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ABSTRACT
Locality is an abstraction of cache performance, while locality com-

plexity is its asymptotic behavior as program inputs and cache sizes

vary. This paper presents two properties of locality complexity.

First, Monotonicity is a necessary condition when a larger input

size must lead to a reduction in locality. Second, Proportionality

states that with cache optimization, its benefit scale at least linearly

with its size. The properties are formally proved: Monotonicity

holds for fully associative LRU caches and working-set caches,

while Proportionality applies to all programs and inputs.

1 INTRODUCTION
In computing, locality refers to the phenomenon where a program

can access its data in local memory most of the time, even if the

program’s data is too large to fit in local memory [13]. Locality

is essential for performance due to the memory wall [36]. The

bandwidth constraint is a fundamental bottleneck that limits the

speed of data transfer between local and remote memory.

Time complexity measures the “processor work.” In compari-

son, locality measures the “memory work,” which is the cost of

transferring data from remote memory to local memory. We call it

data access complexity. Although program operations count directly

into the processor work, memory operations may or may not incur

memory work. It depends on the effect of caching on local memory.

Higher locality is synonymous with lower data access complexity.

The locality depends on the algorithm, the size of the problem, and

the size and management of the cache.

When measuring time complexity, the unit is an operation. In

data access complexity, we consider a simple machine model with

a processor and the main memory on two computer chips. The

processor may be multicore or a GPU. To exploit locality, the pro-

cessor chip contains a cache, which is local memory. In locality or

data access complexity, the unit is a data transfer. Time complexity

serves as an upper bound on data access complexity because a data

transfer can only be triggered by a memory operation (in the case

of demand caching.
1
). This upper bound is weak because not every

memory operation incurs a data transfer.

Monotonicity. A fundamental feature of time and space complex-

ity is monotonicity. A large problem requires more time and space

than a small problem. Typically, higher time and space complexity

also means worse locality. We say thatmonotonicity holds if locality

decreases as the size of the problem increases. However, locality

1
Demand caching transfers one data block at a time when the data is needed. It is

an extension of the concept of demand paging in virtual memory management [11].

Prefetching (or prepaging) reduces the exposed latency but does not reduce the total

amount of data transfer.

is not always monotonic. For example, the locality of the n-body

simulation depends on the distribution of objects in a simulated

system, and there may be better locality in a system with a larger

number of objects (with greater time and space complexity) than in

a small system. In this paper, we formalize the conditions of locality

monotonicity.

Proportionality. The best-case locality is straightforward. If a

single data item is accessed and cached, only one data transfer is

needed from remote to local memory. The worst locality occurs

when there is no caching, resulting in every memory access re-

quiring a remote data fetch. While poor cache management can

lead to the worst locality, we are considering the scenario under

the best possible caching. We demonstrate that the memory access

complexity can always be reduced in proportion to the cache size,

and this performance is always achievable.

These complexity results have the following practical implica-

tions:

• We have formal conditions to check whether an algorithm

and its implementation are monotone in its locality.

• We can always improve cache implementation so that the

benefit is at least linearly proportional to the cache size.

Locality is an abstraction that characterizes performance beyond

what happens on a single machine. Locality complexity further

raises the level of abstraction to characterize all inputs of a program.

This paper shows two properties of complexity for all programs.
Monotonicity divides all programs into two types: monotone and

non-monotone. Proportionality holds for all programs. To show

abstract definitions, we use naive matrix multiplication as an ex-

ample.

Locality in this paper means cache misses without prefetching.

Latency tolerance can often effectively reduce the time cost of cache

misses but not the energy cost. Hence, the data access complexity in

this paper refers to the energy cost of moving data, not the time cost.

The results of the paper are derived based on data reuses, which

can be element- or block-granularity. We use element granularity

in examples to make them simpler to understand. The findings,

Monotonicity, Identity Equation, and Proportionality hold for any

fixed data granularity.

When prefetching is used, some misses are converted into cache

hits. However, prefetching can also load too much data, resulting in

unnecessary memory transfers. The miss count for demand caching

is the amount of memory transfer that occurs without prefetching,

compared to the least amount of memory transfer when prefetching

is applied.
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2 LOCALITY COMPLEXITY
2.1 Background
2.1.1 Terminology. By Peter J. Denning, "the principle of locality is
the tendency fro programs to cluster references to subsets if address

space for extended periods" [12, 14]. Complexity is an asymptotic

measure of the resources that a program or algorithm requires to

run. Locality complexity is the asymptotic cost of accessing the

memory hierarchy by a program or algorithm.

In the data access trace, a data reuse refers to two consecutive

accesses to the same data item. There are two measures of data

reuse: the reuse interval (RI) and the reuse distance (RD). RI is
the length of the reuse interval in time, and RD is the number of

distinct items accessed in a reuse interval, including the item being

accessed. If logical time is used, RI is the difference between the

time of first access and the time of reuse. For example, a sequence

“abcca” has two data reuses. The RI and RD of the reuse of “a” is 4

and 3 respectively.

RI is also known as the inter-reference interval [15], inter-reference

recency [24], re-reference interval [22], and reuse distance [5]. We

use the term RI as it is used in recent papers [13, 38]. RD is a short

name for the LRU stack distance [26] and has been in use since the

early 2000s [6, 16].

2.1.2 Symbolic vs Numerical Locality. Although concepts like the

miss ratio are traditionally numerical and relate to execution, local-

ity complexity is symbolic and relates to a program or algorithm.We

first distinguish between symbolic program locality and numerical

trace locality.

Established in the 1960s and 1970s, the principle of locality
forms the foundation of modern memory system design and opti-

mization [13]. It is a property of computing in that a computing

task uses a subset of data at each phase of computation, and the

data subset changes at phase transitions. The locality, as defined by

Denning, is the property of a memory access trace.

The program locality is the version of the problem in which a

program is given. For locality analysis, a program means the set of

all its executions, one for each input. A similar distinction exists

between locality optimization and program locality optimization.

For locality, a program is considered entirely by its data or mem-

ory behavior. The data behavior of a program execution is a se-

quence of data references. When implemented in actual computer

memory, the memory behavior is a memory address trace or, syn-

onymously, a memory access trace. Although the theorems in this

paper hold for both the data locality, i.e., element granularity, and

cache locality, i.e., block granularity. we use element granularity in

the examples to make them simpler to understand.

2.1.3 The Working-set Cache. In the working-set cache, each data

item stays in the cache for time 𝑥 every time it is accessed. The

working set is the basis for managing virtual memory [13, 15].

Denning and Schwartz [15] provided a pair of equations to calculate

the miss ratio and the average working-set size (WSS). The input

is a distribution of RIs 𝑃 (ri), where 𝑃 (ri = 𝑥) is the portion of RIs

whose value is equal to 𝑥 .

𝑚(𝑥) = 𝑃 (ri > 𝑥)
𝑐 (𝑥 + 1) = 𝑐 (𝑥) +𝑚(𝑥)

where 𝑃 (ri) is the RI distribution,𝑚(𝑥) is the miss ratio, and 𝑐 (𝑥)
is the average WSS. The two formulas iterate the time parameter

𝑥 in increasing order. At each step, the miss ratio is the portion of

RI values greater than 𝑥 , and the cache size increases by the miss

ratio.

In this paper, we call the 𝑐 value the size of the working-set cache.

The cache miss ratio is

mr(𝑐) =𝑚(𝑐 (𝑥))

To differentiate, we call𝑚(𝑥) the time-windowmiss ratio andmr(𝑐)
the cache miss ratio. In the working-set cache, the cache size may

be fractional.

2.2 LRU Cache Locality Monotonicity
For two problem sizes P,P′

, we say P′
is larger than P if the

following two conditions hold. The first condition is called sequence
embedding. This means that the memory access trace of P can

be embedded in the trace of P′
. The memory access trace be 𝑎𝑖 ,

𝑖 = 1, . . . , 𝑛 for P and 𝑏 𝑗 , 𝑗 = 1, . . . , 𝑛′ for P′
, there exists a strictly

increasing index sequence 𝑗𝑖 such that 𝑎𝑖 = 𝑏 𝑗𝑖 for all 𝑖 = 1, . . . , 𝑛,

where equality means that 𝑎𝑖 , 𝑏 𝑗𝑖 access the same data item.

The second condition is that the embedding must not have in-

tercepts between data reuses. Once embedded, each data reuse in

P involves two accesses in P′
. An intercept occurs when the same

data item is accessed between these accesses in P′
. If no intercept

occurs between data reuses of P, we say that the embedding is

intercept-free.
The reuse interval and reuse distance are measures between

consecutive accesses to the same data. An intercept between two

data accesses will affect the reuse interval or reuse distance. To

quote Reviewer 1, "while sequence embedding maintains access

order, intercept-free embedding ensures that reuse is not reduced."

Theorem 2.1. Let mc(_, 𝑐) be the number of cache misses in a fully
associative LRU cache of size 𝑐 . For all integers 𝑐 ≥ 0, mc(P′, 𝑐) ≥
mc(P, 𝑐), if P is an intercept-free embedding of P′.

Proof. For any cache size 𝑐 ≥ 0, we prove that every miss in P
is a miss in P′

. For each cache miss at 𝑎𝑖 in P, let its reuse distance

be 𝑑 . Since 𝑎𝑖 is a miss, we have 𝑑 > 𝑐 . Let 𝑏 𝑗 be the embedding of

𝑎𝑖 in P′
, and let its reuse distance be 𝑑′. Since the embedding is

intercept-free, we have 𝑑′ ≥ 𝑑 > 𝑐 . Hence, 𝑏 𝑗 must be a miss. □

For every cache miss in P, the corresponding access in a larger

P′
must be a miss in the cache of the same size. Monotonicity holds

for LRU caching. The proof is order-sensitive and uses information

about the execution sequence.

Consider naive matrix multiplication for square matrices. Let

the problem size be 𝑛 for naive matrix multiplication for square

matrices of size 𝑛 × 𝑛. To prove monotonicity, we need to show

that for any 𝑛 > 0, the two conditions hold when we increase the

problem size from 𝑛 to 𝑛 + 1.

• Sequence embedding: The memory access trace of (𝑛 + 1) ×
(𝑛 + 1) matrix multiplication includes all memory accesses

of 𝑛 × 𝑛 matrix multiplication.

• Intercept freedom: There is no intercept between reuses of

embedded 𝑛 × 𝑛 matrix accesses.
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The second condition does not hold given the embedding in the

first condition. Let the threematrices be𝐶 = 𝐴×𝐵. When computing

element𝐶 [𝑖, 𝑗], it traverses the row 𝑖 of𝐴 and the column 𝑗 of 𝐵. At

problem size𝑛+1when 1 ≤ 𝑖, 𝑗 ≤ 𝑛, the access to the first𝑛 elements

of row 𝑖 and column 𝑗 are “embedded” accesses of problem size 𝑛.

The non-embedded accesses are not intercepts because they access

different data. At element 𝐶 [𝑖, 𝑛 + 1], however, the non-embedded

accesses traverse the row 𝑖 of 𝐴, which creates intercepts.

The second requirement is effectively unworkable when con-

sidering spatial reuse (due to non-unit size cache blocks). On all

computers, a cache block stores multiple data elements. A spatial

reuse happens when different elements in the same block are ac-

cessed. However, all hope is not lost. We next show a less stringent

condition of monotonicity.

2.3 Working-set Locality Monotonicity
Let P,P′

be two problem sizes of a program. There exists a mono-

tonic injection function from the set of RIs of P to the RIs of P′
,

where monotonic injection means that the value of the source RI in

P must be no greater than that of the sink RI in P′
. In other words,

for any RI in P, there is a corresponding RI in P′
that is the same

or higher in value. We call this condition Monotonic RI Injection.
In the working-set cache, when a data item is loaded into the

cache, it remains in the cache for a period before being evicted.

Since the cache size may vary, we measure cache consumption by

the time-space product, which is the total duration of all cache stays

of all data. The unit of cache consumption is one unit of data times

one unit of time.

When accessing a data item, we define tenancy as the time it

takes for a data item from being accessed (in the cache) to either

the next reuse or eviction from the cache, whichever occurs first.

Theorem 2.2. Let S be the set of accesses in P that are cache hits.
Let 𝑐 (P,S) be the cache consumption for these hits in P. Assume that
P has a monotonic injection in P′, and the corresponding accesses
are also cache hits. Let 𝑐 (P′,S) be the cache consumption for these
hits in P′. We have 𝑐 (P,S) ≤ 𝑐 (P′,S).

Proof. Let 𝑅S be the set of backward RIs for the accesses in

(𝑆). Each access is a cache hit, so the tenancy of each source access

is equal to its RI value. The cache consumption 𝑐 (P,S) = ∑
𝑟 ∈𝑅S 𝑟 .

Since P has a monotonic injection in P′
, let 𝑅′S be the RIs for the

corresponding accesses of (𝑆). Since these corresponding accesses

are cache hits, the cache consumption 𝑐 (P′,S) = ∑
𝑟 ∈𝑅′

S
𝑟 , which

is not less than

∑
𝑟 ∈𝑅S 𝑟 = 𝑐 (P,S). □

The monotonicity in the working-set cache means that the total

cache consumption for the same set of cache hits can only increase

when computing on a larger problem.

Corollary 2.3. The locality of naive matrix multiplication for
square matrices is monotonic for both element and block granularity
caching.

Proof. Let the problem size be 𝑛 for naive matrix multiplication

for square matrices of size 𝑛 × 𝑛. We show monotonic RI injection

when we increase the problem size from 𝑛 to 𝑛 + 1.

First, we consider the element granularity. According to Smith

et al. [33], the reuse interval for matrix multiplication can be sym-

bolically represented in the left two columns of Table 1. We see

that for each RI in problem size 𝑛, the same RI exists in program

size 𝑛 + 1.

Next, we consider the block granularity. The first and third

columns of Table 2 show symbolic RI values and the count of each

RI value. All RI value counts in the third column are monotone in

𝑛. Hence, there is a monotonic injection of RI. □

In each innermost loop iteration of the GEMM kernel, matrix

multiplication computes C[i,j]+=A[i,k]*B[k,j], which can be

viewed as having either 3 or 4 accesses. We use 3-access matrix

multiplication in element granularity, following Smith et al. [33]

but 4-access in block granularity.

Table 1: RI and RD for 3-access matrix multiplication (Ele-
ment Granularity)

ri #ri 𝑟𝑑 #𝑟𝑑

3 𝑛3 − 𝑛2 3 𝑛3 − 𝑛2

3𝑛 𝑛3 − 𝑛2 2𝑛 + 1 𝑛3 − 𝑛2

3𝑛2 𝑛3 − 𝑛2 𝑛2 + 2𝑛 𝑛3 − 𝑛2

∞ 3𝑛2 ∞ 3𝑛2

Table 2: RI for 4-access matrix multiplication (block size 𝑏)

ri 𝑃 (ri) #𝑟𝑖

1
1

4
𝑛3

3
1

4
− 1

4𝑏𝑛
𝑛3 − 𝑛2

𝑏

4
1

4
− 1

4𝑏
𝑏−1
𝑏

𝑛3

4𝑛 − 4𝑏 + 4
1

4𝑏
− 1

4𝑏𝑛
𝑏−1
𝑏

𝑛2

4𝑛 1

4
− 1

4𝑏
𝑏−1
𝑏

𝑛3

4𝑛2 − 4𝑛𝑏 + 4𝑛 1

4𝑏
− 1

4𝑏𝑛
𝑏−1
𝑏

𝑛2

∞ 3

4𝑏𝑛
3𝑛2

𝑏

When 𝑛 ≥ 1, all the RI counts listed in the two tables are mono-

tone functions. By Theorem 2.2, matrix multiplication has Working-

set Locality Monotonicity. Not proved here, but the LRU cache

locality is also monotone. For element granularity, the third and

fourth columns of Table 1 show RD values and counts. All the

RD counts are monotone functions. The monotonicity conditions,

Monotonic RI Injection defined in this section, and Sequence Em-

bedding and Intercept Freedom from the last section are sufficient

conditions but not necessary.

Locality Monotonicity is about the number of cache misses, not

the miss ratio. In fact, in the same program, monotonicity can

hold for miss count but not miss ratio. Consider the cold-start

misses [23]. For element-granularity matrix multiplication, the cold-

start miss ratio is
1

𝑛 , the ratio of data size (infinite RIs in Table 1) to

the number of memory accesses, which decreases as 𝑛 increases.

3



Chen Ding and Yifan Zhu

Figure 1: The OPT algorithm and stack for cyclic accesses
with 𝑛 = 4, reproduced from Brock et al. [8]

2.4 Bounds on the Least Cache Performance
In locality complexity, the best case or the lowest complexity is

trivial: a single data item is accessed, and a single cell is needed to

cache all data reuses. This section shows (1) the access pattern that

has the highest complexity and (2) a reachable bound on the least

cache performance (despite the complexity).

The locality complexity depends on cache management. First,

we prove the complexity of random access for any caching policy.

Theorem 2.4 (Random Access Miss Ratio). When accessing
𝑛 data objects randomly, the miss ratio by any cache replacement
algorithm that satisfies the inclusion property [26] is

mr(𝑐) =
{
𝑛−𝑐
𝑛 0 ≤ 𝑐 ≤ 𝑛

0 𝑐 > 𝑛

Proof. If a cache replacement algorithm satisfies the inclusion

property, it can be simulated using a stack algorithm. At each ac-

cess, the stack stores all data items in linear order. Since access is

random, each data item on the stack has an equal probability of

being accessed. Hence, the stack distance is uniformly distributed

between 1 and 𝑛, and the miss ratio is
𝑛−𝑐
𝑛 , 0 ≤ 𝑐 ≤ 𝑛. The stack

distance is at most 𝑛, mr(𝑐) = 0 for 𝑐 > 𝑛. □

Mattson et al. [26] gave the definition of the inclusion property

and stack algorithms and showed that the property holds for the

cache replacement policies LRU, MRU, LFU, Random, and OPT.

Theorem 2.4 shows that they all have the same miss ratio function,

except OPT, which requires future knowledge and cannot be used

when data access is random and nondeterministic. In addition,

collaborative caching LRU-MRU and its generalized form were

shown to also be stack algorithms [20, 21].

Mattson et al. [26] defined the OPT stack algorithm which com-

putes the miss count for any data reference trace for all cache sizes.

Brock et al. [8] gave an example that is reproduced in Figure 1. The

example is a sequence of cyclic accesses of four data items.

For a given cache size, Belady [4] gave the optimal replacement

method called MIN, which replaces the block that is accessed fur-

thest in the future. In other words, MIN evicts the least imminently

used data item. OPT simulates MIN for all cache sizes using a stack

data structure. The OPT stack is a priority list for what blocks

should be in the cache at any given time: a cache of size (1, 2, 3, ...)

will contain the first (1, 2, 3, ...) blocks in the stack, and thus access

to a data block is a miss when its stack position (OPT distance) is

greater than the size of the cache [26].

Brock et al. [8] used Figure 1 to demonstrate the application of

two rules for managing the OPT cache stack: (1) UpwardMovement:

A block can only move up when accessed, and then it moves to the

top; (2) Downward Movement: Vacancies are filled by whichever a

data item above it will not be used for the longest time in the future.

A new item is treated as having vacated a new spot at the bottom.

Moving an item downward to fill a vacancy represents its eviction

from all caches smaller than the position of the vacancy (and the

item with the most remote future use is evicted).

Brock et al. [8, Appendix A] proved that the OPT distance for

cyclic accesses of 𝑛 data items repeats between 2 and 𝑛.

Theorem 2.5 (Optimal Cyclic Access Locality). The optimal
locality of cyclic accesses is asymptotically the same as the locality of
random accesses.

Proof. The distribution of the OPT stack distances of cyclic

accesses is as follows:

𝑃 (𝑑) =
{
𝑑
𝑛 2 ≤ 𝑑 ≤ 𝑛

0 otherwise

The OPT stack distance is uniformly distributed between 2 and 𝑛

with a periodity of 𝑛 − 1 [8]. The miss ratio function of optimal

caching is therefore:

mr(𝑐) =
{
𝑛−𝑐
𝑛−1 0 ≤ 𝑐 ≤ 𝑛

0 𝑐 > 𝑛

Since 𝑛− 1 is asymptotically equivalent to 𝑛, the miss ratio function

is asymptotically equivalent to that of random access. □

We prove that for any program accessing 𝑛 objects, with opti-

mized caching, the worst-case locality is bounded and proportional.

Specifically, the miss ratio is at worst no higher than the OPT miss

ratio for cyclic accesses at the same cache and data size.

Theorem 2.6 (Worst Case Proportionality). The cache local-
ity can be optimized so that the worst-case miss ratio for any workload
accessing 𝑛 data times is

mr(𝑐) ≤
{
𝑛−𝑐
𝑛−1 0 ≤ 𝑐 ≤ 𝑛

0 𝑐 > 𝑛

Proof. Given a static trace of 𝑘 accesses involving 𝑛 distinct

items, one strategy is to sort the items by their access frequency

and then cache the top 𝑐 most frequently accessed items. Since

these 𝑐 items are the most frequently occurring in the trace, each

of them must appear at least
𝑘𝑐
𝑛 times. This observation ensures

that caching these items can capture a significant portion of the

overall accesses.

Hence, the following inequality holds:

𝑚𝑟 (𝑐) ≤ 𝑛 − 𝑐

𝑛
≤ 𝑛 − 𝑐

𝑛 − 1

□

Combining the three theorems in the section, we have the corol-

lary that the worst-case bound is reachable.

Corollary 2.7. The worst-case miss ratio function is reachable.

Under optimal caching, cyclic traversals have the worst locality

or highest data access complexity, as do random accesses. To our

knowledge, this is the first time these two access patterns have

been proved to be equivalent in their locality.

4
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The proportionality is guaranteed given optimized caching. How-

ever, it does not require program optimization, just better cache

management.

3 RELATEDWORK
Complexity Analysis. Symbolic analysis of locality started in

1970s, including stationary stochastic processes [15] and indepen-

dent reference models (IRM) [10, 25] and later Zipfian access pat-

terns in Web workloads [2]. These are theoretical workloads.

For program locality, precise symbolic analysis was pioneered

by cache miss equations [18] and reuse distance equations [7].

Both formulated the problem using integer equations and solved

them using Presburger arithmetics implemented using the Omega

calculator [30]. Recent improvements have reduced the analysis

cost, but still required solving integer equations [3]. The solution

has to be approximated to handle large programs [28, 37]. While

these studies targeted overall cache performance, Reineke [32]

developed symbolic worst-case analysis for real-time systems.

The working-set cache in this paper is the same as the uniform-

lease cache, prototyped and evaluated on the FPGA hardware [29].

The lease cache is designed to enable software-hardware collabo-

rative caching through lease programming. The ideal working-set

cache has a varying size. Reber et al. [31] referred to it as the virtual

cache size and studied the effect on a hardware cache with a fixed

size for scientific kernels. Chen et al. [9] compared the uniform-

lease cache and the LRU cache in theory and simulation.

Proportionality. Gu and Ding [19] proved that the LRU cache

miss ratio of random access. The Random Access Miss Ratio Theo-

rem shows that the same miss ratio for all stack algorithms. Since

LRU is one of the stack algorithms, the new theorem generalizes

the previous result. The Worst-Case Proportionality further gener-

alizes and shows the same function as the upper bound miss ratio

for all programs under optimized caching. A caching algorithm

is random replacement, which does not have the same locality as

random access. Random replacement miss ratio can be modeled by

a binomial distribution [34, 35].

Optimal cache replacement in a single cache was given by Belady

[4] in 1966. The technique is called MIN or Belady. Four years later,

Mattson et al. [26] gave the OPT algorithm, which simulates optimal

caching in all cache sizes. OPT is a stack algorithm, so its miss ratio

function is monotone. It took over four decades before Michaud

[27] proved that the miss ratio function is convex. The Worst-case

Proportionality Theorem in this paper shows the upper bound of

the OPT miss ratio function for all programs. Monotone and convex

miss ratio functions exist above the bound derived in this paper, so

the (previous results of) convexity and monotonicity do not imply

Proportionality.

Cache Performance Analysis. While locality measures such as the

miss ratio are traditionally numerical and a property of an execution,

locality complexity is symbolic and a property of a program or

an algorithm. Trace or online analysis, e.g., HPCToolkit [1], can

analyze binary code and non-determinism in parallel executions. An

online tool measures not just the memory cost but also other factors,

e.g., power [17], and the actual running time. For monotonicity,

complexity analysis can prove it for all problem sizes while testing

cannot. Finally, proportionality can be used to infer optimization

opportunities based on the observed performance.

4 SUMMARY
This paper has presented two properties of locality complexity,

derived and proved for all programs. We have formalized two suffi-

cient conditions of locality monotonicity and proved it for naive

square matrix multiplication. In addition, we prove Proportionality,

which states that the benefit of having more cache be at least linear.

Monotonicity divides all programs into two types: monotone and

non-monotone. Proportionality holds for all programs. The mono-

tonicity is proved for fully associative LRU caches and working-set

caches, and proportionality for all caching policies. These results

hold for both element and block granularity caching.
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