
Opportunities and Challenges: Hardware Vulnerability
descriptions with Hybrid Logic.

William Casey
wcasey@usna.edu

ABSTRACT
Hardware exploits such as Spectre and Meltdown underscore the in-
creasing need to validate hardware security properties. To account
for known exploits we suggest Hybrid logic, an extension of Modal
logic, for its concise description of security problems. We further
suggest that compiling known exploits into a database would be
a helpful tool for testing designs against security properties. We
demonstrate a hybrid logic description for Spectre and describe
its benefits. We reflect further on the unique challenges of sharing
security information about hardware vulnerabilities. We conclude
that careful thought is required to achieve responsible disclosure
processes for hardware vulnerabilities.

CCS CONCEPTS
• Security and privacy → Logic and verification; Hardware
attacks and countermeasures.

KEYWORDS
Hybrid Logic, Hardware Verification, Vulnerability Management

1 INTRODUCTION
Recent exploits against hardware systems, such as Spectre and Melt-
down, have demonstrated the increased need to validate hardware
security properties, such as Non-Interference1 (see [5]). These vul-
nerabilities are complex and subtle and require a comprehensive
analysis of nonstandard combinations of hardware and system soft-
ware tools, unusual use cases, and critically, the side effects they
cause (see [6]). Thenwe are concernedwith the lifespan andmeasur-
ability of any side effects. But how can this be done adequately and
safely? We argue that approaches to enumerate hardware exploits
within a hybrid logic may prove to be a useful step for hardware
designers to enhance security. At the same time, hardware design
processes presents distinct challenges for a responsible disclosure
process, which is difficult to manage even in software projects with
low cost for patching.

2 HYBRID LOGIC DESCRIPTIONS OF
EXPLOITS

Hybrid logic is similar to but more expressive than Modal logic
on Kripke Frames (see [2],[3]). Additional expressivity is acheived
with nominals the naming of Possible worlds, and then binding or
using the named worlds within modal logic formulae. This turns
out to be rather expressive and concise, as we will next demonstrate
on the Spectre style exploit. As in other common approaches to
Hardware Verification such as bounded model checking (see [1]),

1Non-Interference rules out execution traces that violate access control such as users
reading sensitive kernel process memory

Possible worlds𝑊 will include a discrete set comprised of all possi-
ble architectural states (registers and their values), along with the
relations R𝑘 , indexed by 𝑘 , to represent reachability withing a 𝑘
clock cycle transition. That is𝑤R𝑘𝑣 if and only if there is a 𝑘 step
ISA program which reaches architectural state 𝑣 in 𝑘 steps starting
from𝑤 .

Lets reminding ourselves of the key sequence of Events in Spec-
tre/Meltdown Exploits

(1) Exploitation Code Execution: User code that miss-trains a
branch predictor, and then induces a speculative execution
path.

(2) Speculative Access: The processor, running user code specu-
latively, accesses and reads protected kernel memory whose
value determines a unique choice of several cold memory
user object to reload, inducing a cache load side effect. The
speculative execution is rejected and no exception is han-
dled. However long the execution window, the effects on
cache will have a longer lifespan, and are observable via
timing measurements.

(3) Timing Measurement: Quickly, the user code measures how
long loads take for various user objects in memory, Only
one is hot and in chache, providing the user indirect means
to infers kernel data values.

Propositions offer behavioral abstraction as formula: 𝐸 (𝑤) an
attacker executes in user space the exploitation code at world 𝑤 .
𝑆 (𝑤) that a speculative access (described in step 2 above) occurs at
world𝑤 . 𝑇 (𝑤) that timing measurements are conducted at world
𝑤 .

The exploit sequence above can be described by the existence of
worlds labeled𝑤1,𝑤2,𝑤3, so that𝑤1R𝑘𝑤2R𝑘𝑤3∧𝐸 (𝑤1) ∧𝑆 (𝑤2) ∧
𝑇 (𝑤3). Hybrid logic formula, using temporal operators for possi-
bility (ie ^ over R𝑘 ) can state the same, while giving names to
intermediate worlds and nominal binding2.

𝑄 = ^ ↓ 𝑤1 .@𝑤1𝐸 (𝑤1)^ ↓ 𝑤2 .@𝑤2𝑆 (𝑤2)^ ↓ 𝑤3 .@𝑤3𝑇 (𝑤3) .

Since 𝑄 → 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 , A formal verification might seek to
ensure M ⊨ ¬𝑄 , as partial evidence of security3. In contrast, simu-
lation and Hybrid methods such as black-box fuzz test or concolic
execution may also determine an execution sequence that satisfies
𝑄 , and identifies various nominal (or named worlds) along the way.

2.1 Benefits
Hybrid logic seems particularly well suited for organizing search
goals around known exploitation patterns. For example, if nominal
𝑤1 can be found, that is 𝑄1 = ^ ↓ 𝑤1 .@𝑤1𝐸 (𝑤1) satisfied. An
architectural check point state can be used to focus search on a

2^ ↓ 𝑥.@𝑥𝑃 is interpreted as true when its possible to reach a world, given the name
𝑥 , where 𝑃 is true. If no such 𝑃 satisfying world exists, then the statement is false.
3Here M describes a Kripke model for component operation within its instruction set.

https://orcid.org/ 0000-0001-7718-7385


Trovato et al.

second stage goal, to determine a nominal𝑤2 satisfying: 𝑄2 = ^ ↓
𝑤1 .@𝑤1𝐸 (𝑤1)^ ↓ 𝑤2 .@𝑤2𝑆 (𝑤2) and so on.

Hybrid logic has favorable abstraction; for example 𝑆 (𝑤), can
be achieved in various ways, refined logically for specific kernel
address and data object loaded can be done as:

𝑆 (𝑤) = ^ ↓ 𝑣 .@𝑣
©­«
𝑁∨
𝑗=1

𝑆 𝑗 (𝑣)ª®¬^ ↓ 𝑤.@𝑤

(
𝑛∨

𝑘=1
𝐿𝑘 (𝑤)

)
,

where 𝑆 𝑗 (𝑣) is the event that user code reads kernel memory bit 𝑗
at world 𝑣 , and 𝐿𝑘 (𝑤) is the event that user object 𝑘 is reloaded into
cache at world𝑤 . Such logical abstraction is useful, it can mimic
patterns in software often referenced from attack descriptions. For
attacks, the logic of 𝑄 is also likely to be repeated within a loop,
where sequential access to bits will offer behavioral qualification
of the malicious behavior, which itself can be expressed in Hy-
brid Logic. Additionally, the correlated behavior of the kernel data
(value) read and the choice of cold object reloaded can be inferred,
within such a logical refinement.

Also, hybrid logic seems to provide reasoning tools formitigation,
for example, hard memory segmentation is an option to prevent
𝑄2 from a world 𝑤1, and transactional structures to revert cache
state may have some impact on preventing 𝑄 from world 𝑤2. In
addition, other mitigation might be identified by refining macro-
behaviors. Still, another bio-inspired type of behavior modeling
and detection, where a system can self-monitor, a hybrid logic
proposition can act like an antibody within the immune system to
trigger self-protective responses.

3 CONCLUSION, HYBRID LOGIC DATABASES
OPPORTUNITIES AND CHALLENGES

Hybrid logic may form efficient and common descriptions for hard-
ware exploits. While there are many benefits of pooling security
information related to vulnerabilities, as has been done with soft-
ware, caution and careful thought is required for hardware security.
Hardware differs from software in several aspects, most notably
for this discussion is that software is easier to patch. This aspect
of software gives rise to various processes of responsible disclosure
of vulnerability information, fraught with conflicting interests (see
[4]). The basic notion is that responsibility means the following:
when one finds a vulnerability in software, the discovery should be
presented to the software vendor exclusively prior to wider release.
This allows the vendor to design and patch software vulnerabili-
ties beforethe information is more widely distributed via software
vulnerability databases such as MITRE CVE (see [7]) and NIST (see
[8]), where its public awareness can help others defend systems.
However, in hardware, the difficulty to patch and the costly commit-
ment to manufacturing processes are obstacles to achieving success
from the same approach. Public disclosure of a zero-day exploit
could irreparably harm a manufacturer, stressing the importance
of trust in the industry. As such, there is more at stake, and some
considerable thought is required to design a best practice or process
to manage hardware vulnerability information. However, it seems a
repertoire of hybrid logic descriptions of known hardware exploits
is essential to advance security by testing and verification. Such a
list can help designers assert that novel hardware components are
immune to known exploits.

The dilemma of revealing hardware vulnerabilities seems partic-
ularly difficult, and security information related to hardware vulner-
abilities may require careful controls within trusted communities.
Various approaches to this dilemma warrant more thought and may
broadly encompass various tools from governance to technology.
Given the costs and impacts involved, government economic policy
or risk amortization tools should be considered. From the techno-
logical side, cryptographic and steganographic concepts are a few
tools that could play a role in both distribution of security informa-
tion. This is an important problem that warrants further thought
and consideration in the interesection of security researchers and
hardware designers.

ACKNOWLEDGMENTS
The author wishes to thank Bud Mishra (Courant Institute NYU)
for discussions and suggestions for Hybrid Logic applications.

REFERENCES
[1] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

press.
[2] Patrick Blackburn. 2000. Representation, reasoning, and relational structures: a

hybrid logic manifesto. Logic Journal of the IGPL 8, 3 (2000), 339–365.
[3] Patrick Blackburn, Maarten De Rijke, and Yde Venema. 2001. Modal logic: graph.

Darst. Vol. 53. Cambridge University Press.
[4] Hasan Cavusoglu, Huseyin Cavusoglu, and Srinivasan Raghunathan. 2005. Emerg-

ing Issues in Responsible Vulnerability Disclosure.. In WEIS.
[5] Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of

Computer Security 18, 6 (2010), 1157–1210.
[6] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),
93–101.

[7] MITRE Corporation. [n. d.]. Common Vulnerabilities and Exposures (CVE). https:
//www.cve.org. Accessed: July 14, 2025.

[8] National Institute of Standards and Technology (NIST). [n. d.]. National Vul-
nerability Database (NVD). https://www.nist.gov/programs-projects/national-
vulnerability-database-nvd. Accessed: July 14, 2025.

https://www.cve.org
https://www.cve.org
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd
https://www.nist.gov/programs-projects/national-vulnerability-database-nvd

	Abstract
	1 Introduction
	2 Hybrid Logic Descriptions of Exploits
	2.1 Benefits

	3 Conclusion, Hybrid logic Databases Opportunities and Challenges
	Acknowledgments
	References

