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Abstract
The backbone of clustering algorithms is similarity search, which
requires accessing all data in explicit memory. The physical separa-
tion between memory and computing units in the von Neumann
architecture leads to costly data transfer, making it inefficient for
processing large amounts of data. By facilitating parallel search
within memory, Content Addressable Memories (CAMs) offer fast
in-memory search. Additionally, analog CAMs provide search ca-
pabilities in the analog domain, thereby alleviating the need for
analog-to-digital conversion (ADC).

Developing a Python-based circuit model that bridges between
circuit design and algorithm development, we demonstrate how to
obtain a single-point exact-match response from a 6T2Mdifferentiable-
CAM (diff-CAM) circuit. A single-point exact match provides the
possibility of a full analog similarity search. Using this analog re-
sponse and adaptive programming of diff-CAMs, we introduce
the novel concept of using analog CAM for in-memory similar-
ity search in clustering tasks. We demonstrate the performance
of our approach for K-means clustering and fuzzy C-means clus-
tering. The results show comparable clustering metrics to other
similarity functions, with the advantage of in-memory computa-
tions. By demonstrating a mechanism for adaptive programming
of diff-CAMs, we demonstrate how they can support a trainable
search architecture, positioning them as a foundational component
for end-to-end trainable in-memory computing pipelines.

Keywords
Content-addressable memory, in-memory computing, and cluster-
ing.

1 Introduction
The rapid expansion of data in domains such as natural language
processing, computer vision, and bioinformatics highlights the
growing demand for scalable, power-efficient hardware solutions.
Developing such hardware has become increasingly critical to en-
sure sustainable, high-performance computation. Among the core
operations in these applications, clustering depends on similarity
search across large datasets—a process that is computationally ex-
pensive on traditional architectures such as general-purpose graph-
ics processing units (GPGPUs). This inefficiency arises from the
physical separation between memory and compute units, which
leads to high energy and latency costs associated with data move-
ment, as well as scalability concerns related to memory capacity.

Digital computing architectures offer high accuracy but incur
significant overhead in area and power consumption. Analog ap-
proaches, by contrast, leverage simpler circuit architectures to
achieve comparable precision at lower energy cost, positioning

them as attractive alternatives. For instance, mixed-signal designs
have been proposed for computing distances between multidimen-
sional vectors while interfacing with CMOS logic for high-speed
clustering applications [1]. Other examples include mixed-signal
associative memories for efficient nearest-distance searche [2] and
programmable current-mode circuits that support both Euclidean
and Manhattan metrics in winner-take-all networks [3].

Conventional search methods, such as brute-force algorithms
and hash tables, face significant computational bottleneckswhen ap-
plied to large-scale and high-dimensional data [4]. To address these
challenges, in-memory computing (IMC) accelerators have emerged
as a promising paradigm, enabling computations directly within
memory arrays and thereby mitigating the latency and energy costs
associated with data transfer. Content-addressable memory (CAM)-
based accelerators, in particular, have been proposed as specialized
hardware solutions for accelerating similarity search in machine
learning workloads [5–7]. Recent work has further demonstrated
the potential of crossbar-based ternary CAMs (TCAMs) to sup-
port few-shot in-memory learning for memory-augmented neural
networks [8].

Unlike Random-Access Memory (RAM), which retrieves data
from a specified address, CAMs perform parallel searches across all
memory words, directly comparing them with the input query. This
parallelism enables high-throughput data retrieval and has made
CAMs indispensable in applications such as network traffic mon-
itoring, access control lists, and associative memory recall. Their
ability to support in-memory similarity search also makes them
well-suited for clustering and other unsupervised learning tasks.
However, conventional binary CAMs, which perform Hamming
distance-based lookups, are constrained by high power consump-
tion and large area requirements, as well as inefficiency in handling
analog data due to repeated analog-to-digital conversions (ADCs).

Analog Content-Addressable Memories [10] have been intro-
duced to overcome these limitations by operating directly in the
analog domain, eliminating the need for costly ADC/DAC opera-
tions and reducing overall energy consumption. Furthermore, they
provide a platform for analog in-memory computing accelerators
with search-based operations. As summarized in Table1, binary
CAMs are effective for exact-match lookups, whereas analog CAMs
extend this capability to similarity scoring, paving the way for
hardware-efficient analog computing.

Integrating analog CAM into hardware-software co-design ar-
chitectures is a promising approach to improve the efficiency and
effectiveness of in-memory implementations of machine learning
and data analysis algorithms. Previous works have used diff-CAM
with matching intervals for various applications, including tree-
based search [12], and logic implementation [13]. We demonstrate
how to achieve a single-point exact-match (V-shaped response)
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Match type Circuit type Distance function Application

Exact match Binary-Ternary CAMs [9] Hamming distance
Best match Multi-bit CAMs [10, 11] Sigmoid-like/ Squared Euclidean NN search

Threshold match Multi-bit CAMs [10, 11] Sigmoid-like/ Squared Euclidean
Range match Analog CAMs [10] Decision tree

Table 1: Different match categories of CAMs.

using our circuit-based Python model for a 6T2M diff-CAM cir-
cuit. As a demonstration of analog in-memory similarity search,
we showcase trainable associative clustering with diff-CAM.

Methods
Similarity search using differentiable Content
Addressable Memory with single-point exact
match
To enable rapid evaluation of complex, large-scale problems, it is es-
sential to develop concise and reliable model of analog CAM based
on existing taped-out design [10]. Since full SPICE simulations
are computationally prohibitive for large systems, we developed
a Python-based model that faithfully reproduces the circuit’s be-
havior. This framework leverages Python’s flexibility to efficiently
explore circuit parameters and systematically investigate different
response functions, bridging the gap between circuit-level simula-
tion and algorithm development.

Fig. 1a shows the 6T2M diff-CAM circuit, which produces analog-
valued outputs [14, 15]. It has primarily been utilized for interval
matching [12], where the stored range is compared with an ana-
log input to determine match or mismatch. The circuit consists of
two branches: A pull-down and a pull-up branch, whose responses
depend on the conductances of memristors𝑀1 and𝑀2. Using the
same parameters as the taped-out design[10], we simulate different
combinations of𝐺𝑀1 and𝐺𝑀2 in memristors𝑀1 and𝑀2, as shown
in Fig. 1. b, c, producing outputs consistent with experimental re-
ports [10]. Fig.1 b shows the output from transistor T1, and Fig.1 c
shows the output from transistor T2. As shown in Fig.1 d, a combi-
nation of these responses will lead to different types of response
profiles. A U-shaped response occurs when the two branches are
well separated, as shown in Fig.1e. By tuning stored conductance
values to achieve a single-point exact match, where the match-line
current equals zero, we derive a measure of distance from the cen-
ter. In this configuration, the stored conductance values for 𝑀1
and𝑀2 are adjusted such that the match interval is a single point,
effectively defining distance from the stored center.

We use our Python model to program diff-CAM to sixteen single-
point exact matches as shown in Fig.1. panel g. We adjust the
conductances of 𝐺1 and 𝐺2 so that the output of the match line
is an exact match at a single point. This gives a relation between
G and V, such that for a given voltage we get the corresponding
conductance values, as shown in Fig.1 h. This is essential for training
diff-CAMs, since the conductances in memristors𝑀1 and𝑀2 define
the stored values/ ranges.

Recent work has explored iterative programming of diff-CAMs
through lookup tables [16, 17], and [18]. Our Python-based frame-
work complements these approaches by providing a fast, flexible
environment for analyzing and optimizing single-point exact-match
behavior in analog CAMs.

Distance function of the diff-CAM circuit with a single-point exact
match. A single-point exact match provides the possibility of a full
analog similarity search. In this case, the output current 𝐼𝑀𝐿 is an
analog value in the range between the maximum and minimum of
the match-line current, that is, 𝐼𝑀𝐿𝑚𝑖𝑛

and 𝐼𝑀𝐿𝑚𝑎𝑥
. The match-line

current gives a measure of the distance of the input data from a
single stored value at the center, providing analog similarity search.

To obtain the distance characteristic of the single-point exact
match, we consider a two-dimensional feature space. Mapping the
𝑥 and 𝑦 coordinates of a point in this feature space into the conduc-
tance values in memristors of two diff-CAMs with a single-point
exact match provides a reference point for measuring distance.
Fig.1i shows the resulting distance measure with respect to a refer-
ence point, which in this case is chosen to be𝑉max = 0.725 in both 𝑥
and𝑦 coordinates. In other words, the distance of each point is mea-
sured with respect to 𝑉max . As input, we consider all the possible
combinations of 𝑥 and𝑦 in this space. The sum of currents from each
diff-CAM determines the distance in that direction: 𝐼𝑜𝑢𝑡 (𝑥) gives
the distance in the x-direction, and 𝐼𝑜𝑢𝑡 (𝑦) provides the distance in
the y-direction. The sum of the currents in the match-line,

𝐼𝑀𝐿 = 𝐼out (𝑥) + 𝐼out (𝑦), (1)

results in a Manhattan type distance characteristic. Manhattan dis-
tance, which measures the L1 norm, is particularly effective when
different dimensions are not directly comparable. Additionally, Man-
hattan distance is specifically advantageous when input variables
have different types.

A diff-CAM operates by storing a value or range and evaluating
the similarity of an analog input against this stored reference to pro-
duce a matching score. The circuit can be configured to implement
various similarity functions by adjusting internal parameters.

As illustrated in Fig. 2(a), the 6T2M diff-CAM circuit consists
of two main branches: a pull-down branch and a pull-up branch.
The similarity response is governed by the conductances of two
memristive elements, 𝑀1 and 𝑀2, which can be programmed to
define the match interval. By tuning the conductances of these
elements, the matching behavior- and consequently the underlying
distance function- can be modified. Previous work has primarily
used diff-CAMs for interval matching [12]. The programmed mem-
ristor values determine the interval and slope of the response. In
particular, a V-shaped response arises when the conductances of
𝑀1 and 𝑀2 are tuned to define a single-point match, where the
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Figure 1: a) analog CAM circuit with six transistors and two memristors (6T2M) [14]. b) The I-V characteristic of the branch with
the𝑀1, which is the current at𝑇 1. c) The I-V characterisitc of the branch containing𝑀2, which is the current from𝑇 2 transistor.
d) A combination of b and c. e) An example of a U-shape response of the diff-CAM cell. f) An example of the V-shape response
of the diff-CAM cell. g) V-shaped response for 16 conductance values. h) G-V relation. i) Distance measure in two-dimensional
feature space. The color represents the match-line current, i.e., 𝐼𝑀𝐿 = 𝐼out (𝑥) + 𝐼out (𝑦). In two dimensions, the measured distance
shows a characteristic similar to Manhattan distance.

match-line current (𝐼ML) reaches a minimum, ideally zero, at the
stored value.

This single-point exact match behavior forms the basis for analog
similarity search, where the output current 𝐼ML provides a graded
similarity score relative to the input. The output current 𝐼𝑀𝐿 is an
analog value in the range between the minimum and maximum
values of the current output, that is, 𝐼MLmin and 𝐼MLmax . The current
of the match line gives a measure of the analog distance of the input
data from a single stored value at the center.

Associative clustering using the diff-CAM circuit
model
We propose a hardware-based model for K-means and fuzzy cluster-
ing, in which the core operation—similarity search—is performed
directly within memory by leveraging the intrinsic similarity search
capabilities of analog content-addressable memory (CAM).

1.1 K-means clustering
K-means clustering is an unsupervised learning algorithm that
groups unlabeled data into clusters. This centroid-based approach
aims to minimize the inertia, i.e., the sum of squared distances

to the nearest centroid. The advantage of this method over other
approaches is that it is scalable, fast converging, and simple. The
objective of K-means is to find

arg min
𝑥

𝑘∑︁
𝑖=1

∑︁
𝑥∈𝑆𝑖

∥ 𝑥 − 𝜇𝑖 ∥2= arg min
𝑥

𝑘∑︁
𝑖=1

| 𝑆𝑖 | Var𝑆𝑖 (2)

where 𝜇 is the mean of the points in 𝑆𝑖 :

𝜇𝑖 =
1
𝑆𝑖

∑︁
𝑥∈𝑆𝑖

x (3)

𝑆𝑖 is the size of 𝑆𝑖 , and ∥ . ∥ is the 𝐿2 norm.

1.2 Fuzzy c-means clustering
Fuzzy clustering is an unsupervised machine learning technique
that allows data to belong to multiple clusters with varying degrees
of membership, rather than assigning them strictly to one cluster.
The fuzzy C-means (FCM) algorithm is one of the most widely used
methods, iteratively minimizing an objective function to optimize
cluster centers while assigning membership values based on the in-
verse distance between a data point and each cluster center. Unlike
hard clustering, which assigns each data point to a single cluster,
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Figure 2: a) This diagram shows the basic structure of a 6T2M diff-CAM cell, including a low-bound (LB) cell and a high-bound
(HB) cell. The voltage boundaries are controlled by the conductance values of two memristors (M1 and M2). (b) This diagram
uses the LB cell to explain the circuit behaviors of diff-CAM, which is a basic voltage-sharing process. When the gate voltage of
T1 is rising to a switching point, 𝑉𝐴𝐸𝐿 will be pulled down, which closes T2, and thus there’s no current flowing through T2.
By controlling the conductance of M1, it’s possible to control the boundary of the switching point. The HB cell has the same
circuit behaviors but with an additional inverter.

fuzzy clustering provides a more flexible and nuanced representa-
tion, making it effective for handling uncertainty and overlapping
cluster structures. The algorithm proceeds by initializing cluster
centroids, updating membership values, and iteratively refining
cluster centers until convergence is reached based on a predefined
threshold. The key steps in FCM are as follows:

(1) Choose the number of clusters (k).
(2) Randomly select initial cluster centers and membership

degrees.
(3) Calculate the membership degree for each data point rela-

tive to each cluster.
(4) Update each cluster’s centroid by computing a weighted

average of data points, where the weights correspond to
the membership degrees.

(5) Repeat steps 3 and 4 until the algorithm converges.
The centroid of a cluster 𝑐𝑘 for a data point 𝑥 is given by a weighted
average:

𝑐𝑘 =

∑
𝑥 𝑤𝑘 (𝑥)𝑚𝑥∑
𝑥 𝑤𝑘 (𝑥)𝑚

. (4)

FCM minimizes the following objective function:

𝐽 (𝑊,𝐶) =
𝑛∑︁
𝑖=1

𝑐∑︁
𝑗=1

𝑤𝑚𝑖 𝑗 ∥, 𝑥𝑖 − 𝑐 𝑗 ∥2 (5)

were 𝑛 is the number of data points, 𝑐 is the number of clusters,
𝑥 = 𝑖 data points. 𝑐 𝑗 are the centroids of clusters,𝑤𝑖 𝑗 is the mem-
bership value of data point of 𝑥𝑖 to cluster 𝑐 𝑗 , and𝑚 is the fuzziness
parameter (where𝑚 > 1).

The membership value𝑤𝑖 𝑗 is calculated as:

𝑤𝑖 𝑗 =
1∑𝑐

𝑘=1

( ∥𝑥𝑖−𝑐 𝑗 ∥
∥𝑥𝑖−𝑐𝑘 ∥

) 2
𝑚−1

(6)

Update cluster centroid values using a weighted average of the data
points using Eq.6.

The fuzzyness parameter 𝑚 ∈ (1,∞) controls the degree of
membership ambiguity. A larger𝑚 results in fuzzier clusters. In
the limit𝑚 → 1, the memberships,𝑤𝑖 𝑗 , converge to 0 or 1, and the
Fuzzy C-means objective coincides with that of K-means. In the
absence of experimentation or domain knowledge,𝑚 is commonly
set to 2.

2 Results
2.1 Uniform distribution of random data
In Fig. 3, we present our approach using diff-CAMs with a V-shaped
response function in two dimensions for K-means-type cluster-
ing for uniformly distributed random data. The first row shows a
schematic of the algorithm. First, the centers of clusters are ran-
domly initialized, and using the G-V relation obtained from the
approach presented in Fig.1, the Voltage values in Volts are mapped
to the corresponding conductances to be stored as keys, 𝑘 , in the
CAM cells. The distance of each of the data points, as queries 𝑞,
are then measured from the center of the clusters using the current
from diff-CAM for all the features. Note that the stored keys in the
center of the V-shape (cluster centers) and the input query data
(to be assigned to clusters) are Voltages, and the distance from the
center of the V-shaped response is measured as current. The current
at the match-line of each CAM cell in the 𝑛th iteration, for each
feature 𝑓 , is the sum of currents from branches including T1 and
T2 in Fig.1a.

𝐼
𝑓𝑖
ML (𝑘, 𝑞) = 𝐼

𝑓𝑖
𝑇 1 (𝑘, 𝑞) + 𝐼

𝑓𝑖
𝑇 2 (𝑘, 𝑞) (7)

Considering a row of CAM cells with F cells, each responsible for
the similarity search of a feature (𝑓𝑖 ), the sum of currents of a row
represents the overall distances from the centers.

𝐼𝐹ML (𝑘, 𝑞) =
𝐹∑︁
𝑖=1

𝐼
𝑓𝑖
ML (𝑘, 𝑞) (8)

Data points are then assigned to the closest cluster with the small-
est distance. In the next step of training, the new cluster centers are
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Figure 3: K-means clustering using Lloyd’s algorithm with V-shaped CAM. Top: flow chart of the in-memory clustering. Second
row: schematic of the K-means and fuzzy C-means algorithms. Third row: Cluster assignment in every second step of 10 steps,
and convergence of cluster centers. 𝑥𝑐 and 𝑦𝑐 represent the coordinates of the cluster centers. Last row: Silhouette score in the
first and last step of training, which reaches the maximum value, indicating a perfect clustering.

obtained by taking the average of the coordinates of members of
each cluster, according to Eqs 3, 4 in K-means and fuzzy C-means
clustering. The new centers are programmed in the CAMs using
the G-V relation, and the previous steps are repeated until the cen-
ters converge to a fixed point, as shown in the second row. The
evolution of cluster centers in the (𝑥𝑐 , 𝑦𝑐 ) plane shows convergence
to a steady value. To evaluate the effectiveness and reliability of
clustering algorithms and to assess the quality of the training, we
use the silhouette score. This metric ranges from zero to one, with
a score closer to one indicating better clustering. The Silhouette
score is a measure of how well each data point is assigned to its

own cluster compared to other clusters. The Silhouette value of
data point 𝑖 is defined as:

𝑠 (𝑖) = 𝑏 (𝑖) − 𝑎(𝑖)
max {𝑎(𝑖), 𝑏 (𝑖)} , if | 𝐶𝑖 |> 1, (9)

where 𝑎(𝑖) is the average distance between data point 𝑖 and all other
points within the same cluster 𝐶𝑖 :

𝑎(𝑖) = 1
| 𝐶𝑖 | −1

∑︁
𝑗∈𝐶𝑖 ,𝑖≠𝑗

𝑑 (𝑖, 𝑗), (10)
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Figure 4: Accuracy of clustering averaged over five realizations for the Iris, Wine, and Breast Cancer datasets.

and 𝑏 (𝑖) is the smallest average distance between data point 𝑖 and
all points in any other cluster 𝐶 𝐽 :

𝑏 (𝑖) = min
𝐽 ≠𝐼

1
𝐶 𝐽

∑︁
𝑗∈𝐶 𝐽

𝑑 (𝑖, 𝑗). (11)

Here, 𝑑 (𝑖, 𝑗) represents the distance between points 𝑖 and 𝑗 , and 𝐶𝐼
and𝐶 𝐽 represent the clusters containing points 𝑖 and 𝑗 , respectively.
A silhouette score close to one indicates that the data point is well-
matched to its own cluster and poorly matched to neighboring
clusters. In Fig.3, we observe that after ten iterations, the silhouette
score reaches one, as shown in the last row.

2.2 Benchmarking
To test our approach on real-world data, we perform clustering on
the Iris, Wine, and Breast Cancer datasets. In Fig.4, we compare
the result of clustering using Manhattan, Euclidean, and Cosine dis-
tance functions to the distance function measured by the diff-CAM
circuit. For clustering with diff-CAM, we use the same approach
that we used for the uniform data. We report the results for the
K-means clustering algorithm and fuzzy C-means algorithms. The
accuracy score is defined as:

accuracy(𝑦,𝑦) = 1
𝑛samples

𝑛samples−1∑︁
𝑖=0

1(𝑦𝑖 = 𝑦𝑖 ) (12)

where 1(.) is the indicator function. As shown in Fig.4, starting
from random cluster center assignments, CAM obtains an accuracy
comparable to other distance functions in predicting the right clus-
ters. According to Fig.4, while the accuracy obtained from diff-CAM
performs better than the Cosine distance function for K-means, it
is slightly lower in Wine and Breast Cancer datasets due to the
non-idealities of the CAM as a distance measure and asymmetries.
On the other hand, as explained in the Appendix, computations
performed directly in memory offer time and energy advantages.

In all datasets, the FCMwith diff-CAM outperforms the K-means.
The analog and statistical nature of the FCM algorithm matches
the analog similarity measured by diff-CAM. As noted, the slightly
lower performance of diff-CAM compared to the other measures
reported in Figs.4 and 5 highlights some remaining non-idealities
of the circuit response. To mitigate these effects, we operate the
CAM with memristor conductances offering the highest symmetric
response. This comes at the cost of a reduced response range, so
we find an optimal trade-off point.

In Fig.5, we report the Adjusted Rand Index (ARI) and Normal-
ized Mutual Information (NMI) for the Iris, Wine, and Breast Can-
cer datasets. For all datasets, the FCM obtains a higher ARI and
NMI score than K-means. The similarity measure from dfiff-CAM
provides the required analog score, which is the main difference
between the soft and hard clustering. While in the hard cluster-
ing algorithms, such as K-means, the members either belong to a
cluster or do not, the membership assignment in fuzzy clustering
is a scored membership. By measuring analog distance, diff-CAM
provides the required score for the membership to each cluster.
During the iteration process, the cluster centers are updated using
the average value of the cluster members. Note that during training,
the cluster centers are written in the diff-CAM using the G-V results,
the same approach that we used for uniformly distributed data. Ac-
cording to Fig.5, the ARI and NMI scores of diff-CAM demonstrate
a performance comparable to the other distance measures.

Conclusion
In this study, we proposed the use of diff-CAM with a single-point
exact match for centroid-based similarity search, specifically in the
task of clustering. Our approach explored the opportunities for
CAM-based computing in these tasks. Leveraging a Python-based
model of a differentiable Content Addressable Memory (diff-CAM),
we could investigate the accuracy of parallel search operations in
data processing pipelines in tasks like active learning, smart sam-
pling, and item discovery. The ability to perform centroid-based
similarity searches can enhance the performance of clustering, par-
ticularly in scenarios requiring iterative refinement, such as active
learning cycles or when deploying clustering as a preprocessing
step in machine learning pipelines.

By combining the strengths of CAM-based parallel search with
our proposed programming approach, this work offers a promising
avenue for future research and practical applications in data science
and machine learning.
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Appendix
3 Energy and Power Consumption Analysis
3.1 Energy Model for CAM Arrays
Each CAM cell exhibits a parasitic capacitance 𝐶𝐷𝐿 . Assuming a
voltage swing from 0 to V, the energy required to charge a single
capacitor is:

𝐸cell =
1
2
𝐶DL𝑉

2 (13)

For a row with H CAM cells in a column, the energy consumption
is:

𝐸row𝐻.
1
2
𝐶DL𝑉

2 . (14)

Extending this to 𝑀 rows, each with 𝐻 vertically stacked CAM
cells, the total energy becomes:

𝑀.𝐻 .
1
2
𝐶DL𝑉

2 (15)

3.1.1 Dynamic Power with Wire Resistance. For accurate dynamic
power estimation, particularly at high switching speeds where wire
resistance 𝑅𝑤 is non-negligible, both the RC time constant and
Elmore delay must be considered. According to Elmore’s theorem,
the propagation delay is given by:

𝜏 =

𝐻∑︁
𝑖=0

(𝑅out + 𝑖𝑅𝑤)𝐶𝐷𝐿 = 𝐶𝐷𝐿
[
𝑅out𝐻 + 𝑅𝑤

𝐻 (𝐻 − 1)
2

]
, (16)

where𝐻 denotes the height of the analog CAM tile, i.e., the number
of CAM cells per column[12]. The throughput is expressed as:

𝜏 = 𝑁0 .𝑓 = 1.33 TOPS, (17)

with 𝑁0 = 4000 nodes. The energy function is then defined as:

𝜂 =
𝜏

Power
= 3.11 TOPS/W, (18)

corresponding to 461× improvement over the state of the art.

Components of Power Consumption. The overall power consump-
tion can be decomposed into three components:

(1) Static power flowing into the voltage divider

𝑃static𝑉𝑠𝑙ℎ𝑖 𝐼𝐷0 (19)

(2) Dynamic power to charge the data line (DL):

𝑃𝐷𝐿 =
𝑉 2
𝐷𝐷

𝑊𝑁

𝑅
(20)

(3) Dynamic power to charge/discharge the match line (ML):

𝑃𝑀𝐿 =
1

2𝑡𝐶𝐿𝐾
(𝐶𝑀𝐿𝑉𝑀𝐿0)2𝐻𝑁+

𝑖=𝑁∑︁
𝑗=0

𝑖=𝐻∑︁
𝑖=0

1
2𝑡𝐶𝐿𝐾

(
𝐶𝑀𝐿 (𝑉𝑀𝐿0 −𝑉𝑀𝐿,𝑖,𝑗 )

)2 (21)

3.2 Area and delay comparison with SRAM
The propagation delay in SRAM accelerators can similarly be esti-
mated via Elmore’s theorem:

𝜏 =
∑︁
𝑖=0

𝐻 (𝑅out + 𝑖𝑅𝑤)𝐶𝐷𝐿 = 𝐶𝐷𝐿

[
𝑅out𝐻 + 𝑅𝑤

𝐻 (𝐻 − 1)
2

]
(22)

3.3 Case Study: K-Means Clustering on the Iris
Dataset

3.3.1 CAM-Based Accelerator. For the Iris dataset (𝑁 = 150 data
points, 𝑑 = 4 features, 𝑘 = 3 clusters) and assuming an 8-bit input
resolution:
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Metric CAM-bsed SRAM-based
Energy per iteration ∼ 9𝜇𝐽 ∼ 25 − 30𝜇𝐽

Area ∼ 0.0002𝑚𝑚2 ∼ 0.1 − 0.2𝑚𝑚2

Precision 8-bit 8–16 bit or float
Latency Very low (1 cycle match) Higher (MAC loop)

Table 3: Energy and Area Comparison of CAM vs. SRAM Accelerators for K-Means on the Iris Dataset.

Operation K-means Fuzzy C-means
Distance computation Required Required

Assignment Head (one-hot) Soft (real-valued membership)
Update Simple mean Weighted average using membership
Iteration Fast convergence Slower convergence

Complexity (per iteration) O(nkd) O(nkd)+exponentiation
Table 4: Comparison of operations and per-iteration complexity for K-means and Fuzzy C-means clustering.

• Energy per match: Approximately ∼ 20𝑝 𝐽 per cluster
center [19–21]. Thus, the energy per data point is:

𝑘.𝐸match = 3 × 20 = 60𝑝 𝐽 . (23)

For 150 points:

150 × 60𝑝𝐽 = 9𝜇𝐽 . (24)
• Area (CAM size):

For three clusters and four features, we need 12 CAM cells,
and assuming 20𝜇𝑚2 per cell, the total area is:

𝐴 = 12 × 20𝜇𝑚2 = 0.00024𝑚𝑚2 . (25)

3.3.2 SRAM-Based Accelerator Estimate. For the same K-means
workload (N=150, d=4, k=3):

• Energy per distance: Estimated at 150˘200𝑃 𝐽 per data
point, based on 12 MAC operations per point and an energy
cost of 10˘20𝑝 𝐽 .
This results in:

𝐸total ≈ 25 − 30 𝜇𝐽 per iteration. (26)

• Area:Dominated by the MAC array, with a negligible mem-
ory footprint for cluster centers.
Estimated area requirement:

𝐴 ≈ 0.1 − 0.2𝑚𝑚2 . (27)

The comparative analysis, as shown in the Table.3, demonstrates
that CAM-based accelerators provide significant advantages in
both energy efficiency and area utilization compared to SRAM-
based designs. Specifically, for the K-means clustering task on the
Iris dataset, the CAM-based approach achieves over an order-of-
magnitude reduction in energy consumption (from tens of micro-
joules to single-digit microjoules) while occupying a substantially
smaller hardware footprint. These results highlight the potential
of analog CAM architectures for enabling low-power, high-density
machine learning accelerators.

Table 4 highlights the main differences between K-means and
Fuzzy C-means clustering. Both algorithms require distance com-
putation at each iteration; however, the assignment step differs
significantly: K-means uses a hard one-hot assignment, whereas

Fuzzy C-means assigns soft, real-valued memberships to clusters.
Consequently, the update step in K-means involves computing sim-
ple means, while Fuzzy C-means relies on weighted averages. In
terms of convergence, K-means typically reaches stability faster,
whereas Fuzzy C-means converges more slowly due to its iterative
refinement of memberships. This difference is also reflected in com-
putational complexity: while both methods have a per-iteration cost
of 𝑂 (𝑛𝑘𝑑), Fuzzy C-means additionally requires exponentiation,
increasing its computational burden.
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