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Abstract

Memristor technology holds significant promise for both non-volatile
memory and neuromorphic computing, owing to its compact struc-
ture and ability to emulate synaptic behavior. However, the per-
formance of memristor-based crossbar arrays is often degraded
by intrinsic non-idealities, including wire resistance and parasitic
inductive and capacitive effects, particularly in 1T1R (one transis-
tor-one memristor) architectures. These distortions compromise
computational accuracy and are insufficiently addressed by cur-
rent design methodologies.This paper introduces a neural network-
based post-calibration framework that effectively compensates for
these crossbar distortions. The proposed method maps the desired
conductance matrix into a latent vector space and utilizes this rep-
resentation alongside the measured output currents to reconstruct
the intended outputs with high fidelity. By learning and correct-
ing the systematic errors induced by parasitic and resistive effects,
the framework substantially improves the accuracy and reliabil-
ity of memristor crossbars.Experimental results demonstrate that
the proposed approach robustly mitigates crossbar-induced errors
and restores system performance, marking a substantial advance-
ment in the practical deployment of memristor-based neuromorphic
systems. This work contributes to the broader goal of enabling high-
precision analog computing in emerging memory technologies.

CCS Concepts

« In-Memory Computing — Memristive Devices as Emerging
Technologies in Electronics; « Computing Error — Machine
learning.
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1 Introduction

In the evolving landscape of computational hardware, memristor
technology has emerged as a focal point of interest due to its unique
ability to unify memory and logic in a compact, energy-efficient de-
vice. Its promise lies in both non-volatile memory applications and
in emulating synaptic functions essential for neuromorphic comput-
ing systems. Memristors exhibit distinctive characteristics such as
non-volatility, high integration density, and inherent non-linearity,
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making them strong candidates for next-generation computing
architectures [1, 2].

However, transitioning memristor-based systems from theoret-
ical models to practical implementations introduces a host of en-
gineering challenges. One of the most critical among these is the
degradation of performance in memristor crossbar arrays caused
by parasitic effects, wire resistance, and voltage drops—particularly
in 1T1IR (one transistor-one memristor) structures. These non-
idealities manifest as distortions that undermine the reliability and
accuracy of analog matrix-vector multiplication, a core operation
in neuromorphic and in-memory computing [3].

Although various hardware-level and circuit-level calibration
strategies have been proposed—such as tuning the input voltages,
redesigning peripheral circuitry, and introducing compensation
mechanisms [4]—these methods often fall short in comprehensively
addressing the underlying physical imperfections. As a result, sys-
tem designers are frequently forced to accept trade-offs between
accuracy, complexity, and energy efficiency.

Recent advancements suggest that data-driven methods, partic-
ularly those based on neural networks, hold significant promise in
overcoming these limitations. Neural networks excel in learning
complex, nonlinear mappings and can adaptively model the dis-
tortions introduced by parasitics and resistive losses in large-scale
crossbar arrays [5]. This adaptability makes them ideal for post-
fabrication calibration and error correction in analog hardware
systems.

In this work, we propose a novel post-calibration methodology
leveraging neural network-based modeling to restore computa-
tional accuracy in memristor crossbars. The core idea is to trans-
form the desired conductance matrix into a compact latent vector
representation. This latent vector, when used alongside the actual
output currents measured from the crossbar, allows the neural net-
work to infer and correct for systematic errors due to parasitic
coupling and wire loss. Our approach not only addresses the short-
comings of traditional calibration techniques but also enhances
the precision and robustness of memristor-based neuromorphic
computing platforms.

The remainder of this paper is organized as follows: Section 2
provides a detailed overview of memristor crossbar architecture
and its operational challenges. Section 3 outlines the data acqui-
sition and memristor modeling process. Section 4 introduces the
proposed neural network calibration framework and its integration
with hardware simulations. Section 5 presents experimental evalua-
tions demonstrating the efficacy of our approach. Finally, Section 6
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Figure 1: A memristor crossbar array structure.

concludes with a discussion of the broader implications and future
directions of this research.

2 Crossbar Memristo

In-memory computing (IMC) represents a transformative paradigm
shift in addressing the fundamental inefficiencies of traditional von
Neumann architectures. Chief among these inefficiencies is the pro-
nounced latency and energy overhead resulting from the physical
separation of computation and memory units. This separation leads
to significant data movement across the memory-compute inter-
face, giving rise to the well-documented von Neumann bottleneck,
which substantially limits system throughput and energy efficiency.
IMC alleviates this bottleneck by integrating memory and logic into
a unified platform, enabling data to be stored and processed within
the same physical location. This co-location markedly enhances
computational parallelism, reduces latency, and improves energy
efficiency—especially in tasks involving parallel matrix—vector mul-
tiplication (MVM), a core operation in many signal processing,
machine learning, and scientific computing applications [6-8].

At the heart of the IMC framework lies the memristor-based
crossbar array, which serves as the fundamental computational
engine (Fig. 1). These arrays consist of memristive elements posi-
tioned at the intersection of orthogonal metal lines, enabling dense,
analog, and highly parallel MVM operations. Despite their architec-
tural elegance and computational potential, memristor crossbars
suffer from inherent analog non-idealities. Most notably, parasitic
resistances from interconnect lines and undesired capacitive and
inductive couplings introduce signal distortions that degrade the
accuracy and stability of analog computations [7-9] .

To counter these non-idealities, many systems employ the 1T1R
(one-transistor—one-resistor) architecture, wherein each memris-
tive element is serially connected with a transistor (Fig. 2). This
configuration enables precise control over individual cells, helps
prevent sneak path currents, and enhances the overall robustness
of the array. Additionally, the 1T1R architecture supports three-
dimensional stacking, increasing the effective memory density and
scalability of IMC platforms [10].

In analog-domain MVM execution, a voltage vector is applied
across the crossbar rows (word lines), while memristive elements
encode matrix coefficients as conductance values (Fig. 3). The re-
sulting current on each column (bit line), governed by Ohm’s and
Kirchhoff’s laws, corresponds to the dot product of the input voltage
vector and the programmed conductance matrix. The output cur-
rents are typically processed via transimpedance amplifiers (TIAs)
to convert them into usable voltage signals [11]:
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Figure 2: A memristor cell architecture integrating one tran-
sistor (1T) and one resistor (1R).
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Figure 3: Memristor crossbar performing MVM. Conductance
matrix G (size N X M) is multiplied by voltage input vector
Vin (size 1 X N).
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Despite the efficiency of this approach, practical implementa-
tions face a variety of challenges due to parasitic effects. These
include variations in memristive device behavior, resistance along
metal interconnects, and capacitive/inductive couplings—each of
which contributes to errors in the analog computation. Without ap-
propriate mitigation, these effects can critically impair the accuracy
of VMM operations in crossbar-based IMC systems [12, 13].

To address these issues, ongoing research explores several miti-
gation strategies. These include: (i) advanced fabrication techniques
to reduce variability and interconnect resistance [4], (ii) circuit-level
error-correction mechanisms [14], (iii) algorithm-level adaptations,
such as modified training techniques that incorporate hardware-
aware constraints [15], and (iv) dynamic compensation through
control circuitry or post-processing. These multi-pronged efforts
aim to enhance computational fidelity and accelerate the adoption
of memristor-based IMC systems in real-world high-throughput
applications [16, 17].

Device/circuit-level schemes such as bit-slicing and multi-device
cells (e.g., 2T2R) improve stability and linearity at the cost of ad-
ditional area and design complexity. The method proposed here is
complementary: a system-level, post-fabrication calibration that
operates on measured outputs to suppress residual IR-drop and
parasitic-induced distortions. Combining architectural redundancy
with the learned inverse can yield additive benefits.
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3 Data Collection and Memristor Modeling

Accurate computational modeling in memristor-based systems crit-
ically depends on the faithful representation of memristor current-
voltage (I-V) behavior. High-fidelity modeling is essential to ensure
reliable system-level predictions and to facilitate the integration
of memristive devices into larger mixed-signal and neuromorphic
architectures. To achieve this, we incorporate detailed I-V profiles
into a Cadence Virtuoso simulation environment, which allows for
comprehensive circuit-level analysis, including the interaction of
memristors with CMOS circuitry and parasitic effects. The inclusion
of interconnect parasitics, non-ideal current paths, and transistor
behaviors in such simulations is crucial for realistically evaluating
memristor-based vector-matrix multiplication (VMM) systems.

In this study, memristor behavior is modeled using a custom
Verilog-A implementation, adapted from the validated model pre-
sented in [17]. The Verilog-A description is integrated with the
22 nm Fully Depleted Silicon-On-Insulator (FD-SOI) CMOS technol-
ogy to co-simulate memristive devices alongside standard CMOS
transistors in Cadence Virtuoso. This hybrid modeling enables pre-
cise emulation of real-world device characteristics and offers insight
into the performance and non-idealities of the 1T1R architecture
under varying electrical stimuli.

A critical component of this work is the generation of a compre-
hensive dataset for both training and validating the neural network-
based post-calibration model. The dataset is composed of the output
current responses of memristor crossbar arrays subjected to a wide
range of input and conductance conditions. Specifically, we gener-
ate:

e 1,000 distinct weight matrices, each with conductance val-
ues randomly selected from a uniform distribution between
16.66 1S and 100 xS, representing the memristive states.

e 100 random input voltage vectors for each matrix, with
each vector containing eight voltage values ranging from
0.1V to 0.5V, generated using MATLAB.

Each combination of input voltage and conductance matrix is
applied to the crossbar circuit in Cadence Virtuoso, and the resulting
column currents are recorded. These output currents serve as the
analog VMM results and form the target dataset for our calibration
framework.

Because training is performed offline on the 100,000 VMM out-
puts and inference reduces to a lightweight feedforward evaluation,
operational overhead is minimal.

One of the primary challenges encountered during this process
is the automation of large-scale data acquisition within the Ca-
dence simulation environment. Manually modifying input vectors
and weight matrices for each simulation is time-consuming and
error-prone. To address this, we developed a parametric testbench
leveraging Verilog-A behavioral modeling. This automation signifi-
cantly accelerates the simulation process by dynamically updating
voltage and conductance parameters for each iteration, thus en-
abling scalable and efficient dataset generation for learning-based
calibration models.

The resulting dataset, comprising 100,000 VMM outputs, cap-
tures the nonlinearities and parasitic influences inherent to physical
implementations and forms the foundation for the neural post-
calibration process described in subsequent sections.

4 Machine learning Model and Hardware
Modeling

The crossbar array system is prone to various distortions, including
linearity and non-linearity issues, as well as white Gaussian noise
and transistor thermal noise. These disturbances affect the accuracy
of the output currents. The actual output can be mathematically
represented by a model where ¥ denotes a nonlinear operator.

Lreal = F (M, Vin) +¢ (2

This operator accounts for wire resistance, memristor non-linearity,
and other distortions, such as phase shifts induced by the 1T1R
transistors. To mitigate these non-idealities, we employ a nonlinear
inverse operator, parameterized by 0, designed to counteract the
effects of both crossbar system imperfections and noise:

fout = g(Ireals M) = ge(lreal’ M) = ~Out

4 mglxpe (joutllreal: M) (3)

= mgxpe(foud?(M, Vin) + €, M)

Its function is to enhance the fidelity of Tout given the conduc-
tance matrix of the crossbar and the measured output current vec-
tor. The goal is to progressively align the output of the inverse
operator with the theoretical output, absent any crossbar system
non-idealities.

While the experiments target primarily static parasitic distor-
tions, the inverse operator Gy can be trained on temporally varying
phenomena such as conductance drift, read-disturb, and device
degradation. This is achieved by augmenting the dataset with mea-
surements collected over stress/aging and by conditioning Gy on
device state (e.g., time-since-program, read count, temperature),
or by periodic fine-tuning on a small calibration set. As a post-
fabrication calibration, this preserves hardware while adapting the
learned correction to evolving device characteristics.

For the training of the inverse operator, we have constructed
a machine learning model that serves as its proxy, as depicted
in Fig. 4. Within this framework, a global convolution kernel is
employed to extract the feature zy; from the ideal conductance
matrix. This process confirms that a distinct ideal output vector can
be deduced from the matrix and the actual (experimental) output
vector. The objective of the model is not only to reproduce a series
of instances but also to assimilate and condense their intrinsic and
interrelated attributes into a streamlined, low-dimensional latent
space. As a result, and as illustrated in Figure 4, the latent vector
z) is interpreted to embody critical, input-specific information
through the encoding of the matrix instance. This encoding is then
used as a supplemental conditional input for the neural network,
which is fine-tuned to calibrate the crossbar output. The latent
space vector is navigated through a series of concatenating layers
in conjunction with the experimental current output vector L,],
as per the function:

Oi+1 = CS(Oi, zm)
= (W10; + b1) © o(Wazm + b2) + Wazp, 4)
i=012,...,N—1,
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Figure 4: Model Structure

where N is the number of concatenating layers, initiating with
Op = Ly and culminating in On = Iout, o denotes the sigmoid
activation function. This methodical approach empowers the neural
network to enhance the output iteratively, steering it towards an
ideal condition by utilizing the latent vector for precise calibration.

where N is the number of concatsquash layers, initiating with
Og = ILeq and culminating in Oy = Iout, 0, is the sigmoid activation
function. This structured approach facilitates the neural network’s
capability to iteratively refine the output towards an ideal state,
leveraging the latent vector to guide calibration accurately.

5 Experiment Results

The outcomes from the training and validation phases, illustrated
in Figure 5, demonstrate that the model significantly enhances ac-
curacy by reducing the mean squared error (MSE) between the
actual crossbar currents and the ideal outputs by a factor of 1,000
(mean (Iyeq] — Lideal)? vs mean(Iout —Ligear)?) - This marked improve-
ment is attributed to a key preprocessing step where all data values
are rescaled by 10°, addressing the issue that the original values
were in the microscale (10°) range. This rescaling is essential for
several reasons: it prevents underflow and precision errors com-
monly associated with floating-point operations, aligns the data
with the operational parameters of memristor crossbar arrays to
boost sensitivity and efficiency, and facilitates better learning in
neural networks by ensuring a uniform scale for features and a
consistent flow of gradients. This preprocessing step significantly
enhances the model’s computational precision and overall efficacy
by effectively adjusting the input data to meet the system’s de-
mands.

Given the lightweight inference and offline training, and the
observed generalization to input types not seen during training,
the approach does not require frequent retraining in practice.

The training phase uses random input voltage vectors and con-
ductance matrices to validate the model’s adaptability across differ-
ent Vector Matrix Multiplication (VMM) contexts. In contrast, the
validation phase employs sinusoidal input signals with conductance
configured as a Finite Impulse Response (FIR) filter. Fig. 5 and Fig. 6
compare the network’s outputs and the original crossbar responses,
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Figure 5: Training and Validating results

After Calibration vs Before Calibration

075 —e— Calibration Result
- No Calibration Result

Calibrated out in sequence

L
g

Output Current

Output Current

-10
~1.00 Calibrated out in sequence

0 7 0 50 100 150 200 250 300 350 400

1 2 3 4 5 6
Order of Output Column Time domain sample points

Non calibrated out in sequence

O 025 — Calibrated Difference
c
~—— Non calibrated Difference

Output Current

0005

Output Current Differe

_J ~

6 7

— Non calibrated out in sequence

0000
6 50 100 150 200 250 300 350 400 ] 1
Time domain sample points

H 3 3 5
Order of Output Column

Figure 6: Visualization of the calibration results compared
with crossbar original output.

demonstrating the model’s accuracy. Table 1 comprehensively sum-
marizes the performance metrics across the training, validation,
and testing phases. The validation findings mainly highlight that
the model’s output quality is ten times superior to the original,
even without being trained on conventional signals, showcasing its
exceptional robustness and eliminating the necessity for frequent
retraining.

Table 1: Training and Testing MSE Performance for Different
Input Type

Input Data Type Uour = igea)®) | (reat = lideat)*)
Training with Random 0.000139 0.131878
Validating with Random | 0.000149 0.122114
Testing with Sinusoidal 0.003398 0.032687
Testing with DC Input 0.003185 0.031794

6 Conclusion

The research presented in this paper introduces a cutting-edge, neu-
ral network-centric methodology for calibrating memristor cross-
bars, effectively overcoming the fundamental obstacles presented

mDifference Between (Non) Calibrated result and Ideal
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by distortion and noise. The approach hinges on an innovative
strategy of encoding the target conductance matrix into a latent
space representation, enhancing memristor crossbars’ precision
and dependability for neuromorphic computing applications. The
experimental outcomes corroborate the efficacy of this method, ev-
idencing a substantial elevation in computational accuracy and the
model’s performance. Future endeavors will delve into the granular-
ity of element-by-element memristor conductance tuning through
neural networks. They will investigate the integration of this ad-
vanced approach into more sophisticated neuromorphic systems.

Future Work. Future directions will focus on several fronts. First,
we plan to fabricate and test a silicon prototype to validate the
calibration under real device noise, drift, temperature variations,
and ageing effects. Second, the framework will be extended to ex-
plicitly handle time-dependent non-idealities such as conductance
drift, read-disturb, and degradation, either by scheduled refresh
of the training set or by lightweight conditional fine-tuning that
adapts the learned inverse to evolving device states. Third, we will
investigate the scalability of the repair network to larger or tiled
crossbar arrays, where each tile can be encoded via a compact latent
vector and calibrated in a batched or hierarchical manner. Finally, to
facilitate reproducibility and adoption, we will release the Cadence
simulation scripts, Verilog-A device models, and PyTorch training
code.

Acknowledgments

The authors gratefully acknowledge the support of the Intelligent
Electromagnetic Sensor Laboratories (IEMSL) at Texas A&M Uni-
versity for providing resources and guidance that contributed to
the success of this work.

References

[1] Daniele Ielmini and H.-S. Philip Wong. In-memory computing with resistive
switching devices. Nature Electronics, 1(6):333-343, 2018.

[2] Abu Sebastian, Manuel Le Gallo, Riduan Khaddam-Aljameh, and Evangelos
Eleftheriou. Memory devices and applications for in-memory computing. Nature
Nanotechnology, 15(7):529-544, 2020.

[3] Indranil Chakraborty, Mustafa Ali, Aayush Ankit, Shubham Jain, Sourjya Roy,
Shrihari Sridharan, Amogh Agrawal, Anand Raghunathan, and Kaushik Roy. Re-
sistive crossbars as approximate hardware building blocks for machine learning:
Opportunities and challenges. Proceedings of the IEEE, 108(12):2276-2310, 2020.

[4] Pai-Yu Chen, Deepak Kadetotad, Zihan Xu, Abinash Mohanty, Binbin Lin, Jiepeng
Ye, Sarma Vrudhula, Jae sun Seo, Yu Cao, and Shimeng Yu. Technology-design co-
optimization of resistive cross-point array for accelerating learning algorithms
on chip. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 854-859. IEEE, 2015.

[5] Hritom Das, Rocco D. Febbo, Charles P. Rizzo, Nishith N. Chakraborty, James S.
Plank, and Garrett S. Rose. Optimizations for a current-controlled memristor-
based neuromorphic synapse design. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 13(4):889-900, 2023.

[6] Chenchen Liu, Qing Qian, Bonan Yan, Jianlei Yang, Xiaocong Du, Weijie Zhu,
Hao Jiang, Qing Wu, Mark Barnell, and Hai Li. A memristor crossbar based
computing engine optimized for high speed and accuracy. In IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), pages 110-115. IEEE, 2016.

[7] Corey Lammie, Olga Krestinskaya, Alex James, and Mostafa Rahimi Azghadi.
Variation-aware binarized memristive networks. In 26th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), pages 490-493. IEEE,
2019.

[8] Nicola Lepri, Matteo Baldo, Paolo Mannocci, Andrey Glukhov, Vladimir Milo, and
Daniele Ielmini. Modeling and compensation of ir drop in crosspoint accelerators
of neural networks. IEEE Transactions on Electron Devices, 69(3):1575-1581, 2022.

[9] Cong Xu, Dimin Niu, Naveen Muralimanohar, Rajeev Balasubramonian, Tao
Zhang, Shimeng Yu, and Yuan Xie. Overcoming the challenges of crossbar
resistive memory architectures. In IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 476-488. IEEE, 2015.

[10

[11

[12]

=
&

[14]

[15

[16

Huihan Li, Shaocong Wang, Xumeng Zhang, Wei Wang, Rui Yang, Zhong Sun,
Wanxiang Feng, Peng Lin, Zhongrui Wang, and Linfeng Sun. Memristive crossbar
arrays for storage and computing applications. Advanced Intelligent Systems,
3(9):2100017, 2021.

Daniele Ielmini and Giacomo Pedretti. Device and circuit architectures for
in-memory computing. Advanced Intelligent Systems, 2(7):2000040, 2020.
Amirali Amirsoleimani, Fabien Alibart, Victor Yon, Jianxiong Xu, M. Reza
Pazhouhandeh, Serge Ecoffey, Yann Beilliard, Roman Genov, and Dominique
Drouin. In-memory vector-matrix multiplication in monolithic cmos-memristor
integrated circuits: Design choices, challenges, and perspectives. Advanced
Intelligent Systems, 2(11):2000115, 2020.

Carlos Silva, Jonas Deuermeier, Weidong Zhang, Emanuel Carlos, Pedro Bar-
quinha, Rodrigo Martins, and Asal Kiazadeh. Perspective: Zinc-tin oxide based
memristors for sustainable and flexible in-memory computing edge devices.
Advanced Electronic Materials, 9(11):2300286, 2023.

Woorham Bae, Jin-Woo Han, and Kyung Jean Yoon. In-memory hamming error-
correcting code in memristor crossbar. IEEE Transactions on Electron Devices,
69(7):3700-3707, 2022.

Chenchen Liu, Miao Hu, John Paul Strachan, and Hai Li. Rescuing memristor-
based neuromorphic design with high defects. In Proceedings of the 54th Annual
Design Automation Conference (DAC), pages 1-6. ACM, 2017.

Tiancheng Cao, Chen Liu, Yuan Gao, and Wang Ling Goh. Parasitic-aware
modeling and neural network training scheme for energy-efficient processing-
in-memory with resistive crossbar array. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 12(2):436-444, 2022.

Nicola Lepri, Matteo Baldo, Paolo Mannocci, Andrey Glukhov, Vladimir Milo, and
Daniele Ielmini. Modeling and compensation of ir drop in crosspoint accelerators
of neural networks. IEEE Transactions on Electron Devices, 69(3):1575-1581, 2022.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009



	Abstract
	1 Introduction
	2 Crossbar Memristo
	3 Data Collection and Memristor Modeling
	4 Machine learning Model and Hardware Modeling
	5 Experiment Results
	6 Conclusion
	Acknowledgments
	References

