Data Access Complexity:
Monotonicity and Proportionality

Chen Ding

University of Rochester
Rochester, NY, USA
cding@cs.rochester.edu

ABSTRACT

Locality is an abstraction of cache performance, while locality com-
plexity is its asymptotic behavior as program inputs and cache sizes
vary. This paper presents two properties of locality complexity.
First, Monotonicity is a necessary condition when a larger input
size must lead to a reduction in locality. Second, Proportionality
states that with cache optimization, its benefit scale at least linearly
with its size. The properties are formally proved: Monotonicity
holds for fully associative LRU caches and working-set caches,
while Proportionality applies to all programs and inputs.

1 INTRODUCTION

In computing, locality refers to the phenomenon where a program
can access its data in local memory most of the time, even if the
program’s data is too large to fit in local memory [13]. Locality
is essential for performance due to the memory wall [36]. The
bandwidth constraint is a fundamental bottleneck that limits the
speed of data transfer between local and remote memory.

Time complexity measures the “processor work” In compari-
son, locality measures the “memory work,” which is the cost of
transferring data from remote memory to local memory. We call it
data access complexity. Although program operations count directly
into the processor work, memory operations may or may not incur
memory work. It depends on the effect of caching on local memory.
Higher locality is synonymous with lower data access complexity.
The locality depends on the algorithm, the size of the problem, and
the size and management of the cache.

When measuring time complexity, the unit is an operation. In
data access complexity, we consider a simple machine model with
a processor and the main memory on two computer chips. The
processor may be multicore or a GPU. To exploit locality, the pro-
cessor chip contains a cache, which is local memory. In locality or
data access complexity, the unit is a data transfer. Time complexity
serves as an upper bound on data access complexity because a data
transfer can only be triggered by a memory operation (in the case
of demand caching.!). This upper bound is weak because not every
memory operation incurs a data transfer.

Monotonicity. A fundamental feature of time and space complex-
ity is monotonicity. A large problem requires more time and space
than a small problem. Typically, higher time and space complexity
also means worse locality. We say that monotonicity holds if locality
decreases as the size of the problem increases. However, locality

!Demand caching transfers one data block at a time when the data is needed. It is
an extension of the concept of demand paging in virtual memory management [11].
Prefetching (or prepaging) reduces the exposed latency but does not reduce the total
amount of data transfer.

Yifan Zhu
University of Rochester
Rochester, NY, USA
yifanzhu@rochester.edu

is not always monotonic. For example, the locality of the n-body
simulation depends on the distribution of objects in a simulated
system, and there may be better locality in a system with a larger
number of objects (with greater time and space complexity) than in
a small system. In this paper, we formalize the conditions of locality
monotonicity.

Proportionality. The best-case locality is straightforward. If a
single data item is accessed and cached, only one data transfer is
needed from remote to local memory. The worst locality occurs
when there is no caching, resulting in every memory access re-
quiring a remote data fetch. While poor cache management can
lead to the worst locality, we are considering the scenario under
the best possible caching. We demonstrate that the memory access
complexity can always be reduced in proportion to the cache size,
and this performance is always achievable.

These complexity results have the following practical implica-
tions:

o We have formal conditions to check whether an algorithm
and its implementation are monotone in its locality.

e We can always improve cache implementation so that the
benefit is at least linearly proportional to the cache size.

Locality is an abstraction that characterizes performance beyond
what happens on a single machine. Locality complexity further
raises the level of abstraction to characterize all inputs of a program.
This paper shows two properties of complexity for all programs.
Monotonicity divides all programs into two types: monotone and
non-monotone. Proportionality holds for all programs. To show
abstract definitions, we use naive matrix multiplication as an ex-
ample.

Locality in this paper means cache misses without prefetching.
Latency tolerance can often effectively reduce the time cost of cache
misses but not the energy cost. Hence, the data access complexity in
this paper refers to the energy cost of moving data, not the time cost.
The results of the paper are derived based on data reuses, which
can be element- or block-granularity. We use element granularity
in examples to make them simpler to understand. The findings,
Monotonicity, Identity Equation, and Proportionality hold for any
fixed data granularity.

When prefetching is used, some misses are converted into cache
hits. However, prefetching can also load too much data, resulting in
unnecessary memory transfers. The miss count for demand caching
is the amount of memory transfer that occurs without prefetching,
compared to the least amount of memory transfer when prefetching
is applied.


https://orcid.org/0000-0003-4968-6659
https://orcid.org/0009-0000-6718-7787

2 LOCALITY COMPLEXITY

2.1 Background

2.1.1  Terminology. By Peter ]J. Denning, "the principle of locality is
the tendency fro programs to cluster references to subsets if address
space for extended periods” [12, 14]. Complexity is an asymptotic
measure of the resources that a program or algorithm requires to
run. Locality complexity is the asymptotic cost of accessing the
memory hierarchy by a program or algorithm.

In the data access trace, a data reuse refers to two consecutive
accesses to the same data item. There are two measures of data
reuse: the reuse interval (RI) and the reuse distance (RD). RI is
the length of the reuse interval in time, and RD is the number of
distinct items accessed in a reuse interval, including the item being
accessed. If logical time is used, RI is the difference between the
time of first access and the time of reuse. For example, a sequence
“abceca” has two data reuses. The RI and RD of the reuse of “a” is 4
and 3 respectively.

Rlis also known as the inter-reference interval [15], inter-reference
recency [24], re-reference interval [22], and reuse distance [5]. We
use the term RI as it is used in recent papers [13, 38]. RD is a short
name for the LRU stack distance [26] and has been in use since the
early 2000s [6, 16].

2.1.2  Symbolic vs Numerical Locality. Although concepts like the
miss ratio are traditionally numerical and relate to execution, local-
ity complexity is symbolic and relates to a program or algorithm. We
first distinguish between symbolic program locality and numerical
trace locality.

Established in the 1960s and 1970s, the principle of locality
forms the foundation of modern memory system design and opti-
mization [13]. It is a property of computing in that a computing
task uses a subset of data at each phase of computation, and the
data subset changes at phase transitions. The locality, as defined by
Denning, is the property of a memory access trace.

The program locality is the version of the problem in which a
program is given. For locality analysis, a program means the set of
all its executions, one for each input. A similar distinction exists
between locality optimization and program locality optimization.

For locality, a program is considered entirely by its data or mem-
ory behavior. The data behavior of a program execution is a se-
quence of data references. When implemented in actual computer
memory, the memory behavior is a memory address trace or, syn-
onymously, a memory access trace. Although the theorems in this
paper hold for both the data locality, i.e., element granularity, and
cache locality, i.e., block granularity. we use element granularity in
the examples to make them simpler to understand.

2.1.3  The Working-set Cache. In the working-set cache, each data
item stays in the cache for time x every time it is accessed. The
working set is the basis for managing virtual memory [13, 15].
Denning and Schwartz [15] provided a pair of equations to calculate
the miss ratio and the average working-set size (WSS). The input
is a distribution of Rls P(ri), where P(ri = x) is the portion of RIs
whose value is equal to x.

m(x) = P(ri > x)

c(x+1) =c(x) +m(x)

Chen Ding and Yifan Zhu

where P(ri) is the RI distribution, m(x) is the miss ratio, and c(x)
is the average WSS. The two formulas iterate the time parameter
x in increasing order. At each step, the miss ratio is the portion of
RI values greater than x, and the cache size increases by the miss
ratio.

In this paper, we call the ¢ value the size of the working-set cache.
The cache miss ratio is

mr(c) = m(c(x))

To differentiate, we call m(x) the time-window miss ratio and mr(c)
the cache miss ratio. In the working-set cache, the cache size may
be fractional.

2.2 LRU Cache Locality Monotonicity

For two problem sizes P, P’, we say P’ is larger than P if the
following two conditions hold. The first condition is called sequence
embedding. This means that the memory access trace of # can
be embedded in the trace of P’. The memory access trace be aj,
i=1,...,nforPandbj,j=1,...,n" for P’, there exists a strictly
increasing index sequence j; such that a; = bj, foralli=1,...,n,
where equality means that a;, bj, access the same data item.

The second condition is that the embedding must not have in-
tercepts between data reuses. Once embedded, each data reuse in
P involves two accesses in ’. An intercept occurs when the same
data item is accessed between these accesses in P’. If no intercept
occurs between data reuses of £, we say that the embedding is
intercept-free.

The reuse interval and reuse distance are measures between
consecutive accesses to the same data. An intercept between two
data accesses will affect the reuse interval or reuse distance. To
quote Reviewer 1, "while sequence embedding maintains access
order, intercept-free embedding ensures that reuse is not reduced.

THEOREM 2.1. Let me(_, c) be the number of cache misses in a fully
associative LRU cache of size c. For all integers ¢ > 0, mc(P’,c) >
me(P, ¢), if P is an intercept-free embedding of P’.

Proor. For any cache size ¢ > 0, we prove that every miss in P
is a miss in P’. For each cache miss at a; in P, let its reuse distance
be d. Since a; is a miss, we have d > c. Let b; be the embedding of
a; in P’, and let its reuse distance be d’. Since the embedding is
intercept-free, we have d’ > d > c. Hence, bj must be amiss. O

For every cache miss in P, the corresponding access in a larger
P’ must be a miss in the cache of the same size. Monotonicity holds
for LRU caching. The proof is order-sensitive and uses information
about the execution sequence.

Consider naive matrix multiplication for square matrices. Let
the problem size be n for naive matrix multiplication for square
matrices of size n X n. To prove monotonicity, we need to show
that for any n > 0, the two conditions hold when we increase the
problem size from n to n + 1.

o Sequence embedding: The memory access trace of (n+1) X
(n + 1) matrix multiplication includes all memory accesses
of n X n matrix multiplication.

e Intercept freedom: There is no intercept between reuses of
embedded n X n matrix accesses.



Data Access Complexity

The second condition does not hold given the embedding in the
first condition. Let the three matrices be C = AXB. When computing
element C[i, j], it traverses the row i of A and the column j of B. At
problem size n+1when 1 < i, j < n, the access to the first n elements
of row i and column j are “embedded” accesses of problem size n.
The non-embedded accesses are not intercepts because they access
different data. At element C[i, n + 1], however, the non-embedded
accesses traverse the row i of A, which creates intercepts.

The second requirement is effectively unworkable when con-
sidering spatial reuse (due to non-unit size cache blocks). On all
computers, a cache block stores multiple data elements. A spatial
reuse happens when different elements in the same block are ac-
cessed. However, all hope is not lost. We next show a less stringent
condition of monotonicity.

2.3 Working-set Locality Monotonicity

Let P, P’ be two problem sizes of a program. There exists a mono-
tonic injection function from the set of Rls of # to the Rls of #’,
where monotonic injection means that the value of the source Rl in
% must be no greater than that of the sink Rl in #’. In other words,
for any Rl in P, there is a corresponding Rl in #’ that is the same
or higher in value. We call this condition Monotonic RI Injection.

In the working-set cache, when a data item is loaded into the
cache, it remains in the cache for a period before being evicted.
Since the cache size may vary, we measure cache consumption by
the time-space product, which is the total duration of all cache stays
of all data. The unit of cache consumption is one unit of data times
one unit of time.

When accessing a data item, we define tenancy as the time it
takes for a data item from being accessed (in the cache) to either
the next reuse or eviction from the cache, whichever occurs first.

THEOREM 2.2. Let S be the set of accesses in P that are cache hits.
Letc(P,S) be the cache consumption for these hits in P. Assume that
P has a monotonic injection in P, and the corresponding accesses
are also cache hits. Let c(P’, S) be the cache consumption for these
hits in P’. We have c¢(P,S) < c(P’,S).

ProoF. Let Rg be the set of backward Rls for the accesses in
(S). Each access is a cache hit, so the tenancy of each source access
is equal to its RI value. The cache consumption ¢(P,S) = Y, ep, 7

Since P has a monotonic injection in P’, let R:S be the RIs for the
corresponding accesses of (S). Since these corresponding accesses
are cache hits, the cache consumption ¢(#’,S) = ZrER:g r, which

is not less than 3 cp r = ¢(P, S). o

The monotonicity in the working-set cache means that the total
cache consumption for the same set of cache hits can only increase
when computing on a larger problem.

CoOROLLARY 2.3. The locality of naive matrix multiplication for
square matrices is monotonic for both element and block granularity
caching.

ProoF. Let the problem size be n for naive matrix multiplication
for square matrices of size n X n. We show monotonic RI injection
when we increase the problem size from n to n + 1.

First, we consider the element granularity. According to Smith
et al. [33], the reuse interval for matrix multiplication can be sym-
bolically represented in the left two columns of Table 1. We see
that for each RI in problem size n, the same RI exists in program
size n + 1.

Next, we consider the block granularity. The first and third
columns of Table 2 show symbolic RI values and the count of each
RI value. All RI value counts in the third column are monotone in
n. Hence, there is a monotonic injection of RI. [}

In each innermost loop iteration of the GEMM kernel, matrix
multiplication computes C[1, j1+=A[i,k]*B[k, j1, which can be
viewed as having either 3 or 4 accesses. We use 3-access matrix
multiplication in element granularity, following Smith et al. [33]
but 4-access in block granularity.

Table 1: RI and RD for 3-access matrix multiplication (Ele-
ment Granularity)

ri ‘ #ri H rd ‘ #rd
3 n3 — n? 3 n3 — n?
3n | n?—n? 2n+1 n3 — n?
n? +2n | n®—n?
) 3n? [ 3n?

Table 2: RI for 4-access matrix multiplication (block size b)

ri P(ri) #ri
1 ‘l} n32
4 1_ 1 b=1,3
4 4b b
an-4b+4 || & - | Bl
w | | e
4n® — 4nb + 4n ﬁ—ﬁ %znz
0 Ton 2

When n > 1, all the RI counts listed in the two tables are mono-
tone functions. By Theorem 2.2, matrix multiplication has Working-
set Locality Monotonicity. Not proved here, but the LRU cache
locality is also monotone. For element granularity, the third and
fourth columns of Table 1 show RD values and counts. All the
RD counts are monotone functions. The monotonicity conditions,
Monotonic RI Injection defined in this section, and Sequence Em-
bedding and Intercept Freedom from the last section are sufficient
conditions but not necessary.

Locality Monotonicity is about the number of cache misses, not
the miss ratio. In fact, in the same program, monotonicity can
hold for miss count but not miss ratio. Consider the cold-start
misses [23]. For element-granularity matrix multiplication, the cold-
start miss ratio is % the ratio of data size (infinite RIs in Table 1) to
the number of memory accesses, which decreases as n increases.



Tracelabcdabcdabcd

D‘W

Figure 1: The OPT algorithm and stack for cyclic accesses
with n = 4, reproduced from Brock et al. [8]

2.4 Bounds on the Least Cache Performance

In locality complexity, the best case or the lowest complexity is
trivial: a single data item is accessed, and a single cell is needed to
cache all data reuses. This section shows (1) the access pattern that
has the highest complexity and (2) a reachable bound on the least
cache performance (despite the complexity).

The locality complexity depends on cache management. First,
we prove the complexity of random access for any caching policy.

THEOREM 2.4 (RANDOM AccEss Miss RaTio). When accessing
n data objects randomly, the miss ratio by any cache replacement
algorithm that satisfies the inclusion property [26] is

=€ 0<c<n
mr(c) = {0" c>n

Proor. If a cache replacement algorithm satisfies the inclusion
property, it can be simulated using a stack algorithm. At each ac-
cess, the stack stores all data items in linear order. Since access is
random, each data item on the stack has an equal probability of
being accessed. Hence, the stack distance is uniformly distributed
between 1 and n, and the miss ratio is %, 0 < ¢ < n. The stack

distance is at most n, mr(c) = 0 for ¢ > n. O

Mattson et al. [26] gave the definition of the inclusion property
and stack algorithms and showed that the property holds for the
cache replacement policies LRU, MRU, LFU, Random, and OPT.
Theorem 2.4 shows that they all have the same miss ratio function,
except OPT, which requires future knowledge and cannot be used
when data access is random and nondeterministic. In addition,
collaborative caching LRU-MRU and its generalized form were
shown to also be stack algorithms [20, 21].

Mattson et al. [26] defined the OPT stack algorithm which com-
putes the miss count for any data reference trace for all cache sizes.
Brock et al. [8] gave an example that is reproduced in Figure 1. The
example is a sequence of cyclic accesses of four data items.

For a given cache size, Belady [4] gave the optimal replacement
method called MIN, which replaces the block that is accessed fur-
thest in the future. In other words, MIN evicts the least imminently
used data item. OPT simulates MIN for all cache sizes using a stack
data structure. The OPT stack is a priority list for what blocks
should be in the cache at any given time: a cache of size (1, 2, 3, ...)
will contain the first (1, 2, 3, ...) blocks in the stack, and thus access
to a data block is a miss when its stack position (OPT distance) is
greater than the size of the cache [26].

Brock et al. [8] used Figure 1 to demonstrate the application of
two rules for managing the OPT cache stack: (1) Upward Movement:
A block can only move up when accessed, and then it moves to the

Chen Ding and Yifan Zhu

top; (2) Downward Movement: Vacancies are filled by whichever a
data item above it will not be used for the longest time in the future.
A new item is treated as having vacated a new spot at the bottom.
Moving an item downward to fill a vacancy represents its eviction
from all caches smaller than the position of the vacancy (and the
item with the most remote future use is evicted).

Brock et al. [8, Appendix A] proved that the OPT distance for
cyclic accesses of n data items repeats between 2 and n.

THEOREM 2.5 (OPTIMAL CYCLIC ACCESS LocALITY). The optimal
locality of cyclic accesses is asymptotically the same as the locality of
random accesses.

Proor. The distribution of the OPT stack distances of cyclic
accesses is as follows:

H@‘{% 2<d<n

0 otherwise

The OPT stack distance is uniformly distributed between 2 and n
with a periodity of n — 1 [8]. The miss ratio function of optimal
caching is therefore:

ReC 0<c<n
mr(C)Z{g 1 c>n

Since n— 1 is asymptotically equivalent to n, the miss ratio function
is asymptotically equivalent to that of random access. O

We prove that for any program accessing n objects, with opti-
mized caching, the worst-case locality is bounded and proportional.
Specifically, the miss ratio is at worst no higher than the OPT miss
ratio for cyclic accesses at the same cache and data size.

THEOREM 2.6 (WORST CASE PROPORTIONALITY). The cache local-
ity can be optimized so that the worst-case miss ratio for any workload
accessing n data times is

B¢ 0<c<n

n—1
mr(c) < {0

c>n

Proor. Given a static trace of k accesses involving n distinct
items, one strategy is to sort the items by their access frequency
and then cache the top ¢ most frequently accessed items. Since
these c items are the most frequently occurring in the trace, each
of them must appear at least I% times. This observation ensures
that caching these items can capture a significant portion of the
overall accesses.

Hence, the following inequality holds:

n—-c _n-c
mr(c) < <
n

n—-1
m]

Combining the three theorems in the section, we have the corol-
lary that the worst-case bound is reachable.

COROLLARY 2.7. The worst-case miss ratio function is reachable.

Under optimal caching, cyclic traversals have the worst locality
or highest data access complexity, as do random accesses. To our
knowledge, this is the first time these two access patterns have
been proved to be equivalent in their locality.



Data Access Complexity

The proportionality is guaranteed given optimized caching. How-
ever, it does not require program optimization, just better cache
management.

3 RELATED WORK

Complexity Analysis. Symbolic analysis of locality started in
1970s, including stationary stochastic processes [15] and indepen-
dent reference models (IRM) [10, 25] and later Zipfian access pat-
terns in Web workloads [2]. These are theoretical workloads.

For program locality, precise symbolic analysis was pioneered
by cache miss equations [18] and reuse distance equations [7].
Both formulated the problem using integer equations and solved
them using Presburger arithmetics implemented using the Omega
calculator [30]. Recent improvements have reduced the analysis
cost, but still required solving integer equations [3]. The solution
has to be approximated to handle large programs [28, 37]. While
these studies targeted overall cache performance, Reineke [32]
developed symbolic worst-case analysis for real-time systems.

The working-set cache in this paper is the same as the uniform-
lease cache, prototyped and evaluated on the FPGA hardware [29].
The lease cache is designed to enable software-hardware collabo-
rative caching through lease programming. The ideal working-set
cache has a varying size. Reber et al. [31] referred to it as the virtual
cache size and studied the effect on a hardware cache with a fixed
size for scientific kernels. Chen et al. [9] compared the uniform-
lease cache and the LRU cache in theory and simulation.

Proportionality. Gu and Ding [19] proved that the LRU cache
miss ratio of random access. The Random Access Miss Ratio Theo-
rem shows that the same miss ratio for all stack algorithms. Since
LRU is one of the stack algorithms, the new theorem generalizes
the previous result. The Worst-Case Proportionality further gener-
alizes and shows the same function as the upper bound miss ratio
for all programs under optimized caching. A caching algorithm
is random replacement, which does not have the same locality as
random access. Random replacement miss ratio can be modeled by
a binomial distribution [34, 35].

Optimal cache replacement in a single cache was given by Belady
[4] in 1966. The technique is called MIN or Belady. Four years later,
Mattson et al. [26] gave the OPT algorithm, which simulates optimal
caching in all cache sizes. OPT is a stack algorithm, so its miss ratio
function is monotone. It took over four decades before Michaud
[27] proved that the miss ratio function is convex. The Worst-case
Proportionality Theorem in this paper shows the upper bound of
the OPT miss ratio function for all programs. Monotone and convex
miss ratio functions exist above the bound derived in this paper, so
the (previous results of) convexity and monotonicity do not imply
Proportionality.

Cache Performance Analysis. While locality measures such as the
miss ratio are traditionally numerical and a property of an execution,
locality complexity is symbolic and a property of a program or
an algorithm. Trace or online analysis, e.g., HPCToolkit [1], can
analyze binary code and non-determinism in parallel executions. An
online tool measures not just the memory cost but also other factors,
e.g., power [17], and the actual running time. For monotonicity,
complexity analysis can prove it for all problem sizes while testing

cannot. Finally, proportionality can be used to infer optimization
opportunities based on the observed performance.

4 SUMMARY

This paper has presented two properties of locality complexity,
derived and proved for all programs. We have formalized two suffi-
cient conditions of locality monotonicity and proved it for naive
square matrix multiplication. In addition, we prove Proportionality,
which states that the benefit of having more cache be at least linear.
Monotonicity divides all programs into two types: monotone and
non-monotone. Proportionality holds for all programs. The mono-
tonicity is proved for fully associative LRU caches and working-set
caches, and proportionality for all caching policies. These results
hold for both element and block granularity caching.

ACKNOWLEDGMENTS

The authors wish to thank Woody Wu and Yekai Yan for the discus-
sion on monotonicity and its proof and the reviewers of MEMSYS
2025 for the helpful comments and suggestions on the presentation
of the paper.

REFERENCES

[1] Laksono Adhianto, Sinchan Banerjee, Mike Fagan, Mark Krentel, Gabriel Marin,
John Mellor-Crummey, and Nathan R. Tallent. 2010. HPCTOOLKIT: Tools for per-
formance analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience 22, 6 (2010), 685-701.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
2012. Workload analysis of a large-scale key-value store. In Proceedings of the
International Conference on Measurement and Modeling of Computer Systems.
53-64.

[3] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noél Pouchet, and P. Sadayappan.
2018. Analytical modeling of cache behavior for affine programs. Proceedings of
the ACM on Programming Languages 2, POPL (2018), 32:1-32:26.

[4] L. A. Belady. 1966. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal 5, 2 (1966), 78-101.

[5] Erik Berg, Hakan Zeffer, and Erik Hagersten. 2006. A statistical multiprocessor
cache model. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software. 89-99.

[6] K. Beyls. 2004. Software methods to improve data locality and cache behavior.
Ph. D. Dissertation. Ghent University.

[7] Kristof Beyls and Erik H. D’Hollander. 2005. Generating cache hints for improved
program efficiency. Journal of Systems Architecture 51, 4 (2005), 223-250.

[8] Jacob Brock, Xiaoming Gu, Bin Bao, and Chen Ding. 2013. Pacman: Program-
Assisted Cache Management. In Proceedings of the International Symposium on
Memory Management.

[9] Dong Chen, Chen Ding, Fangzhou Liu, Benjamin Reber, Wesley Smith, and
Pengcheng Li. 2021. Uniform lease vs. LRU cache: analysis and evaluation. In
ISMM °21: 2021 ACM SIGPLAN International Symposium on Memory Management,
Virtual Event, Canada, 22 June 2021, Zhenlin Wang and Tobias Wrigstad (Eds.).
ACM, 15-27.

[10] Asit Dan and Donald F. Towsley. 1990. An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes. In Proceedings of the International Conference
on Measurement and Modeling of Computer Systems. 143-152.

[11] Peter J. Denning. 1970. Virtual Memory. Comput. Surveys 2, 3 (1970), 153-189.
https://doi.org/10.1145/356571.356573

[12] Peter J. Denning. 2005. The locality principle. Commun. ACM 48, 7 (July 2005),
19-24. https://doi.org/10.1145/1070838.1070856

[13] Peter J. Denning. 2021. Working Set Analytics. ACM Computing Survey 53, 6
(2021), 113:1-113:36. https://doi.org/10.1145/3399709

[14] Peter J. Denning and Craig H. Martell. 2015. Great Principles of Computing. The
MIT Press.

[15] Peter J. Denning and Stuart C. Schwartz. 1972. Properties of the working set
model. Commun. ACM 15, 3 (1972), 191-198.

[16] Chen Ding and Ken Kennedy. 1999. Improving Cache Performance in Dynamic
Applications through Data and Computation Reorganization at Run Time. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation.

[17] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.
Cameron. 2010. PowerPack: Energy Profiling and Analysis of High-Performance


https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/1070838.1070856
https://doi.org/10.1145/3399709

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Systems and Applications. IEEE Transactions on Parallel and Distributed Systems
21,5 (2010), 658-671.

S. Ghosh, M. Martonosi, and S. Malik. 1999. Cache Miss Equations: A Compiler
Framework for Analyzing and Tuning Memory Behavior. ACM Transactions on
Programming Languages and Systems 21, 4 (1999).

Xiaoming Gu and Chen Ding. 2008. Reuse distance distribution in random access.
Technical Report URCS #930. University of Rochester, Rochester, NY. a short
version appeared in the 2008 MSPC workshop..

Xiaoming Gu and Chen Ding. 2011. On the theory and potential of LRU-MRU
collaborative cache management. In Proceedings of the International Symposium
on Memory Management. 43-54.

Xiaoming Gu and Chen Ding. 2012. A generalized theory of collaborative caching.
In Proceedings of the International Symposium on Memory Management. 109-120.
Allan Hartstein, Vijayalakshmi Srinivasan, Thomas R. Puzak, and Philip G. Emma.
2008. On the Nature of Cache Miss Behavior: Is It /2? J. Instr. Level Parallelism
10 (2008).

M. D. Hill. 1987. Aspects of cache memory and instruction buffer performance.
Ph. D. Dissertation. University of California, Berkeley.

Song Jiang and Xiaodong Zhang. 2005. Token-ordered LRU: an effective page
replacement policy and its implementation in Linux systems. Perform. Eval. 60,
1-4 (2005), 5-29

W. F. King. 1971. Analysis of demand paging algorithms. In Proceedings of IFIP
Congress. 485-490.

R. L. Mattson, J. Gecsei, D. Slutz, and I. L. Traiger. 1970. Evaluation techniques
for storage hierarchies. IBM System Journal 9, 2 (1970), 78-117.

Pierre Michaud. 2016. Some Mathematical Facts About Optimal Cache Replace-
ment. ACM Transactions on Architecture and Code Optimization 13, 4 (2016),
50:1-50:19. https://doi.org/10.1145/3017992

Arjun Pitchanathan, Kunwar Grover, and Tobias Grosser. 2024. Falcon: A Scalable
Analytical Cache Model. Proc. ACM Program. Lang. 8, PLDI, Article 222 (jun

[29

[30

[31

[33

[34

[35

[36

™
=

(38]

Chen Ding and Yifan Zhu

2024), 25 pages. https://doi.org/10.1145/3656452

Ian Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen. 2020. CLAM:
Compiler Lease of Cache Memory. In MEMSYS 2020: The International Symposium
on Memory Systems, Washington, DC, USA, September, 2020. ACM, 281-296.
William W. Pugh and David Wonnacott. 1998. Constraint-Based Array Depen-
dence Analysis. ACM Transactions on Programming Languages and Systems 20, 3
(1998), 635-678.

Benjamin Reber, Matthew Gould, Alexander H. Kneipp, Fangzhou Liu, Ian Prechtl,
Chen Ding, Linlin Chen, and Dorin Patru. 2023. Cache Programming for Scientific
Loops Using Leases. ACM Transactions on Architecture and Code Optimization
20, 3, Article 39 (jul 2023), 25 pages.

Jan Reineke. 2018. The Semantic Foundations and a Landscape of Cache-
Persistence Analyses. Leibniz Trans. Embed. Syst. 5, 1 (2018), 03:1-03:52.
Wesley Smith, Aidan Goldfarb, and Chen Ding. 2022. Beyond Time Com-
plexity: Data Movement Complexity Analysis for Matrix Multiplication.
arXiv:2203.02536 [cs.DS]

Shaotong Sun, Yifan Zhu, Xingzhi Ye, and Chen Ding. 2024. Measuring Data Ac-
cess Latency in Large CPU Caches. In Proceedings of the International Symposium
on Memory Systems (MEMSYS). 1-11.

Richard West, Puneet Zaroo, Carl A. Waldspurger, and Xiao Zhang. 2010. Online
cache modeling for commodity multicore processors. Operating Systems Review
44, 4 (2010), 19-29.

William A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: implications
of the obvious. SIGARCH Comput. Archit. News 23, 1 (1995), 20-24.

Jingling Xue and Xavier Vera. 2004. Efficient and Accurate Analytical Modeling of
Whole-Program Data Cache Behavior. IEEE Trans. Comput. 53, 5 (2004), 547-566.
https://doi.org/10.1109/TC.2004.1275296

Liang Yuan, Chen Ding, Wesley Smith, Peter J. Denning, and Yunquan Zhang.
2019. A Relational Theory of Locality. ACM Transactions on Architecture and
Code Optimization 16, 3 (2019), 33:1-33:26.


https://doi.org/10.1145/3017992
https://doi.org/10.1145/3656452
https://arxiv.org/abs/2203.02536
https://doi.org/10.1109/TC.2004.1275296

	Abstract
	1 Introduction
	2 Locality Complexity
	2.1 Background
	2.2 LRU Cache Locality Monotonicity
	2.3 Working-set Locality Monotonicity
	2.4 Bounds on the Least Cache Performance

	3 Related Work
	4 Summary
	Acknowledgments
	References

