

30.00%

L2 L3 L2 L3

HOME Sniper

%
 e

rro
r c

om
pa

re
d

to
 p

er
f

bc bfs cc pr sssp Average

Figure 5: L2 and L3 cache miss-rate error vs. hardware (perf)
for HOME and Sniper. Bars show mean error per level; error
computed as |model perf|/perf. Sniper captures all accesses
(cycle-accurate) and hence tends to be more accurate at L3
but is substantially slower; HOME uses interpolation and
confidence checks to trade some L3 fidelity for much higher
throughput (see Section 5.4).

indicating robust behavior of HOME’s L2model under our sampling
regimes.

At the L3 level, the confidence conditions pre-filtered five applica-
tions (cg, ep, is, sp, and sw4lite) before any L3 miss-rate analysis was
performed. These traces failed one ormore of the defined criteria (in-
sufficient cache warm-up—measured as total accesses or sampling-
density thresholds based on the MemGaze sampling ratio), so they
were excluded from AWCC. When these under-sampled traces are
nevertheless considered (AWOCC), their L3 errors are high (51.03%,
30.71%, 43.17%, 38.92%, and 12.00% respectively), which explains
why the confidence checks rejected them. Note that sw4lite is nu-
merically lower than the others but still failed the sampling criterion
and was therefore filtered.

Overall, average L3 errors dropped from 16.57% (AWOCC) to
9.92% (AWCC), demonstrating that the confidence conditions suc-
cessfully remove runs likely to produce unreliable L3 cache miss
estimates. The confidence conditions were configured to enforce
an operational upper bound on acceptable L3 error (30% in our
experiments); all traces that passed the confidence checks produced
L3 errors below this bound. When a trace fails confidence, we rec-
ommend increasing sampling density (merged or replicated runs)
or using targeted instrumentation for the affected code regions
rather than relying on the interpolated timing results.

5.3 Analysis of memory model
This section evaluates HOME’s memory-modeling accuracy by two
complementary comparisons: (1) a trace-driven comparison against
DRAMsim3, and (2) validation against real-hardware metrics col-
lected with perf. For the DRAMsim3 comparison we begin with
the same sampled MemGaze address/timestamp events for both
tools. These samples are processed with timestamp-scaling interpo-
lation and count rescaling and are passed through HOME’s cache
hierarchy; the event stream of L3->DRAM requests that HOME’s
L3 model produces (addresses observed in the sampled trace, with
interpolated timestamps) is then supplied to DRAMsim3. In other

words, DRAMsim3 consumes the exact L3->DRAM event stream
that HOME would see; therefore, differences in DRAM-level out-
puts reflect modeling choices (interval-based timeline handling in
HOME vs. cycle-accurate DRAM timing in DRAMsim3) rather than
input variability.

Table 5 reports percentage errors of HOME relative to DRAM-
sim3 across three metrics: access latency, inter-arrival latency, and
bandwidth. HOME matches DRAMsim3 closely for inter-arrival la-
tency and bandwidth (average errors 0.01% and 0.56%, respectively),
demonstrating that timestamp-scaling interpolation preserves the
temporal intensity needed for rate- and throughput-oriented met-
rics. By contrast, HOME exhibits a larger average error for ac-
cess latency (16.16%). This difference is expected: HOME uses an
interval-based modeling approach that advances memory state us-
ing completion times and delta timestamps, whereas DRAMsim3
applies cycle-accurate scheduling and updates every clock cycle.
Interval modeling is significantly faster but sacrifices the per-cycle
granularity required to match cycle-accurate latency in all cases,
particularly for workloads with fine-grained timing interactions or
where queueing/serialization effects dominate. Future work will
explore transaction-level refinements to improve latency fidelity
without reverting to full cycle-accurate costs [34].

Table 5: Percentage error of HOME relative to DRAMsim3 on
identical sampled inputs. Values showhow intervalmodeling
and temporal-interpolation preserve throughput-oriented
metrics (inter-arrival, bandwidth) but yield larger errors for
per-access latency (see text).

Benchmark Access La-
tency (%)

Inter-
arrival
Latency (%)

Bandwidth
(%)

amg 22.35 0.01 0.01
bc 23.34 0.01 0.12
bfs 4.77 0.00 1.07
bt 21.39 0.00 0.83
cc 15.41 0.00 1.33
cg 23.24 0.00 0.01
ep 24.76 0.00 5.87
ft 29.01 0.00 0.17
is 8.12 0.01 0.23
lu 2.00 0.00 0.11
mg 16.90 0.01 0.01
miniVite-v1 12.45 0.00 0.07
miniVite-v2 16.97 0.01 0.12
miniVite-v3 21.45 0.01 0.23
miniVite-v4 1.98 0.01 0.17
pr 21.26 0.02 0.03
sp 3.19 0.01 0.10
sssp 22.02 0.00 0.11
sw4lite 16.37 0.14 0.02
Average 16.16 0.01 0.56

We further validate HOME by comparing bandwidth utilization
(observed bandwidth divided by theoretical peak) across 19 appli-
cations. For hardware references, we collected total memory reads,

10

HOME: A Hierarchy-Oriented Memory Evaluation Framework for Fast Contention Analysis MEMSYS 2025, October 7–8, 2025, Washington, DC, USA

0.00%

1.00%

2.00%

3.00%

4.00%

0.00%

10.00%

20.00%

30.00%

am
g bc bfs bt cc cg ep ft is lu mg

mi
niv
ite
-V
1

mi
niv
ite
-V
2

mi
niv
ite
-V
3

mi
niv
ite
-V
4 pr sp

ss
sp

sw
4li
te

AW
OC
C
AW
CC

%
 o

f t
ra

ce
 s

am
pl

ed

%
 e

rro
r

L2 L3 Sample %

51.03% 30.71% 43.17% 38.92%

Figure 6: Per-benchmark L2 and L3 cache-miss error (bars) and MemGaze sampling% (trendline). AWOCC shows averages
including all traces; AWCC excludes traces failing confidence conditions (marked with dashed ellipsoids). The five benchmarks
filtered at L3 are listed in the text; filtering reduces mean L3 error from 16.57% to 9.92%.

0.00%

1.00%

2.00%

3.00%

4.00%

0.00%

10.00%

20.00%

30.00%

40.00%

am
g bc bfs bt cc cg ep ft is lu mg

mi
niv
ite
-v1

mi
niv
ite
-v2

mi
niv
ite
-v3

mi
niv
ite
-v4 pr sp

ss
sp

sw
4li
te

AW
OC
C
AW
CC

%
 o

f t
ra

ce
 s

am
pl

ed

%
 e

rro
r

BW_util Sample %

68.14% 58.13%

Figure 7: Memory bandwidth utilization (observed / theoretical peak) per benchmark: hardware (perf) vs. HOME, shown with
and without confidence condition filtering. Bars: per-benchmark utilization (HOME); green trendline: MemGaze sampling%
(right axis). Red ellipsoids mark traces rejected by HOME’s confidence checks (excluded from AWCC). Mean absolute errors:
AWOCC = 12.76%, AWCC = 7.33%.

writes, and execution time using perf; theoretical peak bandwidth
for each case was computed from the DRAM configuration param-
eters used in the trace-driven experiments (channels, DIMM width,
frequency). Because the physical test machine’s DIMM and channel
topology differed from the best-available DRAM timing parameters
we could find, HOME runs used a best-fit DRAM configuration
rather than an exact timing record of the hardware. In the hard-
ware baseline, we therefore report utilization relative to the real
machine’s peak bandwidth (as derived from its actual configuration)
while HOME uses the standardized target DRAM configuration for
the trace-driven comparison. These choices ensure that the trace-
driven HOME comparison isolates modeling differences, while the
hardware comparison (HOME vs perf) remains a direct, practical
validation of bandwidth utilization estimation. For brevity, we omit
per-benchmark DRAMsim3 bandwidth tables from the main text
since the bandwidth numbers for HOME and DRAMSIM3 were
quite similar.

Figure 7 compares per-benchmark utilization values from HOME
and the hardware baseline. Without applying confidence conditions
(AWOCC) the mean absolute error is 12.76%; after filtering traces
that fail the confidence checks (AWCC) the mean error falls to
7.33%. Confidence checks remove traces with insufficient sampling
density or inadequate cache warm-up (e.g., cg, ep, is, sp, sw4lite),
which otherwise present very large interpolation errors (for in-
stance, cg shows 68% error when used despite insufficient sam-
pling). Excluding these under-sampled application traces yields a
substantially lower average error, illustrating HOME’s accuracy
when interpolation assumptions hold.We also observed that DRAM-
sim3’s memory-bandwidth-utilization estimates are broadly similar
to HOME’s for these trace-driven inputs; for brevity, we omit the
per-benchmark DRAMsim3 results from Figure 7 and the main text.

11

MEMSYS 2025, October 7–8, 2025, Washington, DC, USA Dhruv Gajaria and Andrés Márquez

5.4 Performance analysis
In this subsection, we analyze the performance speedup achieved
by HOME compared to Sniper. In the previous subsection 5.2, we
observed that Sniper outperforms HOME in terms of L3 accuracy
rates, primarily because Sniper captures detailed and complete
traces for analyzing cache miss rates. However, this high accuracy
comes at the cost of significantly slower runtime, making Sniper
inefficient for larger workloads compared to HOME. Figure 8 il-
lustrates the speedup achieved by HOME over Sniper, showing an
average speedup of 26.8x, with a maximum speedup of 50.46x for
the pr benchmark.

For this analysis, we ran GAP benchmarks to generate and eval-
uate Kronecker graphs with a degree of 21. Over five applications,
Sniper required a cumulative execution time of 19.7 hours, whereas
HOME completed the same analysis in 45.46 minutes, demonstrat-
ing its computational efficiency. The runtime measured for HOME
includes all stages: binary instrumentation, trace collection, decod-
ing the traces, and analyzing them using memory hierarchy models.
Among these stages, the most time-consuming task for HOME was
address decoding, which is handled by MemGaze and utilizes perf.
Notably, instruction decoding—the stage that decompresses PT data
sampled during runtime—accounts for approximately 79% of the
total runtime for HOME across the five GAP benchmarks.

For Sniper, we configured the clock skew minimization barrier
parameter to 100, enabling it to group 100 events for faster analysis.
Reducing this parameter to 1 would have allowed Sniper to per-
form GEM5-like access-to-access analysis, but the computational
time required would have been significantly higher. In contrast,
HOME employs a different approach that avoids excessive gran-
ularity while still achieving meaningful access-to-access analysis
by leveraging Intel’s PT. Additionally, HOME mitigates the impact
of sample drops through interpolation techniques and confidence
conditions integration.

0

20

40

60

bc bfs cc sssp pr Average

Sp
ee

du
p

in
 (x

)

Figure 8: Speedup of HOME vs. Sniper on GAP experi-
ments (lower is better runtime). HOME achieves an average
speedup of 26.8× (Sniper timeout/overhead tradeoffs shown
in §5.4). Runtime includes instrumentation, trace decoding,
and model analysis.

6 DISCUSSION ON FINE-GRAIN CONTENTION
ANALYSIS

HOME has proven effective for macro-level analysis, enabling re-
searchers to evaluate contention and bottlenecks across thememory
hierarchy with high computational efficiency. However, extending
HOME to support micro-level contention analysis remains a key
area for future work. Micro analysis often requires a higher sample
ratio, which can be achieved by collecting and merging data from
multiple runs. This approach would allow HOME to reconstruct
memory access pressure with greater fidelity in smaller, critical
regions of the workload.

To target specific regions of the application’s memory behavior,
an IPC-based interpolation algorithm is proposed as a refinement
to the existing linear interpolation techniques. IPC (instructions-
per-cycle) focuses on capturing the fine-grained fluctuations in
memory access patterns across smaller time slices and would mit-
igate errors introduced by sampling drops in applications with
variable execution phases. Furthermore, incorporating confidence
conditions based on application access type distributions (e.g., ran-
dom, strided, constant accesses) as well as instruction mixes (e.g.,
load/store-heavy phases or compute-intensive operations), would
allow HOME to model memory contention more accurately. Instruc-
tion mix randomness can exacerbate the impacts of sampling drops,
and adapting confidence conditions to include these distributions
would reduce inaccuracies in smaller workload regions.

Another avenue for improvement involves the use of call graph
information to guide targeted sampling and interpolation during
fine-grained analysis. By identifying critical functions or regions
contributing to memory bottlenecks, HOME could focus its sam-
pling and trace collection on these high-impact areas, improving
data quality with minimal performance overhead. Through these
enhancements—higher sampling ratios, IPC-based interpolation,
adaptive confidence conditions, and targeted sampling—HOME
could extend its applicability to fine-grained analyses, enabling
deeper insights into contention dynamics across HPC applications.

7 CONCLUSION
This work introduces HOME (Hierarchy-Oriented Memory Evalu-
ation), a lightweight framework that combines low-overhead PT-
based sampling (via MemGaze) with temporal interpolation (times-
tamp scaling), configurable cache/DRAM models, and runtime con-
fidence checks to provide fast, interpretable contention diagnos-
tics. By estimating time-varying access pressure from sparse sam-
ples (rather than attempting to recreate unobserved per-access se-
quences), HOME occupies a practical point in the fidelity–overhead
design space: it preserves time- and address-aware signals where
they matter while avoiding the cost of cycle-accurate replay. In our
evaluation across 19 applications from five suites, HOME attains
average errors of 2.10% (L2), 9.92% (L3 with confidence filtering),
and 7.33% (bandwidth with confidence filtering) relative to hard-
ware baselines, while achieving roughly 26.8× speedup over Sniper
for the GAP experiments.

We also documented limitations and failure modes: timestamp-
scaling interpolation assumes approximately random thinning of
the event stream and can fail for extremely short, synchronized
bursts or very low sampling ratios; confidence conditions detect

12

HOME: A Hierarchy-Oriented Memory Evaluation Framework for Fast Contention Analysis MEMSYS 2025, October 7–8, 2025, Washington, DC, USA

such cases and exclude them from timing-sensitive analyses. HOME’s
access-latency estimates intentionally trade some per-cycle fidelity
for performance (leading to the observed gap vs. cycle-accurate
DRAMsim3 in access-latency), and futureworkwill explore transaction-
level refinements and IPC-aware interpolation to narrow this gap.

REFERENCES
[1] Ayaz Akram and Lina Sawalha. 2016. × 86 computer architecture simulators:

A comparative study. In 2016 IEEE 34th International Conference on Computer
Design (ICCD). IEEE, 638–645.

[2] Todd Austin, Eric Larson, and Dan Ernst. 2002. SimpleScalar: An infrastructure
for computer system modeling. Computer 35, 2 (2002), 59–67.

[3] Shouvik Bardhan and Daniel A Menascé. 2014. Predicting the effect of memory
contention in multi-core computers using analytic performance models. IEEE
Trans. Comput. 64, 8 (2014), 2279–2292.

[4] Javier Barrera, Leonidas Kosmidis, Hamid Tabani, Jaume Abella, and Francisco J
Cazorla. 2022. Contention tracking in GPU last-level cache. In 2022 IEEE 40th
International Conference on Computer Design (ICCD). IEEE, 76–79.

[5] Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark
suite. arXiv preprint arXiv:1508.03619 (2015).

[6] NAS Parallel Benchmarks. 2006. Nas parallel benchmarks. CG and IS (2006).
[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1–7.

[8] Anastasiia Butko, Florent Bruguier, Abdoulaye Gamatié, Gilles Sassatelli, David
Novo, Lionel Torres, and Michel Robert. 2016. Full-system simulation of big. little
multicore architecture for performance and energy exploration. In 2016 IEEE
10th international symposium on embedded multicore/many-core systems-on-chip
(MCSOC). IEEE, 201–208.

[9] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
In Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. 1–12.

[10] Milind Chabbi and John Mellor-Crummey. 2016. Contention-conscious, locality-
preserving locks. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 1–14.

[11] Sanjeev Das, JanWerner, Manos Antonakakis, Michalis Polychronakis, and Fabian
Monrose. 2019. Sok: The challenges, pitfalls, and perils of using hardware perfor-
mance counters for security. In 2019 IEEE symposium on security and privacy (SP).
IEEE, 20–38.

[12] Andreas De Blanche and Thomas Lundqvist. 2015. Addressing characterization
methods for memory contention aware co-scheduling. The Journal of Supercom-
puting 71, 4 (2015), 1451–1483.

[13] Alexandre Denis, Emmanuel Jeannot, and Philippe Swartvagher. 2023. Predicting
Performance of Communications and Computations under Memory Contention
in Distributed HPC Systems. International Journal of Networking and Computing
13, 1 (2023), 62–91.

[14] Jan Edler. 1994. Dinero IV: Trace-driven uniprocessor cache simulator. http://www.
cs. wisc. edu/˜ markhill/DineroIV (1994).

[15] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. 2012.
Bandwidth bandit: Understanding memory contention. In 2012 IEEE International
Symposium on Performance Analysis of Systems & Software. IEEE, 116–117.

[16] Pouya Esmaili-Dokht, Francesco Sgherzi, Valeria Soldera Girelli, Isaac Boixaderas,
Mariana Carmin, Alireza Monemi, Adria Armejach, Estanislao Mercadal, German
Llort, Petar Radojković, et al. 2024. A mess of memory system benchmarking, sim-
ulation and application profiling. In 2024 57th IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 136–152.

[17] Stijn Eyerman,WimHeirman, Kristof Du Bois, Joshua B Fryman, and IbrahimHur.
2018. Many-core graph workload analysis. In SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 282–292.

[18] Sayan Ghosh, Mahantesh Halappanavar, Antonino Tumeo, Ananth Kalyanara-
man, and Assefaw H Gebremedhin. 2018. miniVite: A graph analytics benchmark-
ing tool for massively parallel systems. In 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS).
IEEE, 51–56.

[19] Valéria S Girelli, Francis B Moreira, Matheus S Serpa, Danilo Carastan-Santos,
and Philippe OA Navaux. 2021. Investigating memory prefetcher performance
over parallel applications: From real to simulated. Concurrency and Computation:
Practice and Experience 33, 18 (2021), e6207.

[20] Shingo Igarashi, Takuro Fukunaga, and TakuyaAzumi. 2021. Accurate contention-
aware scheduling method on clustered many-core platform. Journal of Informa-
tion Processing 29 (2021), 216–226.

[21] Intel Corporation. 2023. Intel® 64 and IA-32 Architectures Software Developer’s
Manual: Volume 3 (System Programming Guide). https://www.intel.com/content/

www/us/en/developer/articles/technical/intel-sdm.html Section 36: Intel® Pro-
cessor Trace.

[22] Javier Jalle, Mikel Fernandez, Jaume Abella, Jan Andersson, Mathieu Patte, Luca
Fossati, Marco Zulianello, and Francisco J Cazorla. 2016. Contention-aware
performance monitoring counter support for real-time MPSoCs. In 2016 11th
IEEE Symposium on Industrial Embedded Systems (SIES). IEEE, 1–10.

[23] Matthias Jung, Kira Kraft, Taha Soliman, Chirag Sudarshan, Christian Weis, and
Norbert Wehn. 2019. Fast validation of DRAM protocols with timed petri nets.
In Proceedings of the International Symposium on Memory Systems. 133–147.

[24] Konstantinos Kanellopoulos, Konstantinos Sgouras, F Nisa Bostanci, Andreas Kos-
mas Kakolyris, Berkin Kerim Konar, Rahul Bera, Mohammad Sadrosadati, Rakesh
Kumar, Nandita Vijaykumar, and Onur Mutlu. 2025. Virtuoso: Enabling fast and
accurate virtual memory research via an imitation-based operating system simu-
lation methodology. In Proceedings of the 30th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2. 1400–1421.

[25] Ozgur O Kilic, Nathan R Tallent, Yasodha Suriyakumar, Chenhao Xie, Andrés
Marquez, and Stephane Eranian. 2022. MemGaze: Rapid and Effective Load-
Level Memory Trace Analysis. In 2022 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 484–495.

[26] Johannes Langguth, Xing Cai, and Mohammed Sourouri. 2018. Memory band-
width contention: Communication vs computation tradeoffs in supercomputers
with multicore architectures. In 2018 IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS). IEEE, 497–506.

[27] Lawrence Livermore National Laboratory. 2017. AMG: Algebraic Multigrid
Benchmark (Code-LLNL-738-322). https://github.com/LLNL/AMG. Accessed:
2025-06.

[28] Shang Li, Dhiraj Reddy, and Bruce Jacob. 2018. A performance & power compar-
ison of modern high-speed dram architectures. In Proceedings of the International
Symposium on Memory Systems. 341–353.

[29] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce Jacob. 2020.
DRAMsim3: A cycle-accurate, thermal-capable DRAM simulator. IEEE Computer
Architecture Letters 19, 2 (2020), 106–109.

[30] Biswadip Maity, Bryan Donyanavard, and Nikil Dutt. 2020. Self-aware memory
management for emerging energy-efficient architectures. In 2020 11th Interna-
tional Green and Sustainable Computing Workshops (IGSC). IEEE, 1–8.

[31] N Anders Petersson and Björn Sjögreen. 2015. Wave propagation in anisotropic
elastic materials and curvilinear coordinates using a summation-by-parts finite
difference method. J. Comput. Phys. 299 (2015), 820–841.

[32] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microar-
chitectural simulation of thousand-core systems. ACM SIGARCH Computer
architecture news 41, 3 (2013), 475–486.

[33] Smruti R Sarangi, Rajshekar Kalayappan, Prathmesh Kallurkar, Seep Goel, and
Eldhose Peter. 2015. Tejas: A java based versatile micro-architectural simulator.
In 2015 25th International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS). IEEE, 47–54.

[34] Lukas Steiner, Matthias Jung, Felipe S Prado, Kirill Bykov, andNorbertWehn. 2020.
DRAMSys4. 0: a fast and cycle-accurate systemC/TLM-based DRAM simulator.
In Embedded Computer Systems: Architectures, Modeling, and Simulation: 20th
International Conference, SAMOS 2020, Samos, Greece, July 5–9, 2020, Proceedings
20. Springer, 110–126.

[35] Sukeshini, Priyanka Sharma, Mohit Ved, Janaki Chintalapti, and Supriya N Pal.
2021. Big data analytics and machine learning technologies for HPC applica-
tions. In Evolving Technologies for Computing, Communication and Smart World:
Proceedings of ETCCS 2020. Springer, 411–424.

[36] Wei Wang, Tanima Dey, Jack W Davidson, and Mary Lou Soffa. 2014. Dramon:
Predicting memory bandwidth usage of multi-threaded programs with high
accuracy and low overhead. In 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 380–391.

[37] Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. 2020. Contention-
aware application performance prediction for disaggregated memory systems.
In Proceedings of the 17th ACM International Conference on Computing Frontiers.
49–59.

[38] Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. 2022.
Profiling and controlling I/O-related memory contention in COTS heterogeneous
platforms. Software: Practice and Experience 52, 5 (2022), 1095–1113.

13

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/LLNL/AMG

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Contention modeling using simulations
	2.2 Performance counters and lightweight monitoring
	2.3 Traces and emerging low-overhead sampling

	3 Proposed Approach
	3.1 Trace collection using MemGaze
	3.2 HOME architecture

	4 Error mitigation
	4.1 Interpolation algorithm
	4.2 Confidence conditions

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Analysis of cache hierachy models
	5.3 Analysis of memory model
	5.4 Performance analysis

	6 Discussion on fine-grain contention analysis
	7 Conclusion
	References

