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ABSTRACT
The cost and performance of a modern computing system depend
on its memory hierarchy. Manual management is complex and
not portable. Automatic management is sub-optimal — it reacts to
program behavior, but does not directly utilize program knowledge.
Recent work has developed cache programming for a type of cache
called Lease Cache.

This paper empirically evaluates cache programming using leases
vs. optimal caching and shows that cache programming signifi-
cantly narrows the performance gap between conventional and
optimal caching. Multi-scope programs (with sequential loop nests)
outperform single-scope cases in both consistency and efficiency
from cache programming. In contrast, triangular loop nests present
a greater challenge than rectangular ones. The experimental frame-
work reliably quantifies how cache size, program input, and loop
structures impact cache optimization.

1 INTRODUCTION
Current solutions for the memory hierarchy are largely bipolar:
they are either completely programmatic, requiring program data
and accesses known at compile time, or completely automatic as
caches, which have no program information but the past accesses.
It is difficult for program control to adapt to changing resources. It
is not portable from system to system. Even on the same system,
the available memory changes with the workload.

Lease cache is a new type of cache that is prescriptive rather
than reactive. At each access, a lease is assigned to the data block
being accessed, and the data block is cached when the lease is ac-
tive and marked for eviction when the lease expires. Prescriptive
caching manages space by allocation, while reactive caching by re-
placement. The shift from replacement-driven to allocation-driven
caching enables simpler and more efficient architectures and, more
importantly, the ability to program a cache system.

In cache programming, leases are assigned in the program code
based on the knowledge of the programmer or compiler of the pro-
gram behavior and the available cache space. At run-time, the cache
content is managed by hardware based on leases. Hence, it combines
program control and automatic caching. Past work has developed
collaborative caching through hints [3, 4, 9–11, 18]. However, hints
influence, but do not directly control cache management.

In lease programming, the basic technique is called Compiler
Assignment of Reference Leases (CARL)[7]. It assigns a lease for
each reference. For each reference and each lease value, CARL
evaluates the number of cache hits per unit of lease and assigns
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leases in decreasing order of the benefit per cost. CARL is optimal
for a variable-size cache, where the cache grows without bound or
shrinks dynamically.

This paper is concerned with fixed-size caches and presents an
empirical evaluation of cache programming using leases vs. optimal
caching. Optimal caching is called Belady or MIN [1, 6]. Since the
Belady method requires full future knowledge of data accesses, it
has to be simulated (in two passes) and cannot be implemented for
a real cache. We present a setup that allows for a direct comparison
between the results of the lease cache system in hardware and those
from software simulation. In particular, we run a program twice
on actual hardware. The first run extracts information for lease
programming and the trace for the Belady simulation. The second
run tests the cache performance of a program programmed with
leases.

We use a benchmark suite called PolyBench, which includes
30 kernel programs containing various compute-intensive loop
nests common in scientific computing, image processing, and linear
algebra. We test two inputs, small and medium, on the lease cache
of two sizes, 64 blocks and 128 blocks.

To quantify the effectiveness of cache programming, we use a
normalized score (0–100) comparing its miss ratio to the baseline
(a policy called PLRU) and the theoretical optimum. A score of 100
indicates that lease cache matches Belady (optimal), while a positive
score signifies improvement over PLRU. The formula is symmetric
for hit/miss ratios, and the score can be visualized on a vertical
ruler where PLRU is 0 and Belady is 100, showing how close lease
caching gets to ideal performance.

Some of the findings are as follows:

• The average score for all tests is 67. Therefore, cache pro-
gramming is closing the gap, achieving two-thirds of the
performance improvement between conventional caching
and the theoretical optimum.

• The average score is higher in the 128-block cache than in
the 64-block cache (71 vs 63) and slightly higher in small
input than in large input (68 vs 66).

• About half of the tests havemainly a single loop nest (single-
scope), and the rest have two or more loop nests one after
another (multi-scope). The mean score is higher, 84 vs 53,
and the standard deviation is lower in multi-scope than in
single-scope tests.

• Most challenging for cache programming are triangular
loop nests. Compared to programs with rectangular loop
nests, the mean score is much lower, 49 vs 82, and the scores
are more varied, shown by the higher standard deviation,
59 vs 18.
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We have also tested a conservative variant called lease cache
rationing, which assigns leases for a cache size smaller than the
actual size. The results show that cache programming is robust
under modest underallocation.

In this work, the goal of cache design is minimal miss count for
the same program using the same amount of cache space, without
considering prefetching. While prefetching improves performance
by overlapping memory access with computation or other memory
accesses, it does not eliminate misses or reduce actual data move-
ment — our goal is to reduce the access in memory by maximizing
reuse in cache. By isolating the locality problem (where data reuse
dictates performance), we evaluate cache designs without prefetch-
ing, treating everymiss as equally costly. Minimizingmisses directly
translates into minimizing unnecessary data transfers.

2 LEASE CACHE SYSTEM
The lease cache system consists of two key components: a hardware
prototype that supports programmable lease-based cache policies,
and a compiler-level mechanism for assigning leases to memory
references. This section describes both components: we begin with
the hardware design, including its support for static and multi-
phase lease programming, and then explain the underlying theory
and practical computation of reference leases.

2.1 Hardware Prototype
We have designed, implemented, and tested a lease cache emulator,
whose architecture is illustrated in Figure 1. In this preliminary
hardware prototype, a single RISC-V core executing integer and
floating point manipulation instructions is connected to a single-
level cache. This is controlled by a Programmable Cache and Mem-
ory Management Unit (PCMMU), which can be configured to apply
a conventional Pseudo-Least Recently Used (PLRU), or use reference
leases (CLAM or SHEL). The prototype is based on the test plat-
form used in previous work [8, 15, 16]. The figure shows two lease
cache techniques: CLAM and SHEL. CLAM is used for single-scope
programs whose leases are loaded once at the start of an execution.
SHEL is for multi-scope programs whose leases are loaded multiple
times during an execution.

The following table compares cache programming with conven-
tional caching. A conventional cache uses a replacement policy
such as least-recently-reused (LRU) replacement. Replacement is
reactive. In comparison, the lease cache is prescriptive. A lease
is assigned every time a data block is accessed, and the block is
marked for eviction once the lease expires. A conventional cache
is automatic and uses only the history information, while leases
can be constant, i.e., uniform leases [5, 16], or programmed based
on program information [7, 8, 17]. In addition, a lease cache has
a secondary policy. If a program requires more cache space than
what is available, the second policy randomly evicts a data block at
a cache miss.1

Since a lease is based on allocation, lease programming is similar
to memory allocation through calls to malloc and free. They both

1In Appendix A in their MEMSYS 2020 paper, Prechtl et al. [16] compared random
eviction (lease oblivious) and two other policies, shortest remaining lease and longest
remaining lease. Through experiments, they found that “no one policy dominates
another. Among them, random is the most space efficient and fastest to implement in
hardware.”

Conventional
cache

Lease cache

primary policy replacement,
automatic

reference leases,
programmable

info used history only constant, or
program analysis

secondary policy N/A random eviction
Table 1: Comparing between conventional and lease caches

aim to optimize resource utilization, but for different purposes. In
heap management, the goal is to minimize the size of a heap, but
there is no fixed upper bound on heap size. In cache leasing, the
goal is to stay within a constant bound and obtain as many cache
hits as possible. Operationally, the lifetime of an object in a heap
is one allocation. In comparison, a lease is assigned every time a
block is accessed.

The prototype is implemented using Intel Quartus Prime Stan-
dard 22.1 on an Altera Cyclone-V GT FPGA (5CGTFD9E5F35C7).
The FPGA contains 113,560 adaptive logic modules, 12.5 Mbits of
block memory, 342 DSP blocks, and 20 PLLs. On this device, we
synthesized a RISC-V core compliant with the unprivileged ISA
specification [19]. The core has a classic 5-stage pipeline (instruction
fetch/decode, operand fetch, execute, memory, writeback), supports
32 general-purpose registers and 32 floating-point registers, and
runs at 40 MHz. Both integer and single-precision floating-point
operations are supported using Quartus IP blocks.

The data cache is direct-mapped with 32-byte lines, tested at
sizes of 64 and 128 lines (2–4 KB total). Instruction cache uses the
same configuration with PLRU replacement. The data cache can
be configured to run with either PLRU replacement or lease-based
policies (CLAM or SHEL). Off-chip memory is DDR3, accessed
through a lightweight controller.

Benchmark execution and data collection are controlled remotely
from a host computer via a JTAG connection. The host program,
written in C and compiled with GCC, provides commands to load
binaries, run benchmarks, and collect metrics (misses, hits, cycle
counts, samples, and traces). This setup allows for reproducible
evaluation across a range of benchmarks while isolating the impact
of cache policy from other architectural factors.

This work is not tied to a specific application domain such as
embedded, client, or HPC systems. Rather, our goal is to evaluate
lease-based cache programming in a controlled hardware environ-
ment and to quantify how closely it can approach the theoretical
optimum. The RISC-V FPGA prototype provides a simple, repro-
ducible platform that exposes cache behavior without interference
from complex multicore or out-of-order features. This makes it
useful for controlled evaluation, but the techniques and findings
are not restricted to RISC-V or FPGA platforms. Lease caches are
a generic mechanism that can be applied across system classes
wherever fixed-size caches are deployed.

2.2 Reference Leases
A reference is defined as the instruction that invokes a memory
access, i.e., the program counter for the load/store instruction. Given
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Figure 1: Lease Cache Hardware Prototype.

a program, a compiler assigns a lease to each reference. When the
program executes, each access is given the lease of its reference.
The lease of each reference is derived from two attributes for a
reference: its Reuse Interval Distribution (D) and its Access Ratio
(AR). Next, we first define one basic term, Reuse Interval (RI), and
then define these two per-reference attributions.

Definition 2.1 (Reuse Interval (RI)). Reuse Interval (RI) is defined
as the change in logical time between a data block’s use and its
reuse. Suppose we have a trace 𝑎𝑏𝑐𝑐𝑏𝑎, the reuse interval of the
datum 𝑎 is 𝑅𝐼 = 5.

Definition 2.2 (Reuse Interval Distribution (D)). The RI distribu-
tion of a reference (𝑅𝐼𝐷) is the distribution of RI’s among all of its
accesses. Using the same trace 𝑎𝑏𝑐𝑐𝑏𝑎 given in previous definition
and assuming there is only one reference, the RI distribution of
this reference would contain 3 different reuses 1, 3, 5 caused by the
access to datum 𝑐 , 𝑏 and 𝑎 respectively, each accounting for 1/3.

Definition 2.3 (Access Ratio). The Access Ratio of a reference is
the portion of all accesses in the trace that are invoked by that
reference.

Ding et al. [7] present Compiler Assigned Reference Leasing
(CARL), an optimal algorithm for assigning reference leases to a
program such that the miss ratio is minimized, assuming a variable-
sized cache which can store any number of leases at a time, so
long as the average number of active leases throughout execution is
equal to some target cache size.We call such a cache system a virtual
cache, because its storage capacity is unbounded. Furthermore, we
refer to the number of active leases in the virtual cache as the
virtual cache size (VCS). While virtual cache size may grow and
shrink dynamically throughout execution, the physical cache size
(PCS) remains constant.

We examine two CARL-based lease assignment techniques from
previous work.

CLAM Compiler Lease of CacheMemory, which applies CARL,
setting the average VCS of the whole program to be PCS,
using random eviction at a cache miss when the cache is
full and has no expired blocks [16].

SHEL Scope-Hooked Eviction Leasing, which applies CARL
at each loop nest (scope), setting the VCS at each scope to
be PCS. SHEL ignores cross-loop reuses [17].

SHEL assigns different leases to respond to variation in program
behavior by dividing a program by its loop nests.

3 EXPERIMENTAL SETUP
To obtain experimental results, the small and medium input sizes of
the PolyBench [14] suite is compiled, using GCC -O3 optimization
level without vectorization, to run on a RISC-V core configured on
a Cyclone-V FPGA. The memory hierarchy consists of a single-level
separate instruction and data caches, and a DDR3 off-chip main
memory. Figure 1 shows both the RISC-V core and the memory
hierarchy.

The data cache is direct-mapped and was evaluated at sizes of
64 and 128 lines. Each cache line is 64 bytes (16 words), giving total
capacities of 4 KB and 8 KB, respectively. Instruction cache uses
the same line size and replacement policy (PLRU). For lease-cache
experiments, the data cache can be configured to apply either PLRU
or lease-based policies (CLAM or SHEL).

3.1 Data Collection
A metric collection system is embedded inside both data and in-
struction caches and the RISC-V core. These collect relevant metrics
such as cache hits, misses, and total accesses by snooping the inter-
nal cache signals. Figorito et al. [8] describes the emulation and test
controller (ETC) used to obtain cache results and sample data. At a
high level, a program on a host computer will read and write data
in DDR3 memory or memory-mapped registers (MMR). The data
transfers occur via a universal asynchronous receiver transmitter
(UART) communication channel that connects the host computer
and the FPGA. In this way, the program running on the host com-
puter controls benchmark execution and metric/results collection.
MMR’s are hardware registers that are accessed using memory
space mapped addresses. They are primarily used for software-
hardware interactions, allowing the core to use memory operations
to interact with emulation and test support peripheral hardware
units.

There are three main code sections during each benchmark ex-
ecution that are relevant to data collection. These are the setup,
kernel, and cleanup code.

Setup Code allocates benchmark arrays in the heap and ini-
tializes their default values.

Kernel Code executes the benchmark algorithm. It is during
this code segment that metrics are collected.

Cleanup Code frees the heap allocated memory.
At the end of the setup code, the core will write to the metrics-

control MMR enabling collection. At the end of the kernel code,
the core will again write to the metrics-control MMR disabling
collection.
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3.1.1 PLRU Results Collection. PLRU benchmark results are ob-
tained by first configuring the FPGA with both data and instruction
caches using PLRU eviction policies. Then, the compiled bench-
marks are written to the DDR3 memory by the host program. After
this, the host program will write to an MMR on the FPGA, en-
abling the RISC-V core and starting benchmark execution. The host
program begins to poll the test-complete MMR at this time. After
the execution of the benchmark kernel, the core writes to the test-
complete MMR signaling that the benchmark is finished. Once the
host program observes that the test is complete, the core is disabled,
and results are read from the metrics collection system MMRs.

3.1.2 Collecting Data Access Sample Information. The leases used
by the lease cache are generated based on data access information
collected by sampling the benchmark kernel code running on a
PLRU cache. The hardware element that collects sample data is
simply called the sampler.

The sampler is embedded in the data cache and snoops each
access to ultimately generate the forward reuse interval of memory
blocks. The sampler consists of a sample table and a sample buffer.

Sample Table stores memory references that have not seen
a reuse yet. Once a reuse is seen, its forward reuse interval
is calculated and written to the sample buffer.

Sample Buffer stores complete sample data after it is written
from the sample table.

The sample buffer may become full during kernel code execution,
stalling the processor and signaling to the host program to read
(empty) the sample buffer. Completion of the kernel code will cause
the host program to read the sample buffer, read the sample table,
and re-read (re-empty) the sample buffer.

3.1.3 Collecting Trace Data. Trace data is the record of every re-
quest to the data cache during the execution of the kernel code of
the benchmark. A trace data entry consists of the core program
counter (PC), word address, and hit/miss information. The hard-
ware unit that performs this collection is called the tracer. The tracer
contains a trace buffer, in which results are collected until it is full.
Once full, the processor core is stalled and the host program reads
(and empties) the buffer. This process is repeated until the end of
the benchmark’s kernel code.

3.1.4 Lease Cache Results. Benchmarks that are run with one of
the lease cache policies are collected in a similar manner to PLRU
collection. However, after the host program enables the core the
lease cache will stall the processor and read in the lease table from
a predetermined section of memory. After the table is read in, the
processor is un-stalled and execution proceeds normally. The lease
cache metrics system now collects the number of expired and forced
evictions. Once the kernel code is complete, the host program reads
all metrics.

3.1.5 Accounting for the Initial Cache State. When miss counting
begins at the start of the kernel code, the cache is already par-
tially filled with program data. As a result, some cold-start misses
are recorded as cache hits, causing the lease cache’s miss count
to occasionally fall below the theoretical optimum (Belady’s algo-
rithm, which simulates an idealized cache, accounts for all cold-start
misses). While the exact impact of this discrepancy is difficult to

quantify, we approximate it by adding a fixed number of misses
equal to the cache size to each lease-cache run.

This adjustment ensures our miss count is a conservative esti-
mate: it is always equal to or higher than the actual miss count. On
the one hand, it cannot exceed the theoretical limit. On the other
hand, when lease caching is optimal, its miss count can be higher
than optimal due to overcounting.

3.2 Optimal Caching
To provide a theoretical lower bound on the cachemiss ratio for each
benchmark, we implemented an optimal offline caching simulator
in Rust, modeling Belady’s MIN algorithm (also called OPT) [1].
The MIN policy is not implementable in real hardware because it
requires knowledge of the entire future access sequence. However,
it serves as the gold standard against which all practical policies
are compared and represents the theoretical lower bound for cache
miss ratios in fixed-size caches.

Rust Simulator Implementation. Our Rust simulator takes a mem-
ory access trace as input and produces, for any fixed cache size,
the precise sequence of cache hits and misses, as well as the miss
ratio under optimal caching. The core logic follows the canonical
Belady’s MIN approach. For each access, the simulator determines
which cached block will be needed farthest in the future (or not at
all) and evicts that block if a miss occurs and the cache is full. This
process guarantees the minimum possible number of cache misses
for a given trace and cache size.

Trace Collection and Preprocessing. Full memory access traces
are collected as described in Section 3.1.3, including the program
counter, word address, and PLRU outcome for every memory access
in the benchmark kernel. For the purposes of OPT simulation, only
the memory addresses are used. Addresses are mapped to fixed-size
cache block addresses (by dividing the word address by the number
of words per cache block), yielding a block access trace as input to
the simulator.

Belady’s MIN Algorithm. The MIN algorithm operates by always
evicting the cached block whose next reuse is farthest in the future
(or, equivalently, that will not be used again for the longest time).
To enable this, we first pre-process the access trace to compute, for
each access, when the next occurrence of each block will be. This
is also known as the forward reuse interval. Specifically:

(1) Forward Pass (Preprocessing): We scan the access trace
backwards (from the last access to the first) and, for each
block, record the index of its next occurrence. This produces
a mapping from each access position to the next access of
the same block.

(2) Optimal Caching Simulation: We simulate the cache of
a given size as follows. For each memory access:
• If the block is present in the cache (a hit), we proceed.
• If not (a miss), and the cache is full, we evict the block

in the cache whose next use is farthest in the future
(or never used again).

• The accessed block is then inserted into the cache.
This process is repeated for the entire trace, and the miss ratio
is calculated as the total number of misses divided by the total
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number of accesses. This procedure is repeated for each cache size
of interest to generate the complete OPT miss ratio curve.

OPT Caching Rationale. The OPT policy provides the absolute
best miss ratio possible for any cache replacement strategy in a
fixed available cache size setup, assuming perfect knowledge of the
future. Any practical cachemanagement policy—whether hardware-
based (PLRU), software-based (Lease Cache), or hybrid—will have
a miss ratio that is at least as high as OPT for the same trace and
cache size. By comparing Lease Cache and PLRU against the OPT
baseline, we can quantify the gap between realistic, programmable,
and theoretical caching strategies.

3.3 PolyBench Suite
The PolyBench/C 4.2.1 [14] suite contains 30 scientific computing
workloads. The kernels span a range of domains, including linear al-
gebra, image processing, physics simulation, statistics, and dynamic
programming. This wide variety of kernel choices provides a good
analysis for cache performance across multiple caching policies.

Out of the 30 available benchmarks, 29 were chosen for analysis.
jacobi-1d is excluded due to the small data size and zero miss
ratio when run on the four input configurations (two input data
sizes and two cache sizes). The input array contains 120 and 400
single-precision floating-point elements for small and medium,
respectively. All input combinations resulted in a 0% miss ratio
as the entire array fits inside the cache and remains present after
initialization.

The 29 benchmarks can be categorized into single- and multi-
scope. Each of the 16 single-scope benchmarks consists of kernel
code that has a single loop nest. The 13 multi-scope benchmarks
contain two or more distinct loop nests back-to-back.

4 RESULTS AND ANALYSIS
Prior work, such as CLAM [16], demonstrated the feasibility and
correctness of using CARL-assigned leases in fixed-size caches, but
did not systematically compare lease cache performance to the opti-
mal policy (OPT). In this work, we close that gap by systematically
evaluating lease cache performance under a range of practical fixed-
size conditions, directly comparing it to both PLRU and the OPT
baseline. We examine the effects of input size, cache size, and scope
granularity in lease assignment. We want to clarify both the poten-
tial and the limits of lease-based cache management in practical
scenarios. Throughout this section, we first quantify overall perfor-
mance using a normalized score, then examine how loop structure
and phase granularity impact effectiveness, and finally assess the
robustness of lease policies under practical resource tightening.

4.1 Performance Scores
To evaluate the lease cache performance, we compute a score to
quantify how much closer it is to OPT compared to PLRU.

Let mr𝑝𝑜𝑙𝑖𝑐𝑦 (𝑐) be the miss ratio at cache size 𝑐 for one of the
three caching policies: lease programming, PLRU, and OPT. The
score for lease cache performance is

Score =
100(mr𝑃𝐿𝑅𝑈 (𝑐) −mr𝐿𝑒𝑎𝑠𝑒 (𝑐))

mr𝑃𝐿𝑅𝑈 (𝑐) −mr𝑂𝑝𝑡 (𝑐)

The score is at most 100, which means that the performance has
reached the theoretical optimum. A positive score means an im-
provement over PLRU. The formula is symmetric with respect to
hit or miss ratios; substituting hit ratios yields the same value. It
is intuitive to visualize the score of hit ratios. Imagine that a score
marks the position on a vertical ruler where the PLRU hit ratio is
the baseline or the zero mark, and the OPT hit ratio is the top line
or the 100 mark.

We score the test programs on two input sizes (small, medium)
and two cache sizes (64 lines and 128 lines). Table 4 shows the
arithmetic average in these four cases.

On average, scores are over 60. For small input, the average score
improves from 61 to 76 as the cache size increases. For the medium
input, the score is effectively unchanged, 65 for the 64-block cache
and 66 for the 128-block cache. This trend reflects the fact that
smaller working sets fit better in larger caches, leaving less room
for further improvement from better caching policies.

To further illuminate the sources of variation, we analyze the
impact of program scope granularity. A test program is either single-
scope or multi-scope. Table 2 shows a statistical summary of the
scores for these two groups for the medium size input and for
two cache sizes. Multi-scope programs have clearly higher and
more stable scores: means of 85 or higher, with standard deviations
around 10, compared to means near 50 and standard deviations
around 64 for single-scope. In comparison, single-scope programs
have extreme min/max values, from -181.61 to 99.99. In addition,
128-line cache sees higher multi-scope program scores, with a mean
of 87 vs. 83 for 64-line.

Table 3 extends the comparison across input sizes. Multi-scope
“superiority” holds for both small (mean 84 in multi vs 56 in single)
and medium inputs (85 vs 50). Multi-scope “stability” also holds,
as shown by the low std deviation. Combining the effect of both
inputs, the medium input scores have greater variability than small
input scores, with a higher std deviation, 51 vs 39. This is somewhat
surprising, since small inputs are more sensitive to cold starts and
other initialization or finalization effects.

Combining the results from both tables, multi-scope lease pro-
gramming consistently scores 30–35% higher and is 5x more stable
than single-scope, regardless of input or cache size. On both cache
sizes, the median score is over 85 for medium input but 66 or lower
for small input. The min score is 47.

We show individual scores in Appendix A and miss ratio results
in Appendix B and may refer to them in the following discussion
about individual tests.

4.2 Impact of Loop Nest Shape on Lease Cache
Effectiveness

To better understand these variations, we next examine how loop
nest shape influences lease cache performance. A key differentiator
is the geometric structure of loop nests that also plays a direct and
significant role in the effectiveness of lease cache optimization.

Triangular vs. Rectangular LoopNests. A consistent pattern emerges
across our benchmarks: lease cache provides less improvement for
codes with triangular loop nests—those in which inner loop bounds
depend on the index of an outer loop variable (e.g., for 𝑖 = 0 to 𝑁 ,
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Inputs Cache Size Scope mean std min 25% 50% 75% max

medium Both Sizes Single 49.85 63.88 -181.61 46.86 65.22 87.38 99.99
medium 64 Single 49.99 63.23 -103.99 48.87 63.82 93.89 99.99
medium 128 Single 49.71 66.61 -181.61 46.85 66.37 79.35 99.47
medium Both Sizes Multi 85.07 10.68 56.78 83.76 88.29 91.88 99.47
medium 64 Multi 83.37 12.98 56.78 79.09 84.64 92.45 99.47
medium 128 Multi 86.77 7.94 68.78 85.92 89.90 91.50 93.63

Table 2: Statistical summary of scores for single- and multi-scope tests for medium input

Inputs Cache Size Scope mean std min 25% 50% 75% max

small Both Sizes Both 68.46 38.52 -163.16 58.04 79.93 87.67 99.72
small Both Sizes Single 56.12 47.74 -163.16 45.52 66.45 81.43 99.72
small Both Sizes Multi 83.63 11.06 46.79 77.74 85.30 90.32 98.54
medium Both Sizes Both 65.64 50.81 -181.61 60.77 81.32 91.30 99.99
medium Both Sizes Single 49.85 63.88 -181.61 46.86 65.22 87.38 99.99
medium Both Sizes Multi 85.07 10.68 56.78 83.76 88.29 91.88 99.47

Table 3: Statistical summary of scores for small and medium inputs for both cache sizes

performance scores 64 cache lines 128 cache lines mean
small input 61.43 75.48 68.46
medium input 64.96 66.32 65.64
mean 63.20 70.90 67.05

Table 4: Arithmetic means for two inputs and two cache sizes

for 𝑗 = 0 to 𝑖). In contrast, programs with rectangular or other non-
triangular loop nests (where loop bounds are independent) achieve
much higher cache performance gains or high scores under lease-
based management. Table 6 classifies the PolyBench programs used
in our study according to whether they exhibit triangular or rectan-
gular loop nests. Table 5 then summarizes the statistical distribution
of lease cache performance scores for each group.

Lease cache achieves a mean improvement above 80% for non-
triangular loop nests, with low variance. However, for triangular
loop nests, not only is the mean lower (often below 50%), but the
variance is much higher. This trend is consistent across input and
cache sizes.

Since the loop nest iteration space “shrinks” along one dimension
in triangular loops, the number of memory accesses per inner loop
iteration decreases as the outer loop index increases. This leads to a
much wider and more uneven distribution of reuse intervals across
the execution. Some references are reused very soon, while others
experience much longer gaps between uses, especially near the end
of the triangular region. As a result, the RI histogram becomes more
spread out, and lease assignment based on average statistics may be
less effective, leading to bigger performance variability compared
to regular, rectangular iteration spaces.

4.3 Miss Ratio Breakdown by Scope Assignment
We now examine detailed miss ratio results for lease assignment
under two scope granularities: single-scope (CLAM) and multi-
scope (SHEL).

4.3.1 Single-Scope Assignment (CLAM). Figure 2 shows the miss
ratios for the 16 single-scope PolyBench benchmarks (medium
input, 128-line cache). Overall, CLAM narrows the gap between
PLRU and OPT, but the degree of improvement is variable across
benchmarks.

For each benchmark, we compare three policies:
• PLRU: pseudo-LRU hardware replacement policy,
• Lease (CLAM): compiler-assigned single-scope leases,
• OPT: Belady’s theoretical minimum miss policy.

Figure 2: Miss ratio comparison for PolyBench single-scope
benchmarks (medium input, 128-line cache). Programs are
sorted by the Lease–OPT gap.

At the high end, programs such as doitgen, syrk, and symm
show clear reductions in miss ratio: CLAM achieves up to 84%
fewer misses compared to PLRU, consistently moving performance
closer to OPT.
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Inputs Cache Size Iteration Space mean std min 25% 50% 75% max

Both Inputs Both Sizes Triangular 48.52 59.45 -181.61 45.96 67.74 79.53 97.43
small 64 Triangular 42.80 65.65 -163.16 43.07 71.42 74.39 79.11
small 128 Triangular 73.02 27.43 0.00 76.46 83.29 87.72 97.43
medium 64 Triangular 36.10 63.41 -103.99 43.47 58.70 66.70 84.64
medium 128 Triangular 42.16 70.98 -181.61 47.99 63.74 70.75 88.30
Both Inputs Both Sizes Rectangular 82.10 17.54 22.92 77.20 87.81 93.20 99.99
small 64 Rectangular 76.56 20.28 22.92 70.81 82.33 89.84 99.72
small 128 Rectangular 77.48 20.75 25.00 65.68 85.29 90.40 98.54
medium 64 Rectangular 88.40 11.85 60.71 82.44 92.82 96.82 99.99
medium 128 Rectangular 85.95 14.01 39.05 85.79 90.08 92.16 99.47
Table 5: Statistical summary of scores for rectangular and triangular loop nest programs

Rectangular Triangular
2mm cholesky
3mm correlation
adi covariance
atax durbin
bicg gramschmidt
deriche lu
doitgen ludcmp
fdtd-2d nussinov
floyd-warshall symm
gemm syr2k
gemver syrk
gesummv trisolv
heat-3d trmm
jacobi-2d
mvt
seidel-2d

Table 6: PolyBench benchmarks classified by loop nest shape.

A second category consists of benchmarks where PLRU, CLAM,
and OPT curves nearly overlap. Here, the absolute miss ratios are
very small, so even minute differences in miss counts can translate
into disproportionately large variation in normalized scores. For
example, several kernels show CLAM within < 0.005 miss ratio
of PLRU, yet still receive volatile scores because of the normaliza-
tion formula. Despite this, CLAM generally provides a small but
consistent advantage in raw miss count.

The only benchmark where CLAM produces a negative score is
trisolv. In this case, the PLRUmiss ratio is 0.012813, CLAM’s miss
ratio is slightly higher at 0.013094, while OPT achieves 0.012536.
Although this results in a poor normalized score, the raw difference
is just 0.000281 in miss ratio. Given a total trace length of 419,035
memory accesses (medium input), this corresponds to only 118
additional misses. Thus, while CLAM technically underperforms
PLRU in this isolated case, the absolute impact on execution is
negligible.

4.3.2 Multi-Scope Assignment (SHEL). Figure 3 shows the corre-
sponding results for 13 multi-scope benchmarks using SHEL instead
of CLAM. Here, the lease table is reloaded at the start of each scope,

allowing leases to adapt across different program phases. We again
compare PLRU, SHEL, and OPT.

Benchmarks are sorted in descending order of the lease result–
OPT gap, so the leftmost bars represent programs where lease
caching leaves the most room for improvement.

Figure 3: Miss ratio comparison for PolyBench benchmarks
(medium input, multi-scope lease, cache size 128). Programs
are sorted by the gap between the Lease result and OPT

Across multi-scope benchmarks, the lease cache policy consis-
tently narrows the gap between PLRU and OPT, yielding substan-
tial reductions in miss ratio. For instance, in ludcmp, 2mm, and
covariance. In contrast, for benchmarks with high temporal lo-
cality or highly predictable access patterns (e.g., gemver, adi), all
policies perform similarly and closely track the OPT baseline, as
the room for improvement is inherently limited. SHEL adapts more
effectively to phase changes and yields a smoother miss profile
than CLAM. Overall, multi-scope adaptation improves both the
mean score and stability, with fewer extreme outliers than in the
single-scope case.

For completeness, the full set of miss ratio results for all Poly-
Bench benchmarks—across both input sizes and cache sizes—is
provided in the appendix. In these four summary plots (Figure 9,
Figure 10, Figure 11, Figure 12), both single-scope and multi-scope
programs are displayed together, with different colors used to dis-
tinguish the scope assignment of each benchmark.
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4.4 Strengths and Limitations of Lease Cache.
The preceding analyses highlight both the gains and limitations
of lease assignment. Here, we summarize the key scenarios where
lease cache is especially effective. Lease programming demonstrates
its greatest benefit on programs with:

• Frequent, regular reuse: Where compiler or profile-based
analysis can assign leases that tightly match reuse intervals
(e.g., matrix multiplication kernels).

• Multi-phase locality: Multi-scope lease assignment (SHEL)
adapts leases across different program phases, overcoming
limitations seen with both hardware policies (PLRU) and
single-scope lease assignment (CLAM).

4.4.1 Multi-Scope Lease Assignment: SHEL vs. CLAM. Akey strength
of lease cache is its flexibility in adapting to diverse and evolving
reuse patterns. CLAM assigns a single set of leases for the entire
program, implicitly assuming uniform reuse behavior across all
phases. This works well for programs with steady, predictable lo-
cality, but falls short in real-world codes with changing or irregular
working sets.

SHEL extends lease programming by dividing program execution
into multiple logical phases—typically by loop nest or other code
structure—and assigning leases independently within each phase.
This allows the lease cache to adjust more precisely to each phase’s
locality characteristics, minimizing both under- and over-retention.
This advantage is clearly illustrated in Figure 4 and Figure 5.

• In 3mm (Fig.4), the miss count forms distinct steady plateaus,
corresponding to phases with different but internally consis-
tent reuse patterns. SHEL tracks these phases, resulting in
stable, phase-aligned miss counts significantly lower than
those achieved by PLRU.

• In contrast, programs with more complex or dynamically
shifting locality, such as ludcmp (Fig.5), still benefit from
SHEL’s finer adaptation compared to CLAM.

SHEL’s multi-scope assignment bridges much of the remaining
gap to OPT in phase-structured codes and represents a robust,
scalable improvement over single-scope approaches.

4.4.2 Limitations and Remaining Gaps. Despite substantial im-
provements, lease cache policies still fall short of achieving the
theoretical lower bound set by OPT. The most pronounced gaps
are observed in benchmarks such as ludcmp, lu, and syr2k, which
are characterized by highly irregular or dynamically shifting reuse
patterns. In these cases, even advanced techniques like SHEL, which
assigns leases per program phase, can struggle because static scope
boundaries may not align with the true, fine-grained changes in
locality. This “phase misalignment” limits how effectively lease as-
signment can match actual program behavior, leaving a persistent
gap to OPT.

A key fundamental limitation is that OPT leverages perfect
knowledge of the entire future access trace. For example, OPT
knows precisely when each cache block will be accessed next, or
if it will never be accessed again. This allows OPT to evict a block
at the exact moment of its last use, ensuring that no cache space
is wasted on data with no future benefit. In contrast, lease cache
must assign leases based on past or predicted behavior, without
knowing the precise position of the last access. As a result, the

Figure 4: Sliding window miss counts for 3mm (cache size 128,
window overlap 25%). Distinct steady phases are visible, re-
flecting strong alignment between lease scopes and true lo-
cality phases.

Figure 5: Sliding window miss counts for ludcmp (cache size
128, window overlap 25%). More variable and irregular local-
ity limits the effectiveness of even multi-scope lease assign-
ment, but SHEL still outperforms CLAM and PLRU.

lease cache will treat all accesses from a given reference similarly,
often reserving space for blocks that are about to become dead,
thus incurring avoidable misses and suboptimal utilization.

4.5 Lease Cache Rationing
Finally, we consider the robustness of lease cache under resource
under-allocation, a key practical concern in shared systems. In real
environments, the amount of cache available to any single pro-
gram can vary over time, especially in shared environments where
multiple programs or processes compete for cache resources. This
variability can result from dynamic allocation, context switches,
or interference from other workloads. As a result, the actual cache
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available to a program may fluctuate below its nominal or “adver-
tised” capacity.

To evaluate the robustness of lease cache policies under such
conditions, we systematically varied the target cache size used for
lease assignment—rationing the number of blocks reported to the
lease assignment algorithm—while keeping the actual hardware
cache size fixed (128 blocks for this experiment). We compared the
miss ratios obtained by targeting from as little as 50% of the real
capacity (i.e., 64 blocks) up to the full size.

Figure 6 shows the geometric mean miss ratio across all Poly-
Bench benchmarks as a function of the rationed block count. Several
trends are immediately apparent:

• Rationing is safe and may be beneficial. The miss ratio
steadily decreases as the rationed block count increases,
reaching a broad, flat minimum when the target is set just
below the actual cache size (e.g., around 100–110 blocks).
This valley shows that cache programming is robust under
modest underallocation.

• Insensitivity near the optimum. There is little penalty
for choosing a rationed size slightly below the true cache
size.

• Implications for multi-programmed environments.
These findings support the strategy of conservative lease
assignment in environments with uncertain or fluctuating
cache availability. By under-reporting the cache size during
lease table generation, programs can guard against transient
cache pressure due to other workloads or system events,
without significant risk of performance loss.

Figure 6: Geometric meanmiss ratio across PolyBench bench-
marks vs. rationed block count (actual cache: 128 blocks).
Miss ratio is minimized with a slight under-allocation, and
remains flat near the ground truth.

4.5.1 Why Rationing Works. One of the key reasons why lease
cache rationing is effective—and robust tomodest under-allocation—lies
in the cache’s eviction policy. In a lease cache, eviction is not trig-
gered immediately when a lease expires. Instead, eviction only
occurs when space is needed for an upcoming access. The system

always prefers to evict blocks whose leases have expired (expired
eviction) before resorting to the more costly forced eviction of
still-active blocks.

When the lease generator is told a cache size smaller than the true
hardware capacity, it compensates by assigning generally shorter
leases to all references. This results in more blocks whose leases
expire earlier, and therefore, a greater number of blocks residing in
the cache with expired leases. However, these expired blocks are
not immediately evicted. Instead, they remain in the cache and can
still be accessed (hit) as long as there is spare capacity. Eviction
only takes place if the cache becomes full and a new block must be
inserted, at which point expired blocks are evicted first.

This decoupling of lease expiration and actual eviction allows the
cache to absorb small inaccuracies in reported cache size without
a significant performance penalty. If the cache is under-allocated
(due to rationing), expired eviction provides a buffer: the cache can
opportunistically retain blocks with expired leases, extracting addi-
tional hits, until memory pressure demands their removal. Only if
all expired blocks have been evicted and more space is still required
does the system perform forced eviction of active leases. The overall
design of the eviction policy allows lease cache to handle modest
discrepancies between the target (rationed) and actual cache size.

4.6 Analysis Conclusion
In summary, lease-based cache programming closes much of the gap
to OPT, especially for programs with regular structure and multi-
phase locality. However, more space for improvement remains for
irregular or triangular access patterns. Additionally, lease cache
rationing is robust to resource under-allocation, making it practical
in shared environments.

5 RELATEDWORK
Variable-size Caching. Ding et al. [7] studied the theoretical prop-

erties of lease programming and showed that it is optimal under
certain statistical assumptions, along with miss curve convexity
and sub-partitioning monotonicity. They evaluated the potential
using PolyBench and showed similar or better cache utilization
(in variable size cache) than the optimal fixed-size caching policy.
They used compiler analysis to collect RI distributions for lease
programming. Their technique does not require running a program.
However, they did not measure the effect of lease programming in
a fixed-size cache.

Collaborative Caching. Collaborative caching adds a hint at a
memory instruction. A number of hardware systems have been built
or proposed to provide an interface for software to influence cache
management. Examples include cache hints on Intel Itanium [3],
bypassing access on IBM Power series, and evict-me bit [18]. Wang
et al. [18] called a combined software-hardware solution collabora-
tive caching. Gu and Ding [10] developed the bipartite LRU-MRU
cache model where software can dynamically choose between LRU
andMRU policies for individual memory accesses. The paper proves
that the bipartite cache maintains the inclusion property, introduces
the LRU-MRU Stack Distance, and gives a one-pass algorithm to
compute stack distances for mixed LRU-MRU workloads. As a pro-
gramming technique, it gives a compiler technique called PACMAN
which uses profiling of OPT training to tag each load and store
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instruction as either LRU or MRU. Through simulation, they found
that OPT reduces the miss ratio by 24% compared to LRU, and PAC-
MAN achieves 50% of the reduction. This corresponds to a score of
50 in our study.

PACMAN hints and lease programming differ in two other as-
pects. First, PACMAN requires OPT simulation which is costly.
Second, the LRU-MRU hints are specific for a given execution and
must be re-programmed if the input or the cache size changes. In
comparison, lease programming uses program analysis and does
not simulate optimal caching. Therefore, lease programming exerts
greater control over cache management than cache hints while
maintaining superior programmability. Based on reported data,
lease programming is more effective than PACMAN (67 vs. 50).
Finally, we note that the hardware-simulation framework in this
paper enables a direct comparison with the reported data from prior
work.

For loop code, a compiler can analyze the data access patterns and
insert cache hints accordingly. Beyls and D’Hollander [3] developed
a technique called reuse distance equations, and Brock et al. [4] a
technique based on the linear patterns of OPT stack distances. In
both cases, they use code replication by branching [2] or splitting
loops [4]. There is at most one hint at each instruction, so code
replication increases the resolution of “collaboration." Ding et al.
[7] defined a property called sub-partitioning monotonicity which
means that cache programming never loses performance by this
type of code replication.

Optimal Caching Algorithms. The theoretical basis for cache
replacement is rooted in Belady’s MIN/OPT algorithm [1], which
provides the lowest possible miss ratio for any access trace under a
fixed-size cache size constraint by always evicting the block whose
next use is farthest in the future. Mattson et al. [13] introduced the
inclusion property and showed that caching solutions that have
the property can be evaluated using a stack algorithm to obtain the
miss ratio for all cache sizes in a single pass over the trace. OPT
requires an additional pass for pre-processing. Our implementation
of OPT caching uses a stack algorithm.

OPT-inspired Practical Replacement Policies. While Belady’s
MIN/OPT provides a theoretical optimum, it is not directly im-
plementable. Recent work has explored how hardware policies can
approximate OPT by learning from past behavior. Jain and Lin’s
Hawkeye policy [12] is a good example: Hawkeye reconstructs
Belady’s OPT solution for past cache accesses and uses this to guide
future replacement decisions. Their OPTgen component efficiently
simulates OPT’s decisions for a long window of accesses, using
sampling and liveness intervals, and then uses a PC value to classify
lines as cache-friendly or cache-averse. Hawkeye achieves higher
performance than prior RRIP-based and heuristic policies, especially
on memory-intensive workloads. Notably, their results confirm that
no heuristic policy can match OPT across all workloads, reinforc-
ing the value of program-guided or OPT-inspired approaches. Our
work is complementary: rather than learning heuristics, lease cache
aims for prescriptive cache management using program analysis
and leasing, and we provide a direct, empirical comparison of lease-
based programming against both PLRU and OPT for a range of
scientific codes.

6 SUMMARY
This paper presents an empirical evaluation of cache programming
using leases vs. optimal caching. It first describes an experimental
framework that reliably quantifies how cache size, program input,
and loop structures impact cache optimization. By testing the full
suite of PolyBench, it shows that cache programming achieves an
average score of 67, closing two-thirds of the gap between conven-
tional and optimal caching, with better performance in 128-block
caches (71 vs. 63 for 64-block) and small inputs (68 vs. 66). Multi-
scope tests (multiple loop nests) show higher and more consistent
scores (mean 84 and std dev 11 multi-scope vs. 53 and 64 for single-
scope), while triangular loop nests prove challenging, scoring lower
(49 vs. 82) with greater variability (std dev 59 vs. 18). In addition,
we have developed and tested lease cache rationing and found that
cache programming is robust under modest underallocation.
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A SCORES OF INDIVIDUAL PROGRAMS

(a) Small input, 64-block cache

(b) Small input, 128-block cache

Figure 7: Score comparison for small sized benchmarks across both cache sizes, where the red line is the arithmetic mean of the
scores in the figure. Scores are sorted in ascending order.
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(a) Medium input, 64-block cache

(b) Medium input, 128-block cache

Figure 8: Score comparison for medium sized benchmarks across both cache sizes, where the red line is the arithmetic mean of
the scores in the figure. Scores are sorted in ascending order.
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B MISS RATIOS OF INDIVIDUAL PROGRAMS

Figure 9: Miss ratio comparison across all PolyBench benchmarks using a small input size and a 64-line cache. Each benchmark
is evaluated under four policies: PLRU, Lease (single scope, CLAM), Lease (multi scope, SHEL), and OPT. Benchmarks are sorted
by Lease–OPT gap in descending order.

Figure 10:Miss ratio comparison across all PolyBench benchmarks using a small input size and a 128-line cache. Each benchmark
is evaluated under four policies: PLRU, Lease (single scope, CLAM), Lease (multi scope, SHEL), and OPT. Benchmarks are sorted
by Lease–OPT gap in descending order.
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Figure 11: Miss ratio comparison across all PolyBench benchmarks using a medium input size and a 64-line cache. Each
benchmark is evaluated under four policies: PLRU, Lease (single scope, CLAM), Lease (multi scope, SHEL), and OPT. Benchmarks
are sorted by Lease–OPT gap in descending order.

Figure 12: Miss ratio comparison across all PolyBench benchmarks using a medium input size and a 128-line cache. Each
benchmark is evaluated under four policies: PLRU, Lease (single scope, CLAM), Lease (multi scope, SHEL), and OPT. Benchmarks
are sorted by Lease–OPT gap in descending order.
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