Revisiting Pebble Games for Modeling and Efficient Use of
Disaggregated Memory Systems

Anusha Devulapally Mahantesh Halappanavar Bruno Jacob
The Pennsylvania State University ~ Pacific Northwest National Laboratory Pacific Northwest National Laboratory
USA USA USA
akd5994@psu.edu hala@pnnl.gov bruno.jacob@pnnl.gov

Vijaykrishnan Narayanan
The Pennsylvania State University
USA
vijaykrishnan.narayanan@psu.edu

ABSTRACT

Introduced in 1981, the Red-Blue game of Hong and Kung uses
red (representing limited but fast memory) and blue (representing
unlimited but slow memory) pebbles to compute the I/O complexity
of an application represented as a directed acyclic graph. Several
variants of this game have been designed to address different as-
pects of I/O performance and system configurations. In contrast,
disaggregated memory systems have recently emerged as a means
to address poor utilization of memory resources, especially in the
context of cloud computing. In this position paper, we posit that
pebble games are an effective tool to model performance, as well
as design, effective disaggregated memory systems. We introduce a
novel variant of the game, Dynamic red-orange-blue Pebble Game
with multiple processors (DyPeG), to reflect dynamic provisioning
of memory resources that is appropriate for multi-tenant cloud com-
puting environments. Using representative real world applications,
we provide empirical evaluation to demonstrate the effectiveness
of the proposed approach to study disaggregated memory systems.

KEYWORDS

Pebble Games, CXL, Red-Blue Pebble Game, Multi-tenant Cloud En-
vironments, Disaggregated Memory System, Fabric Attached Mem-
ory, I/O complexity, Memory Scheduling, Computational Graphs,
Multiple Processors, Greedy Algorithm, Dynamic Modeling

1 INTRODUCTION

Given a directed acyclic graph (DAG), G = (V, E) with vertex set V
and edge set E, a red-blue pebble game is a single player game that
proceeds by placing colored pebbles on vertices using a set of rules.
The color of a pebble represents the type of memory used. The
red-blue pebble game introduced in the seminal work of Hong and
Kung [11] has the following rules: (i) Input: Blue pebbles are placed
on vertices with no predecessors (incoming edges); (ii) Movement:
Red pebbles can be placed on any vertex with a blue pebble; (iii)
Compute: A vertex can be computed if all its predecessors have a
red pebble; and (iv) Output: Blue pebbles are placed on all terminal
nodes (no outgoing edges), after which the game terminates. This
game was introduced to model the I/O complexity of algorithms
on a two-level memory hierarchy and is known to be NP-hard
in general [5]. However, greedy algorithms with approximation

Andres Marquez
Pacific Northwest National Laboratory
USA
Andres.Marquez@pnnl.gov

bounds perform well in practice [15]. We detail the game and its
variants in §4.

Memory disaggregation is an approach to pool memory resources
across multiple computing nodes (processors) to enable applications
to access shared memory dynamically. Disaggregation has emerged
as a foundational technique to address underutilization of memory
resources especially on cloud computing platforms, as well as to
scale memory-intensive applications by providing access to large
shared pools of memory. Given the scale of operations, efficient
use of cloud computing resources can lead to significant reduction
in costs [9]. Memory pooling can improve memory utilization,
reduce fragmentation, and thus lower overall infrastructure costs.
Advances in high-bandwidth interconnects and fabric-attached
memory architectures have made disaggregated memory systems
attractive. Open industry standards such as Compute Express Link
(CXL) [4] are now driving wider adoption [10]. However, tools for
modeling, analyzing, and designing efficient disaggregated systems
still remain underdeveloped. This poses a significant challenge for
adoption, which we aim to address in this work.

We posit that pebble games are an effective tool for modeling
disaggregated memory systems and for designing efficient systems
tailored to specific application use cases and system parameters.
Furthermore, algorithms for pebble games can be exploited to de-
velop dynamic memory allocation strategies that can also meet
service-level agreements while maximizing for performance and
data movement costs. Towards this end, we introduce a novel vari-
ant of the pebble games, dynamic red-orange-blue pebble game with
multiple processors (DyPeG), to address the practical needs of cloud
computing platforms to support efficient use of memory pools in
a multi-tenant setting with dynamic allocation of resources and
changes in performance due to congestion, while subject to service
level agreements (detailed in §3). We design a greedy algorithm to
solve DyPeG and perform empirical evaluation of the algorithm
using a representative workload. We present the details in §5.

The main contributions of this work are:

e Introduce the dynamic red-orange-blue pebble game with multi-
ple processors (DyPeG).

e Develop greedy algorithm to efficiently solve multiprocessor and
multi-level pebbles games, including DyPeG.

o Perform preliminary empirical evaluation of DyPeG using repre-
sentative computational DAGs for Fast Fourier Transform (FFT)
and residual neural network (resnet).

Anusha Devulapally, Mahantesh Halappanavar, Bruno Jacob, Vijaykrishnan Narayanan, and Andres Marquez

To the best of our knowledge, this is the first work to introduce peb-
bles games in a dynamic setting, as well as targeting disaggregated
memory systems.

2 PRELIMINARIES

Computational problems can be modeled as directed acyclic graphs
(DAGs), where the vertices represent individual computational
tasks and the edges encode the dependencies between the tasks.
In memory-constrained settings, the efficiency of a computation is
heavily influenced by its I/O complexity, which quantifies the num-
ber of data transfers occurring across various levels of the memory
hierarchy (e.g., cache, local memory, remote memory, and secondary
storage). In classical computational models, I/O complexity pro-
vides lower bounds on the number of memory transfers necessary
to execute an algorithm given a specified amount of fast memory.
For instance, performing an n-point Fast Fourier Transform (FFT)
using O(S) memory incurs a minimum I/O cost of Q (nlogn/log S),
while matrix multiplication for an n X n matrix has an I/O lower
bound of Q (n3/S). These theoretical limits underscore the critical
role played by memory capacity, latency, and bandwidth, particu-
larly in disaggregated-memory systems where these parameters
are substantially influenced.

We briefly introduced the classical red-blue pebble game in §1,
which can be extended to consist of multiple memory types (multi-
level), as well as multiple processors. We now introduce a multi-
processor red-orange-blue pebble game. In order to enable multi-
processing, we consider different shades of red pebbles, Rii1<i<
P, representing local memory on P processors. The total number of
red pebbles is the sum of local memories on each processor, Zf:l R
For the sake of this discussion, we consider a distributed-memory
system with access to a shared (fabric attached) memory pool. The
pooled memory is represented with orange pebbles, O. We assume
that the cost for accessing data from pooled memory is much lower
than the cost of accessing remote memory, where remote memory
can be shared via a message passing framework. Figure 1 provides
a simplified illustration of such a system. We propose the following
rules for a multiprocessor red-orange-blue pebble (MROBP) game:

R1 (Input) Assign blue pebbles to all source or input nodes (vertices
with no predecessors).

R2 (Remote Get): An orange pebble or a red pebble of a different
shade (R, g # p, when processor p works on the given vertex)
can be placed on any vertex that already has a blue pebble.

R3 (Data Movement): A red pebble of any shade can be placed on
any vertex that already has a blue, orange, or a red pebble of a
different shade.

R4 (Compute) A vertex can be computed if all its immediate prede-
cessors have red pebbles. Place a red pebble of any shade on
this vertex. For all predecessors with a different shade of red
will incur a remote data movement cost.

R5 (Remote Put) An orange pebble or a red pebble of a different
shade (RY, ¢ # p) can be placed on any vertex that has a red
pebble RP.

R6 (Output) A blue pebble can be placed on any vertex that has a
red pebble.

R7 (Termination) The game terminates when no further moves
can be made, or when all terminal nodes (vertices with no
successors) are computed and placed in memory.

We note that a multi-level, multi-processor game is still a static
game, in that the system remains stable. We extend this game with
a dynamic access to resources, where the volume and performance
of memory system can change over the execution of a given DAG.

ProcessorA LI Processor B
(Fast Memory) (Fast Memory)

4
HENH f"l oi "’\
H i [Fast Memory (Limited, Compute)
H i I Shared Memory (Limited)
I Slow Memory (Unlimited)
> Read Operation Cost
<+ = Processor Communication Cost
— Write Operation Cost

12
10
12
10

Shared Memory Pool

Storage (Slow Memory)

Figure 1: Multi-Level, multi-processor memory hierarchy and
data movement costs in a disaggregated system. We assume
similar costs for moving from Blue to Red and Blue to Orange,
but much smaller costs for moving from Orange to Red. We
also assume different costs for Read versus Write tasks. We
also assume that the message passing between the processors
is more than moving it to Orange. These cost values are only
representative numbers for empirical evaluation.

3 DYNAMIC MULTILEVEL PEBBLE GAME

We introduce the dynamic multi-level pebble game to specifically
address multi-tenant cloud computing systems with disaggregated
memory where memory resources are dynamically provisioned
over the period of execution of one or more applications.

The dynamic extension builds on the MROBP discussed in the §2
by introducing the time-varying constraints on the availability of
red pebbles, mimicking how memory quotas are adjusted at runtime
in shared cloud infrastructures. The red pebble budget, representing
fast memory or compute-local capacity, can change during execu-
tion due to external system factors such as tenant interference or
adaptive provisioning. To ensure fair resource guarantees, a Service
Level Agreement (SLA) is enforced by maintaining a lower bound
on the red pebble budget. This SLA threshold is determined through
an offline iterative approach, where we gradually increase the red
pebble count and simulate greedy execution until the DAG com-
pletes without stalling. The resulting minimum working red pebble
count provides a baseline for dynamic adjustment: any temporary
budget changes must respect this SLA to guarantee progress. This
formulation enables analysis of pebbling strategies under realistic
constraints where memory cannot be statically provisioned. An
additional constraint that can be enforced to reflect conditions such
as congestion would be to change the costs of memory accesses
dynamically, which we will perform in the future.

The rules for dynamic extension builds on the MROBP in DyPeG
can be formalized as follows:

D1 (Input) Assign blue pebbles to all source or input nodes (vertices
with no predecessors).

D2 (Dynamic Budget Constraint) A red pebble can only be placed
if the total number of red pebbles does not exceed the current
budget. This budget must remain at or above a specified SLA-
defined minimum. If the red-pebble limit is reached, an existing
red pebble must be removed before placing a new one.

Revisiting Pebble Games for Modeling and Efficient Use of Disaggregated Memory Systems

D3 (Remote Get) An orange pebble or a red pebble of a different
shade (RY, g # p, when processor p computes the vertex) can
be placed on any vertex that already has a blue pebble.

D4 (Data Movement) A red pebble of any shade may be placed on
a vertex that currently has a blue pebble, an orange pebble, or
ared pebble of a different shade. If the vertex has no existing
pebble, the placement counts as a fresh memory fetch.

D5 (Compute) A vertex can be computed if all its immediate prede-
cessors have red pebbles. Place a red pebble R? on this vertex.
For all predecessors holding red pebbles of a different shade
(R1, q # p), the step incurs a remote data movement cost.

D6 (Remote Put) An orange pebble or a red pebble of a different
shade (R, q # p) can be placed on any vertex that currently
has a red pebble RP. This models explicitly exporting data for
reuse by other processors or into slower memory.

D7 (Eviction) A red pebble may be removed (converted to a blue
pebble) to stay within budget. This is allowed if the node:

e is a sink node,
e has all its successors already computed, or
o has successors that all hold blue or orange pebbles.

D8 (Output) A blue pebble may be placed on any vertex that has a
red pebble, marking its result as persisted in memory.

D9 (Termination) The game terminates when no further moves can
be made, or when all sink nodes are computed and finalized in
memory.

We evaluate DyPeG using two representative applications and
present the results in §5.

4 RELATED WORK

The black pebble game was introduced over five decades ago by
Sethi to model the space complexity of registers to execute com-
puter programs [19]. It modeled memory (register) usage on a DAG
generated from straight-line programs, where memory slots (regis-
ters) were modeled as pebbles. The goal was to execute the program
using the smallest amount of memory (number of registers). In this
game, pebbles can be placed on source nodes anytime, or on a node
once all its predecessors are pebbled. Pebble can be removed freely.
Sethi’s register-allocation problem is equivalent with the pebbles
corresponding to registers holding computed values without recom-
putation [19]. The progressive variant forbids the recomputation,
i.e., each node pebbled at most once, making the decision problem
NP-Hard, whereas allowing recomputation is PSPACE-complete [7].
A further black-white pebble game adds white pebbles to model
non-deterministic guesses [1, 13]. Placing a white pebble on a node
corresponds to guessing its value, which must later be verified by
actually computing the node. While this approach can save at most
one pebble, it may square the number of moves required.

Petri net, a mathematical representation to model and under-
stand concurrent interactions among different components of a
system, is a closely related topic [16]. Since their introduction by
Carl Adam Petri in their 1962 doctoral dissertation [20], Petri nets
have been widely used in system and process modeling, software
design, optimization, and memory systems [21]. Dijkstra introduced
a nondeterministic pebble game to reason about program control
and termination. Reisig later formalized Dijkstra’s approach using
Petri nets and proposed distributed, online and reversed variants,

highlighting the algorithm’s local and reversible properties [17]. Al-
though not modeling memory or I/O directly, this work influenced
formal reasoning about concurrency in pebble-like systems.

In their seminal work, Hong and Kung introduced the red-blue
pebble game to model the I/O complexity of the algorithms [11].
This game modeled the trade-off between computation and memory
usage for two-level memory hierarchy. Demaine and Liu further
studied the complexity of computing optimal cache and memory
transfer trade-offs [5], and Gleinig and Hoefler introduced red-blue-
white pebble game for trees and larger DAGs refining the I/O lower
bounds for large-scale computation [8]. In extending the classic
two-level red-blue pebble game, Savage generalized the model to an
arbitrary k-level hierarchy and derived matching I/O lower bounds
and optimal scheduling principles across all levels [18]. Carpenter
et al. introduced a one-shot variant of the pebble game, where each
vertex may be pebbled only once [3].

Recent studies further extended red-blue pebble to multi-processor.
Elango et al. developed a parallel extension of the classic red-blue
pebble game, modeling multi-node, multi-core machines with hi-
erarchical caches and interconnects to derive lower bounds on
data-movement complexity of arbitrary CDAGs executed in paral-
lel [6]. Liu et al. surveyed both black and red-blue pebble games in
sequential and parallel settings to explore applications from reg-
ister allocation to I/O modeling [14]. Kwasniewski et al. revisited
red-blue pebbling to derive tight sequential and parallel I/O bounds
for classic matrix-matrix multiplication, demonstrating how opti-
mized pebbling strategies can significantly reduce communication
costs in HPC environments[12]. Finally, Bohnlein et al. [2] propose
a multiprocessor generalization of the red-blue pebble game that
captures the trade-offs between load-balancing, communication
and memory by proposing a greedy heuristic approach.

It is evident that pebble games have a long history of theoretical
development. However, most work remains analytical or simulation-
based and only a few studies incorporate empirical evaluation, ei-
ther through simulated pebbling or benchmarking on real DAGs
[2, 3, 12]. Empirical work is sparse, and there remains a significant
gap in validating pebble games for modern workloads under dy-
namic system constraints. From an applications perspective, early
pebble game research focused on structured computations like FFT
and matrix multiplication [11, 18]. Later studies have applied pebble
models to a wide range of domains, which include sparse matrix
computations [22], deep neural networks [23], TSP graphs [3], and
large random or tree-structured DAGs [8]. This trend reflects a shift
towards modeling realistic workloads and capturing the computa-
tion-communication trade-offs in modern dataflow applications.

The existing variants of the pebble game assume that memory
resources and performance (bandwidth and latency) remain static
for the entire period of execution. However, this is assumption
is not reflective of real-world, especially in the context of multi-
tenant cloud computing systems. We therefore introduce a new
variant, dynamic multi-level pebble game, to model modern systems
and evaluate its performance for a representative Al workload.
Furthermore, in addition to establishing theoretical bounds on I/O
complexity, there is a need for a sound algorithmic approaches
that can provide runtime guidance for dynamic memory allocation
strategies for multi-tenant systems that host a heterogeneous mix
of applications and are subject to service-level agreements.

Anusha Devulapally, Mahantesh Halappanavar, Bruno Jacob, Vijaykrishnan Narayanan, and Andres Marquez

5 WORKLOAD ANALYSIS AND RESULTS

We present detailed empirical evaluation using two representative
algorithms, Fast Fourier transform (FFT) and Residual Network
(resnet-coarse), under both the Red-Blue (RB) and Red-Orange-Blue
(ROB) pebble game models. Using greedy scheduling and empir-
ically determined working red pebble counts, starting with the
theoretical lower bound of A + 1, where A is the maximum in-
degree. We quantify the total number of pebble moves and their
associated costs across varying levels of processor parallelism and
disaggregated-memory (orange pebbles) usage. We perform two
types of evaluations: (i) keeping total memory constant, and (ii)
keeping per-processor memory constant. We can expect to see
additional costs from memory movement due to inter-process com-
munication when the total memory is held constant. With increased
total memory, we expect the per-node constant memory case to
favor the increase in the number of processors. In this section, we
present the results for FFT and then for resnet.

5.1 Fast Fourier Transform (FFT)

The FFT workload reveals important distinctions in how cost scales
under Red-Blue (RB) and Red-Orange-Blue (ROB) pebble games.

5.1.1 Analysis 1: Keeping the total memory constant. In the
RB model (Figure 2), total cost increases steeply with FFT problem
size, and higher processor counts do not consistently reduce cost.
Notably, the p=16 (16 processors) configuration performs worse
than both p=1 and p=32 for larger problem sizes, suggesting subop-
timal reuse and parallel scheduling under certain configurations.
In contrast, the ROB model (Figure 3) demonstrates smoother cost
trends, with consistent reductions as both problem size and pro-
cessor count grow. By introducing pooled memory in the form of
orange pebbles (8% red), ROB enables better intermediate value
retention, significantly lowering total cost for large FFTs like 1024
and 2048. Across single- to 8-processor configurations, ROB reduces
total cost by about 50-55 %, demonstrating a clear efficiency advan-
tage over the classic RB schedule for all problem sizes (128—2043).
The benefit narrows as we scale up—dropping to 37 % at 16 proces-
sors and 9 % at 32—because the gain from orange buffering is largely
swallowed by the overhead of coordinating so many processors, so
ROB delivers only marginal extra savings at that point. Table1 lists
the total number of moves required for FFT DAGs across problem
sizes and processor configurations.

5.1.2 Analysis 2: Keeping per-processor memory constant.
As seen in the RB and ROB model (Figures 4 and 5), the total cost
for all the cases is less compared to Analysis 1 (constant memory).
This is due to the increase in total memory with increase in the
number of processors. Similar to Analysis 1 total cost for RB in-
creases steeply with FFT problem size, and higher processor counts
consistently reduce cost. In contrast, the ROB model (Figure 5)
demonstrates substantial efficiency gains for all the problem sizes
over RB. Table 2 lists the total number of moves required for FFT
DAGs across problem sizes and processor configurations.

5.2 Resnet-Coarse

The resnet-Coarse workload highlights the cost behavior of deep
learning DAGs at a layer-wise granularity of the resnet models un-
der RB and ROB pebble models. For this workload, we only perform

600
® RB, p=1

A RB, p=4
400 " RB,p=16
¢ RB, p=32

Total Cost

200

A

128 256 512 1024 2048

FFT Problem Sizes

Figure 2: RB Total Cost - FFT (Analysis 1): Total cost (scaled
by a factor of 1000) under the Red-Blue (RB) pebble game for
FFT DAGs across varying processor counts keeping the total
memory constant.

500
® ROB, p=1
400 4 ROB, p=4
ROB, p=16

% 300 P
8 ¢ ROB, p=32
©
5 200
}—

100

0 N

128 256 512 1024 2048

FFT Problem Sizes
Figure 3: ROB Total Cost - FFT (Analysis 1): Total cost (scaled
by a factor of 1000) for FFT DAGs under Red-Orange-Blue
(ROB) pebble games across varying processor counts keeping
the total memory constant.

400 o RB, p=1
4 RB, p=8
300 . RrB, p=16
7 + RB, p=32
S 200
©
o
'_
100
0

128 256 512 1024 2048

FFT Problem Sizes
Figure 4: RB Total Cost - FFT (Analysis 2): Total cost (scaled
by a factor of 1000) under the Red-Blue (RB) pebble game
for FFT DAGs across varying processor counts keeping per-
processor memory constant.

Revisiting Pebble Games for Modeling and Efficient Use of Disaggregated Memory Systems

Problem Size | nodes | edges | in_degree | upper bound | min_red Single Processor | 2 Processors | 4 Processors 8 Proc 16 Processors | 32 Processors
- - RB ROB RB ROB| RB ROB | RB ROB | RB ROB RB ROB

128 1024 1792 2 8 146 1966 1983 2354 2416 | 2723 2775 | 1496 1496 | 1549 1549 128 128

256 2304 4096 2 8 275 4477 4479 2312 2312 | 4744 4744 1064 1064 1224 1224 256 256
512 5120 9216 2 8 634 9963 9983 11745 11745 | 13564 13564 | 14537 14537 | 11764 11764 | 15479 15479
1024 11264 | 20480 2 8 1281 22015 22015 24825 24825 | 28935 28935 | 31309 31309 | 33013 33013 | 33675 33675
2048 24576 | 45056 2 8 2179 47999 47999 55224 56019 | 63332 64008 | 71239 71262 | 75279 75279 | 50259 50259

Table 1: FFT Greedy Total Moves for Analysis 1: Total number of moves computed using the greedy algorithm for different FFT
DAGs under Red-Blue (RB) and Red-Orange-Blue (ROB) pebble game models, with varying processor counts. ROB uses 8x red

pebbles for orange memory.

Problem Size | nodes | edges | in_degree | upper bound | min_red Single Processor | 2 Processors | 4 Processors 8 Proc 16 Processors | 32 Processors
- - RB ROB RB ROB| RB ROB | RB ROB | RB ROB RB ROB

128 1024 1792 2 8 146 1966 1983 1961 2068 1963 2082 1959 2033 1747 1811 1663 1663

256 2304 | 4096 2 8 275 4477 4479 4602 4604 | 4540 4593 | 4417 4532 | 4030 4030 | 3797 3797

512 5120 9216 2 8 634 9963 9983 10084 10124 | 10307 10346 | 10015 10015 | 8393 8393 | 7983 7983

1024 11264 | 20480 2 8 1281 22015 22015 22270 22270 | 22624 22624 | 23482 23482 | 18533 18533 | 17605 17605
2048 24576 | 45056 2 8 2179 47999 47999 48196 48240 | 48972 49365 | 49942 51227 | 45045 46053 | 37879 37933

Table 2: FFT Greedy Total Moves for Analysis 2: Total number of moves computed using the greedy algorithm for different FFT
DAGs under Red-Blue (RB) and Red-Orange-Blue (ROB) pebble game models, with varying processor counts. ROB uses 8x red

pebbles for orange memory.

200
® ROB, p=1
4 ROB, p=8 ®
150 ROB, p=16
3 + ROB, p=32
S 100
s
3
l—
50
0
128 256 512 1024 2048

FFT Problem Sizes

Figure 5: ROB Total Cost - FFT (Analysis 2): Total cost (scaled
by a factor of 1000) for FFT DAGs under Red-Orange-Blue
(ROB) and Red-Blue (RB) pebble games across varying pro-
cessor counts keeping per-processor memory constant.
analysis on Per-Processor Memory Constant Setting because the
minimum number of red pebbles for the resnet dags are too small
(3 pebbles; Table 3), which is not plausible to divide among multiple
processors to analyze the total memory constant setting.

5.2.1 Analysis 3: Keeping per-processor memory constant.
In the RB setting (Figure 6), total cost increases steadily with model
depth, with resnet152 incurring the highest cost. Increasing proces-
sor count from (p=1) to (p=32) provides moderate cost reductions,
though improvements tend to saturate, especially for smaller mod-
els like resnet18 and resnet34. Notably, the cost curve for (p=32)
displays irregular behavior at resnet34, indicating suboptimal reuse
or scheduling effects under the greedy strategy. In contrast, the
ROB model (Figure 7) demonstrates more consistent scaling with
monotonically decreasing costs as processor count increases. With
per-core memory fixed, ROB reduces 60-65 % of total cost for
ResNet-18/34/50 across every processor count. For deeper back-
bones the relative gap narrows—roughly 38 % for ResNet-101 and
24 % for ResNet-152. This advantage of orange memory in enabling
intermediate reuse and alleviating recomputation overhead is par-
ticularly evident in resnet152, where cost drops sharply from (p=1)

to (p=32). Table 3 reports the total number of moves computed for
fine-grained resnet DAGs under both models.

8
® RB, p=1
64 RB, p=16
RB, p=32
3 4
(&
©
° 2
'_ /
0
Q> X N} N v
& F F &
=) =) =) N N
& & & & &

Different resnet configurations

Figure 6: RB Total Cost - resnet-coarse (Analysis 3): Total cost
(log-scaled by a factor of 1000) under the Red-Blue (RB) peb-
ble game across coarse-grained resnet architectures and vary-
ing processor counts keeping per-processor memory con-
stant.

6 SUMMARY AND FUTURE WORK

In this paper, we proposed pebble games as a powerful framework
for modeling and designing efficient disaggregated memory sys-
tems. To address the unique challenges of multi-tenant cloud com-
puting environments, we introduced a novel variant, the dynamic
red-orange-blue pebble game with multiple processors (DyPeG),
which captures the dynamic provisioning of memory resources in
such scenarios. We evaluated DyPeG empirically using two repre-
sentative applications, demonstrating its capability to effectively
assess modern disaggregated memory systems. Our preliminary
results highlight the potential of DyPeG as a robust tool for ana-
lyzing and optimizing memory architectures in cloud-based, multi-
processor environments.

For future work, we plan to develop learning-based approaches
to solve DyPeG and focus on simulating the concurrent execu-
tion of heterogeneous workloads across multiple processors, while

Anusha Devulapally, Mahantesh Halappanavar, Bruno Jacob, Vijaykrishnan Narayanan, and Andres Marquez

Models | nodes | edges | in_degree | upper bound | min_red Single Processor | 2 Processors | 4 Processors | 8 Processors | 16 Processors | 32 Processors
- - RB ROB RB ROB | RB ROB | RB ROB | RB ROB | RB ROB
resnet18 71 78 2 8 3 140 140 141 141 141 141 146 146 169 169 192 192
resnet34 127 142 2 8 3 252 252 253 253 253 253 256 256 273 273 394 394
resnet50 177 192 2 8 3 352 352 353 353 353 353 352 352 349 349 336 336
resnet101 347 379 2 8 3 692 844 693 693 693 693 692 692 689 689 676 676
resnet152 | 517 566 2 8 3 1032 1354 1033 1033 | 1033 1033 | 1032 1032 | 1029 1029 | 1016 1016

Table 3: Resnet Total Moves for Analysis 3: Total number of moves computed using the greedy algorithm for different resnet
DAGs under Red-Blue (RB) and Red-Orange-Blue (ROB) pebble game models, with varying processor counts. ROB uses 8x red

pebbles for orange memory.

8
® ROB, p=1
6 4 ROB, p=16
ROB, p=32
‘g 4
o
S
5
0
 F £ & ¢
Y Y Y @ @
& & & & &

Different resnet configurations

Figure 7: ROB Total Cost - resnet-coarse (Analysis 3): Total cost
(log-scaled by a factor of 1000) under the Red-Orange-Blue
(ROB) pebble game using 8% orange pebbles across coarse-
grained resnet architectures.

maintaining compliance with Service Level Agreement (SLA) con-
straints. Furthermore, we want to explore the use of DyPeG to
dynamically guide workload scheduling and memory allocation
decisions on multi-tenant systems. We aim to enhance the scala-
bility and real-world applicability of pebble games in complex and
realistic distributed cloud computing scenarios.

ACKNOWLEDGMENTS

This work was supported by the U.S. DOE Office of Science, Office
of Advanced Scientific Computing Research, under award 76125:
“AMALIS - Advanced Memory to support Artificial Intelligence for
Science”. The Pacific Northwest National Laboratory is operated by
Battelle for the U.S. Department of Energy under contract DE-ACO05-
76RL01830, and by PRISM, one of the seven centers in JUMP 2.0, a
Semiconductor Research Corporation (SRC) program sponsored by
DARPA.

REFERENCES

[1] Friedhelm Meyer auf der Heide. 1981. A comparison of two variations of a pebble
game on graphs. Theoretical Computer Science 13, 3 (1981), 315-322.

[2] Toni Béhnlein, Pal Andras Papp, and Albert-Jan N Yzelman. 2025. Red-Blue
Pebbling with Multiple Processors: Time, Communication and Memory Trade-
Offs. In International Colloquium on Structural Information and Communication
Complexity. Springer, 109-126.

[3] Timothy Carpenter, Fabrice Rastello, P Sadayappan, and Anastasios Sidiropoulos.
2016. Brief announcement: Approximating the i/o complexity of one-shot red-
blue pebbling. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures. 161-163.

[4] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024. An Intro-
duction to the Compute Express Link (CXL) Interconnect. ACM Comput. Surv.
56, 11, Article 290 (July 2024), 37 pages.

[5] Erik D. Demaine and Quanquan C. Liu. 2018. Red-Blue Pebble Game: Complexity
of Computing the Trade-Off between Cache Size and Memory Transfers. In Pro-
ceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures
(Vienna, Austria) (SPAA’18). Association for Computing Machinery, New York,
NY, USA, 195-204. https://doi.org/10.1145/3210377.3210387

Venmugil Elango, Fabrice Rastello, Louis-Noél Pouchet, Jagannathan Ramanujam,

and Ponnuswamy Sadayappan. 2014. On characterizing the data movement

complexity of computational DAGs for parallel execution. In Proceedings of the

26th ACM Symposium on Parallelism in Algorithms and Architectures. 296-306.

[7] John R Gilbert, Thomas Lengauer, and Robert Endre Tarjan. 1979. The pebbling
problem is complete in polynomial space. In Proceedings of the eleventh annual
ACM symposium on Theory of computing. 237-248.

[8] Niels Gleinig and Torsten Hoefler. 2022. The red-blue pebble game on trees and
dags with large input. In International Colloquium on Structural Information and
Communication Complexity. Springer, 135-153.

[9] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David
Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, and Thomas
Moscibroda. 2020. Protean: VM Allocation Service at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 845-861.

[10] Pingyi Huo, Anusha Devulapally, Hasan Al Maruf, Minseo Park, Krishnakumar
Nair, Meena Arunachalam, Gulsum Gudukbay Akbulut, Mahmut Taylan Kan-
demir, and Vijaykrishnan Narayanan. 2024. PIFS-Rec: Process-In-Fabric-Switch
for Large-Scale Recommendation System Inferences. In 2024 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 612-626.

[11] Hong Jia-Wei and Hsiang-Tsung Kung. 1981. I/O complexity: The red-blue
pebble game. In Proceedings of the thirteenth annual ACM symposium on Theory
of computing. 326-333.

[12] Grzegorz Kwasniewski, Marko Kabi¢, Maciej Besta, Joost VandeVondele, Raffaele
Solca, and Torsten Hoefler. 2019. Red-blue pebbling revisited: near optimal par-
allel matrix-matrix multiplication. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 1-22.

[13] Thomas Lengauer. 1981. Black-white pebbles and graph separation. Acta Infor-

matica 16 (1981), 465-475.

Quanquan Catherine Liu. 2017. Red-blue and standard pebble games: Complex-

ity and applications in the sequential and parallel models. Ph.D. Dissertation.

Massachusetts Institute of Technology.

[15] Pal Andras Papp and Roger Wattenhofer. 2020. On the hardness of red-blue
pebble games. In Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures. 419-429.

[16] James L. Peterson. 1977. Petri Nets. ACM Comput. Surv. 9, 3 (Sept. 1977), 223-252.

https://doi.org/10.1145/356698.356702

Wolfgang Reisig. 2008. The Scholten/Dijkstra pebble game played straightly,

distributedly, online and reversed. In Pillars of Computer Science: Essays Dedicated

to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. Springer, 589—

595.

[18] John E Savage. 1995. Extending the Hong-Kung model to memory hierarchies.

In International Computing and Combinatorics Conference. Springer, 270-281.

Ravi Sethi. 1973. Complete register allocation problems (STOC '73). Association

for Computing Machinery, New York, NY, USA, 182-195. https://doi.org/10.

1145/800125.804049

Manuel Silva. 2012. 50 years after the PhD thesis of Carl Adam Petri: A perspec-

tive. IFAC Proceedings Volumes 45, 29 (2012), 13-20. 11th IFAC Workshop on

Discrete Event Systems.

[21] Gajendra Pratap Singh. 2016. Applications of Petri nets in electrical, electronics

and optimizations. In 2016 International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT). 2180-2184.

Aleksandros Sobczyk. 2024. I/O complexity and pebble games with partial

computations. arXiv preprint arXiv:2410.22237 (2024).

Xiaoyang Zhang, Junmin Xiao, and Guangming Tan. 2020. Communication

Lower Bounds of Convolutions in CNNs. In Proceedings of the 32nd ACM Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA °20). Association for

Computing Machinery, New York, NY, USA, 591-593.

—_
2

[14

(17

=
L

[20

[22

[23

https://doi.org/10.1145/3210377.3210387
https://doi.org/10.1145/356698.356702
https://doi.org/10.1145/800125.804049
https://doi.org/10.1145/800125.804049

	Abstract
	1 Introduction
	2 Preliminaries
	3 Dynamic Multilevel Pebble Game
	4 Related Work
	5 Workload Analysis and Results
	5.1 Fast Fourier Transform (FFT)
	5.2 Resnet-Coarse

	6 Summary and Future Work
	Acknowledgments
	References

