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Abstract

In contemporary general-purpose graphics processing units (GPGPUs),
the continued increase in raw arithmetic throughput is constrained by
the capabilities of the register file (single-cycle) and last-level cache
(high bandwidth), which require the delivery of operands at a cadence
demanded by wide single-instruction multiple-data (SIMD) lanes. En-
hancing the capacity, density, or bandwidth of these memories can
unlock substantial performance gains; however, the recent stagna-
tion of SRAM bit-cell scaling leads to inequivalent losses in compute
density.

To address the challenges posed by SRAM’s scaling and leakage
power consumption, this paper explores the potential CMOS+X inte-
gration of amorphous oxide semiconductor (AOS) transistors in capac-
itive, persistent memory topologies (e.g., 1T1C eDRAM, 2T0C/3T0C
Gain Cell) as alternative cells in multi-ported and high-bandwidth
banked GPGPU memories. A detailed study of the density and energy
tradeoffs of back-end-of-line (BEOL) integrated memories utilizing
monolithic 3D (M3D)-integrated multiplexed arrays is conducted,
while accounting for the macro-level limitations of integrating AOS
candidate structures proposed by the device community —an aspect
often overlooked in prior work. By exploiting the short lifetime of
register operands, we propose a multi-ported AOS gain-cell capable of
delivering 3x the read ports in 76% of the footprint of SRAM with >70%
lower standby power, enabling enhancements to compute capacity,
such as larger warp sizes or processor counts. Benchmarks run on a
validated NVIDIA Ampere-class GPU model, using a modified version
of Accel-Sim, demonstrate improvements of up to 5.2x the perfor-
mance per watt and an average 8% higher geometric mean instruction
per cycle (IPC) on various compute- and memory-bound tasks.
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1 Introduction

Graphics processing units (GPUs) have become pivotal to server
scaling, as noted by NVIDIA’s 427% increase in data-center rev-
enue from FY24 to FY25 [50]. Though seminal engineering efforts
of the GPU targeted the acceleration of raster graphics and video
workloads [75] (as their namesake implies), their combination of
high-bandwidth Single-Instruction-Multiple-Data (SIMD) execu-
tion units (stream multiprocessors, SMs) and on-chip memories
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Figure 1: Scaling of GPU shared memory, registers, L1, and
last level cache (LLC) vs. corresponding SRAM cell in NVIDIA
architectures

have proved ideal for highly parallelized processing of numerically
intensive floating-point arithmetic [17], leading to their ubiquity
in the processing of modern AI/ML training and inference and
large-scale scientific computing.

The performance of a GPU is often bottlenecked by the available
bandwidth, capacity, and die area of on-chip memory subsystems
[68]. In workloads with low arithmetic intensity, SMs frequently
idle while awaiting memory accesses during execution, resulting
in underutilization of execution units [13]. Scaling the SM count
intensifies contention for the shared L2 cache, while the number of
resident warps per SM is capped by the size of its register file (RF)
and the per-thread register allocation. Raising the warps-per-SM
budget within a fixed die area, therefore, trades off against the total
number of SMs that can be integrated [1]. Since modern GPUs
support many registers per thread, the compiler directs operand
spillover into the L1 data cache (L1D) when register file capacity is
exhausted, imposing increased traffic and occupancy pressure on
the slower L1D [19]. Tasks such as backpropagation and blacksc-
holes, which demonstrate low intra-warp divergence, benefit from
higher threads per warp; however, the number of operands de-
manded per cycle (and hence the required ports or banks) scales
linearly with the warp size [45]. The imposition of these memory
requirements has inevitably led to the sharp rise in cumulative
memory capacity (especially that of the register files and the L2)
in modern GPUs by over two orders of magnitude from NVIDIA’s
Fermi (2010) to Blackwell (2024) architectures [51], while the den-
sity of the high density SRAM (HD-SRAM) bit cell has only climbed
by one order of magnitude (Fig. 1). This disparity is the key indi-
cation that GPU memory scaling is driven by architectural
demand, not fundamental SRAM densification, and as such, is
limited by SRAM technology scaling constraints.

Recent advances in semiconductor fabrication have enabled the
integration of active devices, such as non-volatile memories, in
the back-end-of-line (BEOL) stack. By relying on low-temperature
(<400 °C) deposition steps, multiple tiers of memory can be fabri-
cated above the front-end-of-line (FEOL) logic without degrading



the underlying CMOS transistors [61]. Among the most promis-
ing options are amorphous-oxide-semiconductor (AOS) transistors,
which combine ultra-low off-state leakage (< fA/um; three to four
orders of magnitude lower than Si MOSFETs) with adequate elec-
tron mobility (~ 20 cm?®/V-s) [76]. Leading research institutes, such
as IMEC, have demonstrated functional prototypes based on AOS
2TOC arrays [64], and major foundries, including TSMC, have also
reported AOS 1T1C macros with high yield [8]. Prior modelling stud-
ies show that AOS 2T0C memories can outperform SRAM in TPU
buffers [40], boost energy efficiency in digital compute-in-memory
(DCIM) accelerators [38], [32] and deliver ~4.5x higher density (at
256 MB) with nominal performance improvements when deployed
as a shared CPU L3 cache [73]. We hypothesize that, in gain-cell
configurations (§4.2, §5) with small storage node capacitance and
decoupled read/write paths, the speed of AOS gain cell memories
may be sufficient to serve as single-cycle register memories in
GPUs with lower base clock frequency than their CPU counterparts
[11]. Moreover, to meet the needs of memory-bound tasks, several
AOS-based candidates, such as BEOL-compatible 1T1C eDRAM
and 2T0C/3T0C gain cell topologies, offer a practical avenue to
enhance the overall bandwidth and density of the large shared L2.
To understand the viability of these respective memory candidates,
a critical evaluation of their achievable density, bandwidth, and
energy efficiency is required under constrained design exploration
(e.g., imposed by sneak-path currents, increased parasitic capaci-
tance, IR drop, lower mobility), which must be well-characterized.
In performing this, this paper makes the following contributions:

o Using Accel-Sim [28], we evaluate the lifetime of operands
in GPU register files to determine the retention require-
ments of register memories. Furthermore, we propose a
stacked multi-read port AOS gain-cell (NTOC) that enables
3x the read ports in ~76% of the footprint of a comparative
8T-SRAM bank.

e Using NS-cache [73], we analyze the limitations in AOS
2T0C array scaling under sneak path and IR drop con-
straints studied in SPICE, 1T1C access time and sense mar-
gin tradeoffs, and 3TOC gate loading and leakage under
read path threshold voltage. We demonstrate that (1) the
fmax limitations on peak bandwidth of AOS 1T1C banks
are easily overcome through increased partitioning, (2) the
AOS 3T0C speed vs. leakage tradeoffs make it unfavorable
for high-speed cache.

o We evaluate highly banked AOS L2 caches at iso-footprint
in a modified Accel-Sim integrated on a verified NVIDIA
Ampere RTX 3070 model. Our benchmarking reveals that
AOS 1T1C integration can enable up to ~5.1X the perfor-
mance per watt and ~6.1X memory density over a baseline
HD-SRAM L2 cache.

2 Background
2.1 GPGPU Organization

Modern standalone GPUs comprise tens to hundreds of stream-
ing multiprocessors (SMs), each hosting a programmer-controlled
shared memory, private level 1 data (L1D) cache, register files
(operand, last result, and main), and wide Single-Instruction-Multiple-
Thread (SIMT) execution lanes containing arithmetic (ALU) and
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Figure 3: Organization of a memory partition, containing L2
slices, and refresh timing model incorporated in Accel-Sim

special-function units (SFU) (Fig. 2). When a kernel is launched,
groups of threads in cooperative-thread arrays (CTA) or thread
blocks are mapped to SMs, which are then partitioned into warps.
Warps are time-multiplexed by the scheduler and executed in lock-
step. To feed these wide SIMT lanes, each SM’s register file contains
tens of thousands of registers (~65k/SM in Blackwell), which are
highly banked and, in smaller RFs, multi-ported (e.g., NVIDIA’s
Fermi architecture used 3-read/1-write (3R1W) in its operand regis-
ter file (ORF) [19]).

Swaths of on-chip data are interleaved across LLC banks (slices),
which are distributed across numerous memory partitions (Fig. 3).
The memory partitions are connected to SMs through an on-chip
interconnection network; each partition contains L2 slices, request
schedulers, and a memory controller for off-chip DRAM (GDDR6X
or HBM) [3]. In Ampere-class GPUs, there are eight partitions, each
housing two L2 banks [49]. The L2 employs a write-back policy
with respect to global memory [62].

2.2 Organization of a Memory Bank

Memory banks (slices) are topologically organized into a matrix of
subarrays interconnected by global routes that comprise address,
broadcast, and distributed data lanes [59]. These global routes, some-
times referred to as the global data line (GDL), often employ an
H-Tree routing topology in RC-based memory simulators. When a
transaction is received, it is routed over the GDL to a set of ‘active’
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Figure 4: Organization of a monolithic-3D (M3D) bank/slice.
Active subarray rows (Ngs,) and columns (Ngs.) often called
a sub-bank

subarrays within each column (Ngg¢) and row (Ngs), which each
deliver a sub-block of the aggregate block size of the bank. In some
contexts, such as the nomenclature adopted by CACTI [74], this
group of concurrently activated subarrays (Ngsc x Nggr) is referred
to as a sub-bank. The number of transactions that can be issued to
a bank per cycle is limited by the number of ports (Np); however,
with pipelining, it is possible to operate sub-banks in parallel if
their activations are tracked, though they cannot be issued concur-
rently if Nj = 1. Each subarray is composed of a pre-decoder and
a set of mats, which operate concurrently. Based on the operation
concurrency, the maximum bandwidth (BWB) for the bank with
split read/write paths in a uniform cache access (UCA) model can
be approximated as:

Whlock Whlock 1)

tprecharge t tmat,read  mat,write

BWp ~ Np X max

Where Wpjock is the block width per bank, and frecharge is the
precharge latency. This dependence on mat latency makes cell ac-
cess time a critical memory parameter, as discussed in §5.2. A mat
contains an array of memory cells, and local peripherals used to
drive data in and out of the array, typically decoders, pre-chargers,
write drivers, sense-amplifiers (SAs), multiplexers (bitline, sense-
amp), and level-shifters (when high-voltage swings are employed).
We adopt a monolithic 3D (M3D) mat design in which each level
is individually accessed using a 3D decoder that drives a set of
transmission gates, allowing access to a specified level in the BEOL
memory through the decoder/level-shifter drivers (Fig. 4). This
3D-decoded access scheme integrates a level-multiplexer and mux-
decoder that allows BL sharing of FEOL SAs. In an M3D design,
peripheral circuits are tucked under the memory array and con-
nected by BEOL MIVs, which offer higher I/O density than TSVs
[38].

2.3 Oxide Semiconductor Transistors in the
BEOL

Amorphous oxide semiconductors (AOS) such as indium oxide
(Inz03) are a class of semiconducting oxides that exhibit moderate
electron mobility (~20 cm?/V-s), in which conduction is primarily
governed by donor-like defects (Np) such as oxygen vacancies.
Dopants such as germanium (Ge), tin (Sn), or tungsten (W) are
used when InpOs3 is employed as a channel material to curb the
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Figure 5: Double-gated IWO transistor geometry, active
monolithic 3D integration of devices above the FEOL

formation of defects, thereby improving its stability and increasing
its threshold voltage (V;) [57]. Leading foundries (TSMC, Samsung)
and research institutes (IMEC) are actively working on AOS chan-
nel materials for the integration of BEOL memories [70],[4],[56].
Demonstrations of stacked AOS transistors have been characterized
in up to ten monolithic tiers and scaled to 10 nm gate length (L)
[78],[16].

3 Simulation Methodology

To build a cohesive evaluation of the design, technology, and system-
level integration of BEOL-compatible AOS memories (Fig. 5), we
employ a precise quantitative study that utilizes finite-element
physical models, SPICE simulation, and cycle-accurate GPU simu-
lation. Modeling of lab-measured double-gated (DG) long-channel
W-doped InzO3 (IWO) transistors is performed in Sentaurus Tech-
nology CAD (TCAD), from which a scaled 7 nm technology model is
developed (Lg = 15 nm, Loy = 30 nm), and measured (I;-Vys, I3-Vys,
and Cyq/Cyq/Cys parameters) for varying donor-defect densities
(Np). Extracted parameters are utilized to develop ML-assisted
compact models [9] used in subsequent SPICE simulation, while
Si-CMOS reference circuits are built with the ASAP7 PDK [12].
NS-Cache [73] is utilized to conduct an exhaustive search of the
power, performance, and area (PPA) of various bank and subarray
configurations presented in this work, using 7 nm FinFET predic-
tive libraries. A baseline HD-SRAM cell of 0.0262 ym? is used based
on the advanced foundry 7 nm platform technology [10]. Accel-
Sim/GPGPU-Sim’s verified NVIDIA Ampere RTX3070 model is
used for system performance evaluation. We extend Accel-Sim’s
memory-partition timing to incorporate AOS refresh overheads,
enabling cycle-accurate assessment of their impact on kernel exe-
cution (Fig. 3).

4 Scaling Register Files, CTAs, and Warps
4.1 On the Lifetime of Operands

The GPU register file must be able to deliver up to two source
operands and one destination per thread for each warp-wide in-
struction within a single cycle (~1 ns in NVIDIA Volta to Hopper
architectures) [43]. Consequently, the underlying register mem-
ories must (1) operate at high speed (~sub-nanosecond), and (2)
be heavily banked or multi-ported to service multiple read/write
requests concurrently. In some cases, (2) is taken to an extreme, as
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illustrated by the Intel Itanium microprocessor’s 12R10W register
file [18]. Capacitive memories that require a refresh operation seem
ill-suited as a register memory, as refresh operations temporar-
ily remove a bank from service, thereby hindering the high-speed
requirement. Nevertheless, this has not impeded the proposal of
eDRAM register memories in the literature, as seen in Si 3T1D [27]
and FD-SOI 4T0C [20] cells. GainSight [36] argues that the key to
understanding a persistent memory’s suitability for a level in the
memory hierarchy lies in the lifetime of data blocks (i.e., how long
data is retained and utilized). Using Accel-Sim, we track the lifetime
of registers in each SM, as defined by GainSight (Fig. 6a), on a set
of randomly selected benchmarks from Rodinia [7]. We find that
over 99% of register operands are overwritten or evicted within
10° cycles (~100 us on a 1 GHz SM clock). Although this may be
beyond the retention of a gain cell on an Si or FD-SOI platform (~6
us) [20], it is far below the achievable retention times in AOS gain
cells, which enable retention times of (milli)seconds through low
leakage.

4.2 Alternative Paths to Multi-Porting

Multi-porting, which enables multiple accesses per cycle to a mem-
ory bank, is often employed in register files in both multi-core
CPUs and GPUs. Multi-porting may be realized through several
means: banks can be replicated [33], time-multiplexed on a faster
clock domain [25], or virtually multi-ported through banking (at the
cost of bank stalls during contention). The following study places
particular emphasis on cell-level multi-porting, as (1) the speed
of AOS memories is lower than Si (lower mobility), (2) the read
and write paths in a gain cell are intrinsically bifurcated, and (3)
leveraging M3D-stacking opens the opportunity for compact means
of multi-porting layout. In SRAM, cell-level multi-porting (MP) can
quickly become unfavorable due to interconnect congestion and
increased transistor counts (~4T per write port and 2T per read
port) that exponentially inflate cell size (~O(N; IZ,)) [48]; nevertheless,
cell-level MP is still employed in CPUs with modest register counts
to meet high speed single-cycle latency targets, (e.g., IBM Power &
Intel Itanium [18],[34]). Because the GPU ORF employs additional
read ports, and kernel register accesses are read-heavy (Fig. 6b), we
focus on read multi-porting. Although additional write ports in a
gain cell only require one transistor, the overhead of level shifting
on write paths [73] imposes significant area penalties for duplicated
periphery.
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In Fig. 7a, we illustrate a conventional SRAM with split read (2T)
and write paths (bidirectional), extrapolated from a 10T-derived
SRAM design in [38], and our proposed AOS (DG-IWO) gain cell
with NR1W ports. Fig. 7c and 7d illustrate the layout of each cell.
For 7 nm BEOL design rules, we adopt the N7 metal-x (My, 40 nm)
and metal-y (M, 76 nm) metallization pitches discussed in [47], an
MIV pitch (60 nm) discussed in [41], as well as the CPP (54 nm) and
fin pitch (27 nm) matching the foundry’s 7 nm platform technology
[10]. We assume the utilization of up to five My and five My, layers.
Because the number of stacked tiers in the AOS gain cell scales with
the port count, Fig. 7c depicts abstract “functional” metal layers,
and metallization limits are analyzed in further sections. Under
these rules, we estimate that an 8T (1R1W) SRAM cell consumes
33.2% more area than a 6T SRAM cell, closely resembling the ~30%
footprint increase observed in IBM’s 65 nm PD-SOI process [6]. In
both cells, the transconductance of a read transistor (R;) is used to
sink current from the pre-charged read-bitline (RBL) based on the
stored value (SN in the gain cell, Q in the SRAM). For the gain cell,
this operation requires applying a differential voltage to the Vg of
the selected cell by driving the RWL to V. In contrast, in SRAM, a
pulse of Vdd is applied to the gate of the read-gating (R¢) transistor,
allowing the current to sink (Fig. 7b). A challenge posed by each read
port in SRAM is that each read path adds additional subthreshold
leakage from the precharged RBL, as a potential difference exists
across each 2T read path. On the contrary, both the RWL and
RBL (attached at the read port source and drain) are peripherally
controlled in the 1T read path of the MP gain-cell; thus, leakage is
suppressed, and static power can be derived from the cell retention:

Csn AVZ
—= SN NTOC, 1T Read Port @)

Ptatic :
ret

Where Cgy is the storage node capacitance, AVsy is the change
in stored voltage before a refresh is issued, and tret is the retention
period. In [73], the trade-off between retention and access time is
discussed in an IWO 2T0C using the V;, and the hold/boost voltage
(Vhold> Vboost)s following which we study parameters of a cell with
an optimized R; width (WRa) of 150 nm, a write transistor (W) with
a nominal width (Wyya) of 30 nm, aiming for a write-access time
(twr) of 400 ps, tret of 10 ms (~100x requirement in §4.1), V14 of
-0.4 V and Vj,04t 0f 1.2 V. The Cyq of 3 R; dominates Cs;, and tyr
is inversely proportional to write current (Iy,), which scales with
Wi 4. Therefore, to preserve high write speed as read ports (Npr)
are added, Wyy 4 is widened in proportion to Npg, increasing both
cell size and static power (Fig. 8a and 8b). Additionally, since the
pitch of the upper metallization is relaxed (~18x the pitch of M),
cell stacking reaches a ceiling with Npr = 3, resulting in a sharp
increase in footprint as two read transistors are integrated into
each level to minimize cell area when the number of fine-pitch
metallization tiers becomes a limitation. Nevertheless, we find that
an NR1W AOS gain cell consumes over four orders of magnitude
less standby power than SRAM, while occupying a smaller footprint.

An additional benefit of multi-porting AOS gain-cells can be
elucidated from the theory presented for split-gated AOS transistors
[58]. It is posited that the capacitive coupling phenomenon in AOS
2T0C gain cells, which refers to the modulation of the storage node
voltage (VsN) caused by pulsing the BL/WL voltage, is proportional
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connectivity

to the ratio of all parasitically coupled capacitances to the storage
node, imposed by the charge neutrality condition. This modulation
reduces the sense margin and heightens read disturbance. However,
as Npp is increased, so too is the number of capacitances coupled
to the SN, leading to a theoretical 4x reduction in read capacitive
coupling in 4R1W over 1R1W:

AV o LAVWWL
Wiva + 2WRa Np (3)
Wra
AVRwL

- Wiwa + 2WRa Np
In Fig. 8c, we plot the theoretical reduction in RBL/RWL coupling
and the simulated coupling measured in SPICE as a function of the
number of read ports. In simulation, the reduction measured in
4R1W is closer to 3x. Coupled with a split-gated AOS transistor ge-
ometry, the multi-porting of AOS gain cells provides an avenue for
suppressing capacitive coupling without requiring high secondary
gate bias voltages.

4.3 Macro-Level Performance, Power, and Area
Before evaluating the performance of NR1W cells at the bank level,
we first examine the intrinsic cell-level limitations imposed by the
single-transistor (1T) read port of the AOS gain cell, which places
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Figure 8: (a) Cell size of MP memories, (b) MP cell standby
power, and (c) MP AOS RWL/RBL coupling, as a function of
read ports

constraints on the allowable memory array dimensions. In the
following, a subscript s denotes selected lines/cells, and a subscript u
denotes unselected lines/cells in the same port. (1) IR Drop: Because
the RWL; is used to sink current from RBLg when the SN stores a
‘1, the current must travel through the entire RWL; to the driver
(sink), creating a voltage divider effect that reduces the Vgs of Rs,
thus limiting worst-case read speed as the number of columns (N¢])
increases. (2) Sneak Path: During the read-out of a ‘1, the RBL;
discharges over Rs onto RWLg; however, each RWL,, is held at
Vdd, thus leading to a reverse polarity AV, over each Ry, which
in the worst case (i.e., when each SN stores ‘1’) causes RBLg to
prematurely settle before a sufficient read margin (RM) can develop
(Fig. 9a), thereby limiting the number of rows (Nrow). To quantify
these effects in the upper limit, we simulate the read port of a 5R1IW
cell (for sizing) with an IR drop imposed by N, = 512 over varying
Niow and V4, in the worst-case column data pattern of all ‘1’s (Fig.
9b). Read margin is measured as the Vgpp, drop between ‘0’ and ‘1’
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stored at the SN; we track (i) the peak RM, (ii) the time at which RM
saturates and (iii) if/when the RM crosses the 200 mV level required
for a 100 mV sense threshold. In the literature, the conventional
guidance for architecting an AOS GC read port is to use a lower V;
than the write port counterpart, since this will increase sink current
for an increased Crpy, (§5.2.1) [73], [52].[55]. However, we refine
this view: in cases with very few rows (i.e., Nyow = 64), a lower
Vi does accelerate read speed. However, as Nyow is increased, this
relationship quickly becomes parabolic, and a higher V; is required
to curb read failure caused by sneak path leveling. From this, we
set a maximum Nyoyw of 64 (extendible to 128 if a folded BL layout
is used [65]) as the upper boundary.

In NVIDIA’s Fermi architecture, each MRF bank has a capacity
of 8kB, each 16B wide with 32b per register [19]. We utilize the
findings from the prior section in NS-Cache to model 8kB multi-
ported SRAM and AOS gain-cell banks with a 128-bit Wy We
constrain the random cycle time (RCT) of each bank to 750 ps and
exhaustively sweep design points with up to 8x8 subarrays per
bank and mats per subarray, as well as up to 2 M3D integrated tiers
of memory (N7 ). The outcomes (area, static power, and dynamic
energy consumption) as a function of Npg are plotted in Fig. 10a,
for the minimum area 8 kB bank configuration under timing and
sizing constraints. With a single BEOL tier, an AOS 2R1W bank can
be placed in relatively the same footprint of an equivalent IR1TW
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8T SRAM bank, and under the case that two tiers of memory can
be integrated, a 3R1W AOS GC bank using cell-level multi-porting
can integrated into the space if a 1IR1W SRAM bank at ~0.76x in
footprint without sacrificing RCT. Reductions in static power are
not as striking as at the cell level, owing to the observation in [73]
that increased capacitance of AOS devices necessitates larger dri-
vers to optimize latency, thus increasing the leakage of peripheral
circuits, however the static power can be dramatically reduced by
72.3%-79.1% over SRAM, significant considering the static power of
register files is considered to consumer ~17% of SM static power
in NVIDIA’s Volta GPUs [21]. The key drawback, however, is that
the dynamic energy consumption, especially for write operations
in the AOS gain-cell, is often higher than that of SRAM, even when
including the inter-bank-level routing power. This increase is attrib-
uted to the higher WWL switching energy (o« Cywwr, * A VaywL?)
and constraints on the mat size, resulting in higher subarray ac-
tivations and, consequently, higher mat-level access energy per
operation (~5x that of SRAM with 1R1W). We observe that this
access energy is reduced using stacking, as inactivated subarrays
can be stacked on top of one another, leading to shorter routing.
Prior work has reported that the high-access frequency of register
files yields a ratio of ~6:1 in dynamic to static power consumption
[42]. From this simplification, one can estimate that if total leakage
is diminished, the increase in dynamic operation energy required
to maintain the same overall power is ~16.6%, as the bank static
power reduction approaches 100%. We plot this ‘break-even point’
in Fig. 10c alongside the dynamic energy consumption as a target,
showing that in 60% of maximized density cases, the M3D AOS
gain-cell bank maintains or improves overall register file power
while improving footprint and portability.

To understand the implications on system performance, we uti-
lize Accel-Sim’s PTX mode to trace benchmarks that benefit from
increased CTA size (i.e., warps per SM), increased SM count, and
larger warp size (i.e., threads per warp). Each of these, respectively,
is bound in some manner to the register file (i.e., by capacity, area,
and bandwidth). For example, if a 3R1W device were adopted in
place of an 8T SRAM, warp sizes of up to 96 threads (3x the NVIDIA
Ampere baseline) may be enabled. If a 2R1W were used to halve
the number of banks, the register file area per SM would be re-
duced by over 2x, allowing the integration of more SMs. Even if
a simple 1R1W cell is adopted, the size advantages could be lever-
aged to increase capacity, thereby doubling the CTA size. In Fig.
11, we demonstrate that arithmetic-intensive applications, such as
backpropagation and srad from the Rodinia suite runtime, can be
reduced by ~10% by leveraging the density and portability of AOS
gain-cell register files.

5 Scaling the LLC (L2)

The GPU LLC (i.e., the unified L2 in NVIDIA GPUs) reduces pres-
sure on DRAM channels and hides long off-chip memory latencies
that would otherwise stall SIMT execution pipelines [1]. Since
the shift to post-Ampere architectures, the L2 cache has increased
rapidly from 6MB to 120MB (Blackwell), primarily due to the data-
hungry demands of data center applications, such as large language
model (LLM) training and inference [46]. Nevertheless, one may
(naively) assume that this points to the need for greater capacity
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at all costs; however, the relationship between workloads and the
LLC is not so simple. Generally, memory-bound problems depen-
dent on the L2 can be classified into one of three categories: (1)
Capacity-limited problems, such as large matrix operations, where
the kernel’s working set exceeds the effective LLC capacity [79]. (2)
Bandwidth-limited problems, such as database systems in which
query-execution time is bound by the peak L2 bandwidth [5]. (3)
Latency-limited workloads with irregular or fine-grained control
flows, such as graph analytics, in which time to a hit is critical due
to their data-dependent dynamic behavior [53].

From a designer’s perspective of AOS LLCs, addressing each of
these challenges involves leveraging the intrinsic spatial density
of M3D design. Because the AOS LLC area, and thus capacity, is
tightly bound to the area of peripherals, the largest array size that
supports a target sub-bank RCT should be considered to minimize
the number of duplicate mats per subarray and the ratio between
FEOL and BEOL active footprints. It is worthwhile to target lower
operating voltages and reductions in parasitic capacitance, as these
qualities increase peripheral size due to bulky I/O level-shifting
and large driver sizes [73]. As discussed in §2.2, the cache band-
width ceiling is bound by the mat latency (and thus cell latency),
the number of ports, and the number of banks. As will be discussed
in the following subsections, the limitations of AOS devices (i.e.,
lower current density and parasitic capacitance) may increase min-
imum tmat, thus lowering the bandwidth ceiling per bank. Hence,
adjusting to increasing the number of banks is critical to improve
bandwidth, while understanding that: (1) cache fragmentation leads
to increases in tag addressing widths, and thus tag capacity [60], (2)
increasing banks inflates routing complexity, which, unless offset
by smaller banks, dominates total L2 latency [30].

5.1 Comparison of AOS Cache Candidates

As discussed in depth as part of the constraints on array sizing in
§4.3, the overall density and static power efficiency of AOS 2T0C
integration are limited by a set of intrinsic (i.e., sneak path current,
IR drop, small Cgn) and extrinsic (i.e., large buffers, level-shifter
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Figure 12: (a) AOS capacitive memory schematics and operat-
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overhead, split-peripherals) factors. Thus, it is worthwhile to con-
currently study alternative cell topologies using AOS devices that
remedy some of the shortcomings of the 2T0C gain cell, while in-
vestigating the extent to which the relaxed timing requirements of
the shared GPU LLC may mitigate the shortcomings of AOS 2T0C.
We consider two alternative topologies for the following ablation
studies in this work: (1) the 3TOC gain-cell, which adds an addi-
tional read-gating transistor (RG) and shifts the RWL to the read
control gate (the same read-operation principle as the 8T SRAM).
(2) a BEOL-compatible 1T1C eDRAM, of which the access transistor
(A) is an AOS device and incorporates a dedicated stacked capacitor
as the Csn [8]. The M3D layouts and operational principles of the
three proposed topologies are illustrated in Fig. 12. The contact
sharing assumptions, cell sizes, and technological advantages and
limitations are summarized in Table I. The remainder of this sub-
section discusses the tradeoffs of AOS 3TOC and 1T1C designs in
terms of array sizing before proceeding to PPA comparisons at the
macro level.

5.1.1 Leakage and Speed in AOS 3T0C. In §4.2, we briefly note that
a shortcoming of the 2-transistor (2T) readout port in 8T SRAM is
the increased static power of the cell, a function of the potential
difference created by the pre-charged RBL and Vi connection over
the read port. To achieve high speed in 8T SRAM (where differential
BL sensing isn’t used), the V; and fin count (thus, W,r) of the
read gating transistor (RG) and the read access transistor (RA) are
modulated [6]. Though lowering the V; improves speed (higher V,,),
it increases the leakage ~exponentially in tandem. The schematic
equivalence of the 2T read port in an AOS 3T0C lends itself to this
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Table 1: AOS Cell Topology Assumptions in 7 nm Platform

Cell Contact Shared Cell Size Advantages Limitations
Topology
Read |PY N (-) Small Cgn
WL Y 5 | (+) Access Speed (-) Sneak Path
2ToC GC . BL Y 0-0195pm (+) Lower R Loading | (-) IR Drop
Write WL N (-) Split R/W Periph.
Read BL Y (-) High Leakage
WL N 5 | (+) No Sneak Path (-) Larger Cell
3ToCGC ' BL Y 0.0251pm (+) No IR Drop (-) Higher R Loading
Write | —-——— (-) Split R/W Periph.
DG:
IT1C D BL Y 0.02741m? (+) Dedicated Csn (-) Destructive Read
VGAA: | (+)Fewer Periph. (-) Slower Access
WL N 0.0182pm?
same tradeoff, which we study using SPICE in the case of a single-
fin CMOS 2T read port and an AOS 2T read port with a 150 nm Wra AVer = 1 1 _ Jleak - tret (@)
and Wy (Fig. 13). We observe that the AOS 3T0C cell pays a higher BL= 1+ CpL/Csn \ 2 Db CsN

price for high speed than its Si counterpart primarily due to (1) the
reduced current density of the AOS channel transistor and (2) the
higher parasitic capacitance created by large overlap regions, which
increases the total bitline charge and thus the sink current density
requirement of the read port for the same read speed. Therefore,
to achieve sub-nanosecond RM development, an AOS 3T0C array
with an Nyow exceeding 128 imposes cell standby power orders of
magnitude higher than HD-SRAM (~14 pW). This, alongside the
increased peripheral leakage (drivers) and cell-size disadvantages
when compared to 2T0C and 1T1C, makes the DG IWO 3T0C an
unsuitable choice for high-bandwidth, energy-efficient last-level
cache memory (§5.2.3). Alternative AOS device geometries, such
as the self-aligned gated structure with plasma-treated, conductive
source/drain [35], may prove better suited for 3TOC integration;
reductions in the BL capacitance contribution from device parasitics
shift the read/leakage tradeoff downwards, showing a larger leakage
suppression under the same read speed over Si (Fig. 13).

5.1.2  Access Speed and Readout in AOS 1T1C. Given the BEOL
process compatibility of stacked capacitor fabrication, it is worth-
while to consider the advantages of a fully BEOL-compatible 1T1C
eDRAM utilizing an AOS access transistor (Fig. 12a), reminiscent of
that recently demonstrated by TSMC [8]. For one, split read/write
paths in gain-cell topologies require additional peripherals to de-
code and drive both R/W paths, the footprint of which is truncated
in an AOS 1T1C array using a single BL/WL per cell, thus deliver-
ing greater density and static power benefits. Additionally, using
a dedicated capacitor, as opposed to solely the parasitic RA gate
capacitance, allows us to raise Cgy and thus enable more flexibility
in retention, as higher cumulative charge is stored. However, these
transformations also have limitations; for one, the Csy cannot be
arbitrarily set, as the RM (AVgL) is a function of the BL capaci-
tance (CgL), SN capacitance (Csy), and minimum SN voltage after
retention losses (Viin):

The higher bitline capacitance contribution of AOS device inte-
gration increases the minimum Cgy for 100 mV RM (Fig. 14a). We
find that at Nyow = 128, the minimum Csy must be ~10 fF when
the access device width is 200 nm (Vi,i, = 600 mV), and that the
minimum Cgy is a strong function of the access device width. The
secondary bottleneck to consider is the decreased current density
of the AOS access device, which increases access time. Since the
readout of the 1T1C cell is destructive, a write-back must be issued
during every read transaction; thus, access speed is a critical bot-
tleneck in 1T1C arrays. If the RM for a desired Nyow sets the lower
bound for Csy, then the requisite RCT/access speed sets the upper
bound. We study the relationship between access speed, Csn, and
V; in a 100 nm width IWO transistor using a V. of 750 mV (Fig.
14b). To achieve sub-nanosecond cell access speed, it is desirable
to use a smaller Cgy (< 8-12 fF) with a low or negative V; (< 0 V),
although the former comes at the expense of limiting Nyow. Based
on the previous results, the following sections set Cgy to 10 {F, an
access device width of 300 nm (limiting Nyow to 64), and a V14
of -300 mV (requiring negative level shifting). Shown in Table I
and Fig. 12b, a wide access device in the quasi-planar double-gated
geometry imposes a restrictive cell footprint. Therefore, a verti-
cal gate-all-around (VGAA) structure with a cylindrical channel is
adopted to improve cell density [8].

5.1.3 Subarray and Bank-Level Comparison. To draw comparisons
between macro-level implementations of AOS-based cache memo-
ries, we conduct two distribution-based studies: (1) given a single
subarray with a variable number of mats and 1 ns RCT constraint,
what is the effect on density and speed if multiple stacked memory
layers are used to increase capacity? (2) Given a 256 kB bank with a
variable number of sub-banks and nanosecond sub-bank RCT, what
is the effect on area, speed, and static power if stacked memory
layers are used to increase density (Fig. 13)? Given the lower access
speed of 1T1C, the RCT restriction is placed on the read operation
without the write back processes.
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We discern from Fig. 15a, which illustrates the subarray study (1),
that AOS cache memories exhibit a higher area-delay product than
their SRAM counterparts, as expected due to their slower operation
speeds resulting from the lower electron mobility in AOS devices
and the differential sensing achieved using feedback in SRAM. The
density benefits of gain-cell topologies taper off quickly as multiple
tiers are integrated, trading off quickly with delay as the Ny is
increased, resulting in a reduced slope. One reason for this is the
overhead of 3D decoding in gain cell topologies compared to 1T1C:
aside from the additional peripherals (drivers) for split R/W paths,
the WWL drivers in the gain-cell topology are larger to handle
the high voltage swing requirement (Vi,o]q to Vhoost), and thus the
transmission gate used to decode the selected layer is proportionally
sized to last stage of the driver, leading to a higher footprint cost
per layer than the 1T1C counterpart with reduced WL swing. As
a result, at eight layers we observe that a 512kB 2T0C subarray
under a 1 ns RCT restriction can achieve memory densities of 82.87
Mb/mm? (~2.72x SRAM peak), 3TOC can achieve 65.68 Mb/mm?
(~2.16x SRAM peak), and 1T1C can achieve 191.8 Mb/mm? (~6.1x
SRAM peak).

To impose a limitation on the total footprint in our bank-level
study, we estimate the area of a 256 kB read-optimized bank, which
is reflective of the L2 partition capacity used in an NVIDIA Am-
pere GPU [3],[49], yielding a footprint of ~80,000 ym?. We plot the
distributions of bank footprint, access time and static power for
AOS cache candidates in ascending Ny in Fig. 15b. We first observe
that switching the loading of the read decode path from the source
of RA to the gate of RG increases partitioning of arrays, and thus
larger footprints and bank latencies in 3T0OC compared to 2T0C
and 1T1C, that cannot be explained by cell size increases alone.
Although not at the level of SRAM, the AOS 2T0C bank speed me-
dian and minimum values strongly outclass those of AOS 3T0C and
1T1C. Gain-cell topologies exhibit larger footprints than eDRAM
and stronger leveling off of footprint reduction as a function of Ny.
Similar to the prior subarray result, 1T1C achieves the highest foot-
print reduction as a function of the number of tiers among the three
candidates. The reduced cell-level leakage significantly improves
the overall consumption of the array in 2T0C and 1T1C, although
the higher driver leakage (as a function of sizing) maintains aver-
ages in the ~10-40% range of SRAM, with substantial reductions
realized using stacked arrays. Conversely, to maintain reasonable

read speeds in 3TOC, the cell-level leakage is orders of magnitude
higher than its 2T0C and 1T1C counterparts. At V; = 250 mV, the
per-cell 3TOC static power is ~2.67 pW, resulting in bank-level static
power consumptions comparable to that of SRAM. For the stated
density, static power, and speed limitations, we exclude 3TOC from
the following system-level benchmarking study, which investigates
the implications of M3D AOS memory integration for enhancing
LLC capacity and improving GPU performance.

6 Benchmarking Methodology

We evaluate the proposed integration of IWO 2T0C and 1T1C L2
caches using the cycle-accurate GPGPU simulator Accel-Sim [28].
We model the baseline system after a verified NVIDIA Ampere RTX
3070 GPU model [3], with system simulation parameters listed in
Table II. Though the capacity of the L2 is small in Ampere GPUs (4
MB) compared to the state of the art (Blackwell, 126 MB), studying
the implications on a validated, compact model can provide broader
insights into the performance implications on larger GPGPU LLCs.
To provide a comprehensive evaluation of performance, we ran-
domly select 15 compute- and memory-bound applications from
the Rodinia [7], Polybench [23], and DeepBench [2] benchmark-
ing suites, targeting relevant workloads in scientific simulation,
image/signal processing, graph analytics, linear algebra, and deep
learning primitives (Table III). To achieve cycle-accurate replay in
Accel-Sim, we utilize Accel-Sim’s trace-driven mode, which em-
ploys dynamic SASS instructions logged using NVIDIA’s NVBit
instrumentation framework [69]. We modify the integrated memory
partition model to account for the impact of (distributed) refresh op-
erations on performance, which are incorporated into reservation
failure statistics and discussed further at the end of §7.

To understand the impact of both high bandwidth and high
capacity in scaled L2 AOS-based LLCs, we model four M3D-based
L2 systems, two for each AOS memory type: (1) Iso-Banking (IB):
assuming the same footprint and number of data banks, what is
the performance of an L2 that leverages stacking to maximize per-
bank capacity? (2) Iso-Bank Capacity (IBC): assuming the same bank
capacity and aggregate footprint, what is the performance of an
L2 that leverages stacking to decrease bank size and maximize the
number of banks? The parameters of each evaluated system are
shown in Table IV. We set a relaxed L2 footprint constraint per
memory partition of 200,000 ym?. In IB studies, we halt increasing



Table 2: Baseline GPU Benchmarking Configuration

Parameter Configuration

Number of SMs 46

Schedulers per Core 4, Loose Round-Robin[54]
GPU Memory Interface 256-bit GDDR6

GPU Memory Capacity 8 GB

L1/Shared Memory Capacity 128 KB per SM

Register File Capacity 256 KB per SM

Table 3: Evaluated Benchmarks and Corresponding Domain

Application Abbrev. Domain

Covariance Computation [7] cov Pattern Recognition
Particle Filter [7] pfil Medical Imaging
Discrete 2D Wavelet Transform [7] dwt2d Image/Video Compression
Convolutional Neural Network Training [2] cnn Deep Learning

Matrix Transpose and Vector Multiplication [23]  atax Linear Algebra

Back Propagation [7] backprop  Pattern Recognition
Matrix Vector Product and Transpose [23] mvt Linear Algebra
Pathfinder [7] pfin Dynamic Programming
3D Convolution [7] 3dconv Image Processing
GEMM Kernel Inference [2] gemm Deep Learning
Needleman-Wunsch [7] nw Bioinformatics

B+ Tree [7] b+tree Search

RNN + GRU Training [2] rnn Deep Learning
Correlation Computation [7] corr Signal Processing

3 Matrix Multiplication [23] 3mm Linear Algebra

Table 4: Benchmarking L2 Cache Parameters

Confi Memory Num L2 N L2 Clock L2 Area ROP Ref
onfig Type Banks Capacity L Domain p. Partition Latency Period
Baseline  SRAM 8X2 4 MB 1132 MHz 160,328 /,Jm2 187 cyc. N/A

2T0CIB  2TOCIWO 8Xx2 8 MB

2TOCIBC 2TOCIWO 8x8 16 MB
1T1CIB 1TICIWO 8X2 32 MB
1TICIBC 1T1ICIWO 8X16 32MB

1067 MHz 130,453 um® 184 cyc. 859 s
1132 MHz 195,044 pm® 188 cyc. 215 s
724 MHz 175771 pm® 190 cyc. 244 s
724 MHz 166,785 pmz 190 cyc. 244 ps

® 0 W N =

N1, once no configurations exist within the footprint constraint.
The L2 clock domain is used to model the operating frequency, and
the raster operations pipeline (ROP) latency is used to model the
L2 latency [53]. Because memory partitions (and thus L2 banks)
are highly distributed using complex networks on chip (NoCs), we
only consider alterations to the ROP latency based on local changes
in latency within each partition relative to the SRAM baseline.
Additionally, the overhead of tag memories is omitted from this
study; however, we note that tag/directory overhead will increase
proportionally to capacity [73] and with additional partitioning
[60].

7 Evaluation

In Fig. 16, we track total performance (instructions per cycle, IPC),
application runtime, and performance per watt for each benchmark
and its geometric mean. Based on pairings where performance is
optimized according to IBC configurations or high-capacity 1T1C
configurations, benchmarks can be broadly categorized as either
bandwidth-limited (e.g., gemm) or capacity-limited (e.g., correla-
tion), respectively. Both 1T1C-IB and 1T1C-IBC deliver elevated
mean performance over the SRAM baseline, indicating that the ele-
vated capacity made possible using AOS 1T1C integration surpasses
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Figure 16: Instructions per cycle (IPC), runtime and perfor-
mance per watt comparisons of evaluated systems, normal-
ized to baseline

the limitation on maximum per-bank bandwidth. However, there is
a clear distinction between 1T1C-IB mean IPC and runtime, and the
IPC and runtime in the lower-capacity 2TOC-IBC. This reinforces
the necessity for bandwidth in both bandwidth-limited applications
and the maintenance of performance in compute-bound applica-
tions. 1T1C-IBC demonstrates the highest performance, yielding a
~8% increase in IPC over SRAM and ~2.7x mean increase in Perf/W.
In select cases, IPC is up to ~38% higher than the baseline, and
Perf/W can be more than 5x higher. Although a few cases suffer
slightly from the lower frequency in 1T1C-IBC cases (e.g., particle-
filter), these performance reductions are relatively negligible (< 1%).
Although 1T1C-IBC demonstrates the highest mean Perf/W, the
highest peak Perf/W is observed in 2T0C-IB cases such as gemm
and rnn. This should not be taken at face value: because power is
the energy consumed over time, and the runtime of applications is
longer in 2TOC-IB cases than in 1T1C-IBC, the higher performance
per watt does not always indicate greater efficiency. Based on the
performance gains observed in both IBC cases, we determine that
the best use case (in terms of performance) utilizing AOS memories
is leveraging stacking to reduce bank size and increase bank count.

We present miss rates and energy consumption breakdowns per
benchmark at the bank level in Fig. 17. This analysis yields two
key findings. First, strongly reduced miss rates do not necessar-
ily equate to higher performance, even when access frequency is
high. Take, for example, cnn, which has the highest read access
frequency among all benchmarks and a ~40% reduction in miss
rate in 1T1C cases but only demonstrates a ~2% increase in IPC
due to its ultimately compute-bound nature [72]. However, a goal
of the GPGPU L2 is to alleviate the bandwidth requirements on the
off-chip DRAM and reduce costly off-chip accesses, to which the
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corresponding reductions in miss rate aid in overall energy reduc-
tion. Second, at the bank level, SRAM leakage is often the dominant
consumer of energy in the L2 cache; however, in cases with many
read and write accesses (e.g., 3mm), dynamic energy consumption
can quickly outpace static power. As was seen in §2, array-level
dynamic power consumption is increased in AOS caches due to
both increased capacitances and voltage swings, and restrictions on
array size (which result in higher activation per transaction). This
means that bank-level energy is dramatically increased in cases
such as backprop and 3mm, which reduces the performance per
watt. Reinforcing the prior statements on stacking methodology
made in the preceding paragraph, we observe that IBC configu-
rations consume less dynamic energy than their IB counterparts,
as the size of each tiered array can be reduced, thereby imposing
lower access energy. We also observe that infrequent refresh opera-
tions incur minimal energy costs across all AOS LLC configurations,
with a breakdown shown for the case with the highest geometric
mean refresh energy consumption: 1T1C-IBC, where line refreshes
consume ~0.8% of all energy (Fig. 17).

To understand the impact of extended retention (or infrequent re-
fresh), we plot the distribution of modes of L2 reservation failures as
a ratio of total L2 accesses per kernel across all benchmarks for IBC
cases (Fig. 18). It is worth defining the most common non-refresh-
based modes of reservation failures for context. A line allocation
failure refers to when a new tag entry for the access is needed, but
all ways in the target set are reserved by outstanding misses or
pending fills. An MSHR entry failure occurs when a fresh miss status
holding register (MSHR) entry needs to be allocated, but the table
is full. An MSHR merge failure occurs when a miss for an address
is already being tracked, but the per-MSHR merge list is full, and
another requester cannot be recorded. Finally, a miss queue failure
occurs when the miss queue can no longer allocate more incom-
ing requests to off-chip DRAM. In our benchmarking, distributed
refreshes occur for one cycle (1T1C) to two cycles (2T0C) in the
L2 clock domain at a period of tret/Nrow/Nr, as each layer in the
3D decoding scheme operates as an independent but peripherally
coalesced matrix. Notably, the peak frequency of refresh-induced
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Figure 18: Distribution of reservation failure modes in 1T1C-
and 2TOC-IBC configurations gathered across benchmarked
kernels

read and write reservation failures at this periodicity is comparable
to that of the lower bound of MSHR entry failures and is typically
overshadowed by MSHR entry and line allocation failure modes by
several orders of magnitude, indicating that retention levels in the
tens to hundreds of ms range are sufficient for large GPGPU cache
performance without incurring notable performance degradation
due to L2 stalling. We also observe that the move from 4x to 8x
capacity eliminates all miss queue failures in the 1T1C case, but
heightens the distribution of line allocation failures, as contention
over oversubscribed indices in each set (due to the higher hit rate)
grows. Consequently, this notion poses the need to increase asso-
ciativity alongside the set size [29].

8 Related Work

Several emerging memories have been the subject of study for
GPU register file (RF) integration due to their density and static
power advantages. Magnetic tunnel junction (MT]) based multi-port
racetrack memory [42], STT-MRAM [39],[71],[22], and SOT-MRAM
[44] register files have been the focus of prior GPU system-level
studies. Much of this body of work is centered on minimizing
the shift-operation and write-speed bottlenecks of emerging non-
volatile memory register files, which carry latencies on the order of
~tens of nanoseconds. Volatile Si eDRAM variants [27] and SRAM-
DRAM hybrid memory [77] have also been studied at the system
level as a compact RF solution. Low-leakage multi-ported SRAM
designs [26] and FDSOI eDRAM [20] have been studied with GPU-
register-centric integration in mind at the circuit and device levels.

STT-MRAM [63],[24], Spintronic tape memories [66], and eDRAM
[67] have also been the focus of GPU LLC expansion in prior work,
typically benchmarked on Fermi architecture lines. Like their reg-
ister file study counterparts, these works investigate microarchi-
tectural methods for hiding long write latencies, minimizing the
overhead of shift operations, and reducing the refresh overheads in-
herent to each memory type. Morpheus [13] discusses utilizing idle
SM resources (L1D, Shared Memory, RF) as configurable extensions
to the LLC.

Monolithic 3D integration has been studied in GPU memory
and network subsystems, such as multi-tier register file banks and
mesh networks [31] and the private L1 data cache [14]. Addition-
ally, an M3D integrated NoC for GPU cache bypassing has been



explored [15]. We note that these works are not technology aware
and presume that multi-tiered CMOS integration is achieved with
comparable performance to FEOL devices; therefore, they are op-
portunistic.

Finally, dense AOS-based memory systems have been the subject
of a few benchmarking studies in CPU, TPU, and non-Von Neu-
mann computing systems. [38],[32] benchmark DCIM integration
of hybrid 2TOC-RRAM and 2R1W AOS gain cells. [37] performs a
benchmark of a Sn-doped In203 (ITO) 2T0C L1D extension in a
TPU benchmark; however, the device-centric nature of the work
leaves little room for discussion on macro- or system-level design
assumptions and fundamental bottlenecks. [40] Focuses on the inte-
gration of IWO 2T0C as a TPU buffer memory, comparing it to other
mainstream and emerging memories. The CPU cache-based IWO
2TOC study, as discussed in [73], examines system implications us-
ing GEM5. Although the study examines limitations on bank-level
write, leakage, and retention implications in write design, there
is limited discussion on read implications, and it lacks a study of
multiple system configurations.

9 Conclusion

This paper presents a study on the integration opportunities of
monolithically 3D stacked amorphous oxide semiconductor (AOS)
memories in capacitive memory topologies to tackle GPU memory-
system bottlenecks. By observation of the relatively short lifetime
of register operands, we develop integration methods for a high-
speed multi-ported AOS gain cell capable of delivering three times
the read ports, roughly three-quarters of the bank size of compara-
ble 1IR1W SRAM. Furthermore, we investigate the integration of
stacked BEOL-compatible 3T0C, 2T0C, and 1T1C memories, demon-
strating that 2TOC can achieve densities 2.72x higher than SRAM
without sacrificing the maximum operating frequency, and 1T1C
can deliver up to 6.1x the density of SRAM in 8-tier configura-
tions. Benchmarking on a baseline NVIDIA Ampere GPU in a mod-
ified version of Accel-Sim indicates that AOS-based 1T1C last-level
caches can boost IPC by a geometric mean of 8%, and as high as 38%,
and performance per watt up to 5.1x over the baseline HD-SRAM
system. Such CMOS+X stacking, therefore, offers a manufacturable
path to reclaim area, bandwidth, and energy headroom that conven-
tional SRAM scaling can no longer provide, enabling larger warp
sizes, higher SM counts, and/or denser LLCs without increasing die
size.
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