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ABSTRACT

This paper evaluates the efficacy of recent commercial processing-
in-memory (PIM) solutions to accelerate fast Fourier transform
(FFT), an important primitive across several domains. Specifically,
we observe that efficient implementations of FFT on modern GPUs
are memory bandwidth bound. As such, the memory bandwidth
boost availed by commercial PIM solutions makes a case for PIM
to accelerate FFT. To this end, we first deduce a mapping of FFT
computation to a strawman PIM architecture representative of
recent commercial designs. We observe that even with careful data
mapping, PIM is not effective in accelerating FFT. To address this,
we make a case for collaborative acceleration of FFT with PIM
and GPU. Further, we propose software and hardware innovations
which lower PIM operations necessary for a given FFT. Overall,
our optimized PIM FFT mapping, termed Pimacolaba, delivers
performance speedup and data movement savings of up to 1.38%
and 64%, respectively, over a range of FFT sizes.

CCS CONCEPTS

« Hardware — Memory and dense storage; - Computer sys-
tems organization — Single instruction, multiple data.
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1 INTRODUCTION

Discrete Fourier transform (DFT) is an important primitive across
several domains of import (molecular dynamics, computational
chemistry, data analysis and more) and it forms the key building
block of important computations (e.g., solving partial differential
equations). Consequently, efficient implementations of DFTs, specif-
ically of fast Fourier transform (FFT) [14], have received consid-
erable attention from widely deployed accelerators such as GPUs,
which power seven out of ten fastest supercomputers [50].

We observe in this work that efficient implementations of FFTs on
GPUs are memory bandwidth bound and as such could benefit from
techniques which avail higher memory bandwidth than available at
the GPU. As such, we evaluate the efficacy of recent commercially
viable processing-in-memory (PIM) solutions [29, 43], which avail
memory bandwidth boost (potentially up to 12X as projected in
Section 3.2) over GPUs by pushing compute to near-memory com-
pute units, to accelerate FFT. To this end, we begin with deducing
compute orchestration and data mapping necessary to map FFT
computation to in-memory compute units. We observe here that
even with careful compute orchestration and appropriate data map-
ping, (except for small sizes) PIM leads to considerable slowdown
vis-a-vis a GPU (average slowdown of about 52%).
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To tackle this, we make a case for collaborative acceleration
of FFT with PIM. That is, we propose that for a given FFT size,
harnessing PIM for a judicious portion of the computation is a su-
perior strategy than for the entire computation. To achieve this, we
augment existing FFT decomposition mechanism [19, 34], which de-
composes a given FFT into component computations all mapped to
GPU, to also map some resultant components to PIM (using our FFT
PIM routines). By carefully choosing the portion of computation
that is mapped to PIM, we can harness PIM for FFT acceleration
(maximum speedup of about 1.07x). As we will show, such a collabo-
rative acceleration strategy, beyond performance, also has the effect
of lowering data movement (up to 64%) which has the potential to
translate to energy savings.

Next, we further observe that the majority of the operations
are compute commands to in-memory compute units. As such, we
propose two innovations which help lower PIM compute opera-
tions necessary for a given FFT. First, we observe that the butterfly
computation [32] in FFT, which is the key building block of a FFT
computation, can be decomposed to fewer PIM compute operations
in certain scenarios (software optimization). Second, we identify
a common computation pattern in the butterfly computation and
propose simple extension to in-memory compute units which accel-
erates this pattern (hardware optimization). Our proposed software
and hardware optimizations along with our collaborative accelera-
tion strategy, all of which together we term Pimacolaba, deliver
performance of up to 1.38% over a range of FFT sizes.

Finally, we observe that as accelerators and processors alike are
coupled with memory, solutions like PIM can serve as augmenta-
tions over and above existing FFT acceleration solutions that only
harness processor-side optimizations. As such, our work comple-
ments the rich spectrum of existing (and potentially future) efforts
which aim to accelerate the important primitive of FFT.

We summarize the key contributions in this work below.

e We observe in this work that efficient implementations of
FFT, an important scientific primitive, are memory band-
width bound on modern GPUs. As such, this is the first
work to evaluate the efficacy of the emerging commercially
viable PIM solutions, which avail memory bandwidth boost,
to accelerate FFT.

o To this end, we first deduce a mapping of FFT computation
to a strawman PIM architecture representative of recent
commercial PIM designs. Using the above FFT mapping,
we show that even with careful data mapping and compute
orchestration, (except for small sizes), PIM leads to consid-
erable slowdown vis-a-vis a GPU (average slowdown of
about 52%).

o To tackle the above challenge, we propose collaborative
acceleration of FFT with PIM. That is, we augment existing
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Figure 1: FFT algorithm for size N and butterfly computation.

FFT decomposition mechanism, which decomposes a given
FFT into component computations all mapped to GPU, to
also map some resultant components to PIM. We observe
that such a strategy achieves maximum speedup of 1.07X
and maximum data movement savings of 64%, a key chal-
lenge in today’s systems.

o Next, we further analyze our collaborative FFT PIM map-
ping and propose augmentations to in-memory compute
units and software optimizations to lower PIM operations
necessary for a given FFT. Our resultant PIM FFT mapping,
which we term Pimacolaba, delivers performance of up to
1.38X over a range of FFT sizes.

e We believe our work presents a complimentary acceleration
strategy for an important primitive like FFT that plays well
with spectrum of existing (and potentially future) accelera-
tion solutions for FFT.

2 BACKGROUND

In this section, we provide a brief background of fast Fourier trans-
form (FFT) algorithm and the key characteristics of its efficient
implementations on GPUs. Additionally, we provide a background
on commercial processing-in-memory (PIM) designs evaluated in
this work.

2.1 Fast Fourier Transform (FFT)

The discrete Fourier transform (DFT) transforms a representation
of a function in time-domain to its representation in frequency-
domain. DFTs are an important primitive across several domains
of import (e.g., molecular dynamics, computational chemistry and
more). We focus in this work on an efficient method to calculate
DFT, namely, fast Fourier transform (FFT) and more specifically
on the Cooley-Tukey algorithm [14], a widely used and efficient
algorithm for FFT. Further, we also focus on complex DFT, which
transforms two N point time domain functions into two N point
frequency domain functions. We discuss other forms of FFT in
Section 7.

Figure 1 shows a simplified view of this efficient FFT algorithm.
The algorithm takes as input an array of N samples (complex num-
bers) in a signal (termed as FFT size henceforth) and sorts them
in bit-reversed order. The key building block of FFT algorithm is
the butterfly computation. Each butterfly computation takes, as its
inputs, two complex numbers x; and xz (which are two points in
the input) and w, which is another complex number called twiddle
factor. As depicted in Figure 1 (right), the butterfly computation
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Figure 2: FFT decomposition.

involves complex number multiplication and addition to produce as
outputs two other complex numbers y; and y,. The FFT algorithm
comprises log(N) steps each involving N /2 butterfly computations
as depicted in Figure 1 (left). Note that the input to each step is the
output of the previous step as depicted.

2.2 Efficient FFTs on GPUs

We focus on efficient implementations of FFT on GPUs for the
following reasons. First, GPUs are one of the widely used accel-
erators present today. In fact, GPUs power seven of ten fastest
supercomputers in the world [50]. Second, starting with an acceler-
ated baseline like that on a GPU allows us to assess the efficacy of
new accelerator solutions like PIM beyond existing state-of-the-art
solutions. Finally, emerging commercial PIM solutions are coupled
with GPUs [43] allowing us a baseline architecture to assess.

A common feature of efficient implementations of FFT on
GPUs [7, 19, 34, 37]) is that they anchor on effective use of local
scratchpad (local data share/LDS on AMD GPUs or shared memory
on other GPUs). That is, computing an FFT of size N such that
the N input elements fit in LDS comprises loading the data in LDS
and performing subsequent butterfly computations by accessing
data from LDS and not main memory. By minimizing data move-
ment and accessing data out of high-bandwidth on-chip scratchpad
memory, high efficiency can be attained.

For FFT of size N such that the N input elements do not fit in LDS,
existing FFT implementations decompose the problem into multi-
dimensional (2D, 3D) space, processing each dimension sequentially.
We depict a 2D decomposition in Figure 2. The decomposition is
guided by multiple factors, and we discuss some of the key fac-
tors. First, the decomposed components together form the original
computation (that is, N = N1 X N3). Second, the decomposed com-
ponents are chosen to fit in LDS (that is, while N elements do not
fit in LDS, N; and Ny elements, individually, fit in LDS). Note that,
while a single GPU kernel is needed for FFT of size N when N
input elements fit in LDS, for the depicted 2D decomposition, two
GPU kernels are needed each representing a batched FFT computa-
tion. That is, N7 (batch size) column FFTs of size N followed by
N; (batch size) row FFTs of size Nj. As such, decomposition leads
to batched FFT computations. Finally, FFT decomposition is used
recursively whenever one of the dimensions does not fit in the LDS.

2.3 Commercial PIM Solutions

Continued memory bandwidth demand, both from commercial and
scientific workloads, has made it worthwhile for memory vendors
to reassess, in a commercial context, processing-in-memory (PIM).
PIM is a computing paradigm wherein portions of compute are
offloaded to near-memory compute units to avail higher bandwidth
(potentially an order of magnitude or more). As such, multiple
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Figure 3: Strawman commercial HBM PIM architecture.

memory vendors have recently demonstrated commercially viable
working PIM prototypes more cognizant of industry constraints.
In this work, we study a PIM architecture which is an exemplar
of recent commercial PIM designs [28, 29].1 As we study FFTs on
GPUs, we focus on GPU-based PIM solutions which augment high
bandwidth memory (HBM) [25].

Figure 3 depicts the strawman commercial PIM design we focus
on in this work (henceforth referred to as PIM). To attain high
bandwidth whilst incurring low energy/bit of data transfer, HBM is
integrated with GPU within a single package, with communication
amongst them via a silicon interposer. Each HBM module stacks
multiples of four DRAM dies vertically, with a base logic die stacked
below the memory dies. Each DRAM die comprises multiple pseudo
channels, which are comprised of multiple banks. Banks within
a pseudo channel share the data bus associated with the pseudo
channel, while pairs of pseudo channels share a command bus. Read
or write requests from the GPU typically access a single bank in a
pseudo channel wherein, the address associated with the read/write
request determines the pseudo channel, bank, row, and column
address within the bank to be accessed. A read (or write) request
first causes the specified row within a bank to be activated (row
activation), which moves data in the row into a row-buffer structure
associated with the bank. Next, data at specified column address
is accessed within the row buffer via a column access command.
A row once activated can process subsequent column accesses at
lower overhead than accessing data in a separate row (necessitates
another row activation).

In order to offload computations to HBM, compute units (de-
picted as PIM) are shared between two banks in pseudo channel.
Such sharing limits area overheads and potential memory capacity
costs of adding compute to memory module. A PIM unit is com-
posed of an ALU and a register file. The ALU width and register
input/output is matched to the output width of the DRAM bank
(e.g., 256 bits). In addition, the ALU is capable of operating on nar-
row words within single DRAM word (e.g., eight 32bit operands
within a 256bit DRAM word). The register file serves as a scratch-
pad for computation in PIM units. PIM units are controlled via
read/write like instructions from GPU such as add, subtract, mul-
tiply, etc. Software enforced data consistency (e.g., cache flush) is
employed to ensure data dependency ordering between GPU and
PIM instructions. More details about the evaluated PIM architecture
and programming model, which we carefully model in Section 4.1

IWhile dissimilarities exist, these solutions have similar key architecture. In this work,
we refer to these solutions as commercial PIM.
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Figure 4: Efficient FFTs are memory bandwidth-bound. We
measure the memory bandwidth consumption of the eval-
uated FFTs, then we normalize the measured bandwidth to
memory bandwidth consumption of the copy kernel from
BabelStream [5], which we denote as normalized memory
bandwidth. BabelStream is broadly used as the benchmark
to measure the highest achievable memory bandwidth con-
sumption on GPUs and therefore represents a practical upper
bound to compare against [9, 46, 48, 49].

and Section 4.4.1, are available in publications from memory ven-
dors [28, 29].

As discussed, the key motivation for the above commercial inter-
est in PIM designs is the memory bandwidth boost PIM avails. On
one hand, GPUs can harness pseudo channel parallelism. That is, a
GPU read/write only accesses a single bank in a pseudo channel
at a time given the shared data bus. On the other hand, with PIM,
in addition to pseudo channel parallelism, by computing on data
without traversing the data bus, multiple banks within a pseudo
channel can be configured to compute on data at the same time (via
multi-bank broadcast commands). This makes it possible to have
a potential memory bandwidth multiplier of b/2 with PIM over
GPU, where b is the number of banks per pseudo channel, and the
factor of 2 is because of sharing the PIM unit between two banks.
Emerging commercial PIM designs, however, issue PIM operations
at half the rate of regular reads/writes to accommodate multi-bank
broadcast commands [28]. As such, this bandwidth multiplier is
about (b/2)/2 = b/4 in practice. For HBM memory with 32 pseudo
channels and 16 banks per pseudo channel (total #banks = 512), this
bandwidth boost is about 16/4 = 4X. We discuss the bandwidth
boost in more detail in Section 3.2. In addition to bandwidth ampli-
fication, PIM also avails considerable energy savings by not moving
data (more than 50% [43]).

3 CASE FOR PIM ACCELERATION OF FFT

In this section, we motivate the consideration of PIM as a potential
accelerator for FFTs based on two key observations. First, efficient
FFT implementations on GPUs are memory bandwidth bound. Sec-
ond, commercial PIM solutions avail memory bandwidth boost
beyond that available at the GPU.

3.1 FFT is Memory Bandwidth-bound

To showcase the memory bandwidth boundedness of the efficient
FFT implementations, we measure the memory bandwidth con-
sumption of variety of FFT sizes and batch sizes (see Section 4.4.1
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Figure 5: PIM bandwidth boost with GPU (optimistically) at
100% bandwidth utilization. Note that the bandwidth boost
for #Banks = 512 and #PIM-units = 256 is < 4x (estimated in
Section 2.3) as DRAM row overheads are considered.

for setup details) and normalize to memory bandwidth consump-
tion of the copy kernel from the BabelStream benchmark [1, 5] as
shown in Figure 4.2 BabelStream is a synthetic GPU benchmark
based on the STREAM benchmark for CPUs [35], which measures
the sustainable memory bandwidth consumption to and from GPU
memory. When running this benchmark with suitably large arrays,
the data is streamed directly from GPU memory, and therefore
memory bandwidth consumption of BabelStream is a strong anchor
to compare memory bandwidth boundedness of other computa-
tions [9, 46, 48, 49]. We observe the following. First, as FFT size
increases, memory bandwidth utilization increases and is high re-
gardless of batch size (0.94% and 1.04X that of BabelStream for
FFT size of 210 with batch size 213 and 22°, respectively). This is
expected for as the FFT size increases, on-chip scratchpad/caches
are not enough to hold inputs and further, the likelihood of decom-
position increases leading to inputs being read/written multiple
times. Second, even for smaller FFTs, as the batch size increases, the
memory bandwidth utilization increases (up to 80% that of Babel-
Stream for FFT size of 25 with batch size of 22°). Larger batch sizes
are, in effect, similar to large FFT sizes and hence manifest similar
behavior. Overall, as the data shows, efficient GPU implementations
considerably push the memory bandwidth and as such can benefit
from memory bandwidth boost.

3.2 PIM Avails Memory Bandwidth Boost

In Figure 5, we depict the memory bandwidth boost availed by
emerging commercial PIM designs for forward-looking HBM mem-
ory for selected representative FFT sizes and batch sizes. Given the
current available PIM designs showcased on HBM2 memory, we
assume an upcoming HBM3 memory [26] in our study for both
PIM and baseline GPU (see Section 4.4.1) as beside being forward-
looking, it gives the best available bandwidth for GPU and presents
a strong baseline for our work to improve upon. We consider dif-
ferent configurations such as baseline #banks (512) along with
hypothetical exploration of large #banks (1024) due to increase
in channels/stack or banks/channel. Additionally, we also vary
#PIM units provisioned. Note that, when #PIM units are lower than
#banks, a PIM unit is shared amongst the banks. Overall, we observe

2We are unable to report non-normalized bandwidth utilization for FFT to comply
with publication guidelines of our host industry-research institution.
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that PIM can avail considerable memory bandwidth boost over GPU
(up to 12x) by having multiple banks in a channel compute on data
at the same time vs. GPU accessing a single bank at a time. Also,
we observe that when the PIM unit is shared between more banks,
the memory bandwidth boost reduces. For example, with #PIM
units = 128 under #Banks = 512), the memory bandwidth boost
reduces to 1.86X. Further, more banks/more PIM units favor PIM
(higher bandwidth available by PIM units). Overall, this memory
bandwidth boost can be beneficial for memory bandwidth bound
workloads like FFT.

4 BASELINE PIM-FFT

Given the observations in Section 3, we believe that PIM is a wor-
thy candidate for FFTs acceleration. To this end, in this section,
we discuss how we orchestrate the FFT computation to PIM. We
begin with the key considerations to be addressed when offload-
ing any computation to PIM to harness acceleration, namely data
mapping and compute orchestration. Subsequently, we discuss how
we address these considerations specifically for FFT. We term the
resultant FFT PIM routine we discuss in this section as pim-base.

4.1 PIM Offload Considerations

Data Mapping. As discussed in Section 2.3, our strawman PIM
design, based on commercial PIM design [28], places a compute
unit (e.g., ALU, register files) per two DRAM banks. Consequently,
any interacting operands in the computation have to be placed in
memory such that they are mapped to the same DRAM bank (or
banks sharing a PIM compute unit). Further, PIM avails memory
bandwidth boost by broadcasting the same command to multiple
banks in the same pseudo-channel. If input/output data is inter-
leaved appropriately across DRAM banks/channels, this broadcast
feature can be harnessed. Note that avoiding inter-bank commu-
nication while harnessing PIM broadcast feature is an interesting
balance. Finally, while commercial PIM designs place a SIMD ALU
near DRAM banks to harness data parallelism, any cross-lane com-
putations require shift operations which can be costly in DRAM
technology due to the limited number of metal layers.
Compute Orchestration. PIM computations are kicked off by
launching pim kernels, which are like existing GPU kernels except
they issue pim instructions. A pim instruction has the effect of en-
queuing a pim command at the memory controller which in turn
instructs PIM unit to execute either computation (e.g., add, multiply,
etc.) or data movement (read from row-buffer to register, write from
register to row-buffer, etc.) along with necessary row activation.
As discussed in Section 2.3, each PIM compute operation is a SIMD
operation (e.g., eight 32bit operations over 256bit DRAM word).
Finally, since memory channels are independently controlled in
GPUs with multiple memory controllers, different groups of threads
(e.g., workgroups or thread blocks) issue commands to different
channels (commands broadcasted to banks within a channel).
Overall, programmer first decides data mapping for a compu-
tation to maximize harnessing of PIM strengths (e.g., command
broadcasts) and avoid stressing PIM shortcomings (e.g., cross SIMD
compute, inter-bank communication). Subsequently, a pim kernel
which expresses the computation orchestration on in-memory com-
pute units is launched.
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Figure 6: Proposed FFT data mapping for PIM.

4.2 PIM FFT Data Mapping

We discuss in this section the data mapping considerations spe-
cific to FFT and depict our choices with the help of Figure 6. Note
that we focus on complex DFT and as such, input is comprised of
complex numbers with both real and imaginary components ).
Consequently, data mapping consideration for FFT involves decid-
ing how the N complex numbers which are the inputs to the FFT
computation are placed in memory.

4.2.1 Avoiding Inter-bank Communication. As discussed in Sec-
tion 2.1, for a FFT of size N, elements interact with each other at
different strides in different steps. This makes mapping of these
elements while avoiding inter-bank communication challenging.
To tackle this, we consciously choose in our pim-base design to
consider FFT sizes such that number of elements N fit in a pair of
DRAM banks that share a PIM unit. This avoids any inter-bank
communication as all interacting elements are mapped to banks
with a shared ALU. This limits the maximum FFT size that we can
tackle in our pim-base design to 22! with single-precision elements
(we will overcome PIM FFT size reach with alternate strategies in
subsequent sections). Furthermore, we harness the fact that banks
share ALU, to opportunistically place real and imaginary compo-
nents of a given element in even and odd banks, respectively @.
This allows us to access both components in our computations
without incurring costly row-opens.

4.2.2 Avoiding Cross-SIMD Compute. Inter-element interaction in
FFT computation can also lead to cross-SIMD computation which
is costly in PIM (baseline mapping) @. To avoid these, we choose
in our pim-base design to pack N elements belonging to a single
FFT in single SIMD lane (termed strided mapping) @. Note, this
reduces the maximum FFT size that we can tackle in our pim-base
design further to 28 (driven by SIMD width and DRAM row buffer
size). Furthermore, this can also lead to memory wastage if all SIMD
lanes are not utilized. We discuss how we tackle this next.

4.2.3 Harnessing PIM Broadcasts and Avoiding Memory Wastage.
As discussed in Section 2.2, FFTs decomposition leads to batched
FFT computations. We employ such batching to both avoid memory
wastage due to our data mapping design choices so far and har-
ness PIM broadcast feature/memory bandwidth boost. That is, first,
while we pack a single FFT in one SIMD lane, batching avails us
of concurrent FFTs which can occupy the residual SIMD lanes and
avoid memory wastage. Second, batching also allows us to spread
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available FFT batches across channels and banks, thus allowing
us to broadcast same command across channels/banks and avail
memory bandwidth boost of PIM. That is, we can compute multiple
FFTs in different banks/channels concurrently by broadcasting the
same PIM instructions/commands.

4.3 PIM FFT Routine

As discussed in Section 2.1, the building block of FFT is the but-
terfly computation. We depict in Figure 7 the orchestration of a
single butterfly computation in our pim-base FFT routine. This com-
putation comprises complex number multiplication and addition.
Further, we depict how the required computation can be factored
into six pim-MADD commands (multiply and add) @ along with
an online or offline computation of twiddle factor components €.
As discussed in Section 4.2.3, using our pim-kernel, we broadcast
these commands to banks in a channel (and to multiple channels)
to concurrently compute multiple FFTs in a batch @.

4.4 Performance Analysis of pim-base

In this section, we evaluate the performance of our proposed PIM
FFT mapping, pim-base and further dive into how our design de-
cisions play out. We start with motivating and discussing our per-
formance models. Next, we discuss the effects of our data mapping
choices and end with speedup analysis of our proposed pim-base
routine vis-a-vis GPU.
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Figure 8: Fidelity of our GPU performance model.

4.4.1 Setup and Performance Model. We outline in this section our
system setup and performance models for FFT computations on
GPU and PIM. In our work, we choose to analyze performance
using analytical models for several reasons. First, PIM is only yet
available as part of functional prototypes (e.g., Lee et al. [28] couple
a modified HBM2 with PIM capability with a off-the-shelf GPU as a
functional prototype). Second, we aim to study performant, highly
efficient FFT GPU implementations for a variety of sizes and whilst
considering software optimizations (see below). This makes relying
on GPU simulators difficult and lends well to analytical models.
Third, as we discuss below, our setup provisions a much stronger
baseline to show PIM benefits over. Finally, analytical models are
currently the cornerstone to iterate over upcoming accelerator
designs quickly and are increasingly employed by industry [24, 36].

System Setup. Our system setup consists of an AMD Instinct
MI210 Accelerator comprising GPU with 104 compute units (or GPU
cores) and four stacks of HBM2E memory for a total capacity of
64GB and a peak memory bandwidth of 1638.4 GB/s [3]. We profile
behavior of FFT on GPU using rocFFT [7] library which is part of
AMD’s software ecosystem based on ROCm. We use Omniperf [6],
a system performance profiling tool for machine learning/HPC
workloads running on AMD MI GPUs, to study behavior of FFT
kernels and gather performance statistics (e.g., reads/writes to HBM
memory, memory bandwidth, etc.). Finally, we run the copy kernel
from BabelStream using the maximum problem size to measure the
memory bandwidth consumption as discussed in Section 3.1.
GPU Performance Model. Given the memory bandwidth bound-
edness of FFT computations (Section 3.1), for our GPU performance
model, we assume that the GPU execution time is only limited by
available memory bandwidth (i.e., we assume the compute to be
free). Further, we observe that as FFT is decomposed, transpose
kernels can be used in certain situations to improve the access pat-
terns for computations. Increasingly as such kernels can be fused
with FFT computation kernels [19, 34], we subtract out the effects
of transpose kernels to assume an even stronger GPU baseline.
Figure 8 shows the fidelity of our GPU performance model for a
variety of representative FFT sizes and batch sizes (same sizes shown
in Figure 4). For our GPU performance model, we measure mem-
ory reads and writes only for FFT compute kernels (no transpose
kernels) and assume the maximum memory bandwidth utilization
reported by the copy kernel from BabelStream for the baseline GPU
(Section 3.1). We compare this execution time to actual measured
runtime. Figure 8 depicts that as FFT size or batch size increases,
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the computation gets increasing memory bandwidth bound and our
performance model tracks well with measured execution time. For
FFTs with small sizes or small batch sizes, where the computation
is not memory bandwidth bound, our model projects a far more op-
timistic execution time than possible. In other words, for the small
FFT sizes, our model reports lower FFT execution time compared to
native execution, which results in a stronger GPU baseline for such
sizes. We still use our proposed performance model to assess PIM
speedups across all sizes to keep a unified model. Note, this means
that, given our detailed performance model for PIM (see below),
PIM benefits for small FFT sizes/batch sizes, will likely be higher
than what we discuss below. Finally, as shown in Section 5.2, the
combination of small FFT sizes with small batch sizes is uncommon
in our proposed techniques.

In summary, our GPU performance model represents a strong
GPU baseline with highly optimized FFT performance, which re-
sults in lower FFT execution time on GPUs compared to cycle-
accurate simulators or native runs on hardware. This is because our
model assumes free FFT compute operations on GPU, perfect cache
reuse, optimized FFT execution with the least FFT kernels (based on
the FFT decomposition algorithm and LDS size), and zero transpose
kernels. Our memory-bound model assumes reading/writing input
data only once per FFT kernel as any GPU implementation would
need to read/write the FFT data at least once per FFT kernel. Re-
laxing any of these assumptions would increase the FFT execution
time on GPU, resulting in higher speedups for Pimacolaba.

Table 1: Parameters for performance model.

#Banks per Stack (4-high) 512 [26]

Bandwidth per Pin 4.8 Gb/s [26]

GPU Memory Bandwidth per Stack | 614.4 GB/s [26]

Row Buffer Size 1024 B [26]

DRAM Parameters tRP = 15ns, tCCDL=3.33ns, tRAS=33ns [26]
#PIM Units per Stack = 256

#PIM Registers per ALU = 16

PIM Parameters

PIM Performance Model. We use an in-house PIM performance
model. As discussed in Section 2.3, we assume a PIM architecture
representative of recent commercial PIM designs [28, 29] in which
the GPU issues PIM commands as special load/store accesses which
bypass the caches and are issued in-order by the memory controller
to multiple banks in parallel. We take a detailed DRAM command
orchestration approach for our PIM performance model. That is,
for a given FFT size, we deduce data mapping (Section 4.2) and
orchestration (Section 4.3) necessary. Subsequently, we deduce the
exact DRAM commands needed to orchestrate the computation.
We augment a detailed DRAM model for modeling PIM instruction
timing that incorporates the PIM DRAM timing restrictions for
the deduced stream of PIM instructions, including row activation
overheads. We assume the parameters listed in Table 1 for our
model. Note that we assume a PIM-aware GPU which can issue
pim-instructions and pim-commands at issue-rate. With the available
thread parallelism at the GPU, we believe this to be a reasonable
assumption.

4.4.2 Data Mapping Evaluation. Figure 9 depicts evaluation of our
proposed strided data mapping (Section 4.2.2) to baseline data map-
ping. We depict along the y-axis the execution time normalized
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Figure 10: PIM speedup under pim-base.

to strided mapping for each FFT size. Further, we break down the
execution time into that spent executing two key PIM instructions
(pim-MADD and pim-SHIFT) and rest of the time as Rest (contains
DRAM row-open overhead, data movement from register to row-
buffer, etc.). Note that only baseline mapping scheme relies on
costly shift instructions. As Figure 9 depicts, strided mapping, by
avoiding pim-SHIFT instructions, is superior to baseline mapping.
As FFT size increases, we do see these schemes get closer in per-
formance albeit strided mapping still maintains an edge. This is so,
as FFT size increases, portion of computation needing cross-lane
interaction and hence pim-SHIFT drops. While this is so, note also
that functionality like lane shifts is hard to provision in DRAM
technology. Overall, our proposed strided mapping eliminates the
need for costly pim-SHIFT commands which translates to signif-
icant reduction in FFT execution time on PIM, especially for the
small FFT sizes.

4.4.3 Speedup with pim-base. Finally, we evaluate the performance
of our pim-base FFT routine given the data mapping and orches-
tration decisions we have made thus far. We depict speedup of
pim-base over GPU for various FFT sizes in Figure 10 up to the
maximum size we can support in PIM (2'%). As the figure depicts,
despite careful data mapping and orchestration, except for small
sizes (2°), pim-base FFT routine incurs considerable slowdown vis-
a-vis GPU (average slowdown of 52%). We believe the primary
reason for this is that while FFT is memory bandwidth bound on
GPU, FFT manifests compute-boundedness in PIM. This is so as
when FFT is mapped to GPU, only reads/writes consume memory
bandwidth. In contrast, when FFT is mapped to PIM, every oper-
ation in FFT computation is now a PIM compute command (e.g.,
pim-MADD). Further, PIM compute throughput is typically lower
than GPU. For example, the peak single-precision PIM throughput
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Figure 11: Collaborative decomposition in pim-colab.

is about 7x lower compared to our MI210 GPU with four HBM2e
memory stacks, which considerably stresses PIM compute.? Overall,
this analysis points to a more nuanced approach to harness PIM
for FFT than a binary decision to use or not use PIM for the entire
computation.

5 COLLABORATIVE PIM-FFT

In this section, we motivate, propose, and analyze an alternate strat-
egy to offload FFT computations to PIM which harnesses pim-base
but moves away from a binary offload decision (all or none of com-
putation offloaded to PIM) to a more judicious offload mechanism
where GPU and PIM collaborate to complete a FFT computation.
We term the resultant FFT PIM mapping as pim-colab.

5.1 Collaborative Decomposition

Our proposed pim-colab is influenced by a confluence of several
observations. First, our analysis in Section 4 showed that there
are some FFT sizes (2°) where pim-base does provide performance
benefit. Further, in other cases (26), while pim-base is slower by a
small amount, by offloading to PIM, we can harness data movement
savings at a small performance cost. That is, when GPU performs
the computation, data is read/written to HBM, and resultant energy
expenditure is incurred. Instead, if the computation is offloaded to
PIM, the said data movement and resultant energy can be saved
at a small performance cost. As such, we can attain performance
acceleration/data movement savings if we have an avenue to invoke
PIM for certain sizes only. Second, existing efficient FFT implemen-
tations already decompose a problem into constituent components
to better harness GPU scratchpad size. We propose augmenting
this existing decomposition mechanism to invoke both GPU (exist-
ing kernels) and PIM component (pim-base). We term this strategy
collaborative decomposition.

Figure 11 depicts collaborative decomposition (left). As depicted,
a given FFT of size N is decomposed into GPU kernel (FFT of size
M1, batch M2) and PIM kernel (FFT of size M2, termed PIM-FFT-
Tile, batch M1). Our choice of PIM-FFI-Tile is driven by a simple
algorithm: we pick the PIM FFT offload size such that we end up
with same or less total #kernels invoked (PIM or GPU). In the
presence of multiple choices, we pick the most efficient PIM-FFT-
Tile (note, this can be analyzed once, offline).

Figure 11 also depicts FFT kernels invoked by GPU as FFT size
increases from left-to-right for baseline GPU and for pim-colab. For

3As GPU compute throughput typically increases faster than memory bandwidth, this
performance gap will exist or get wider in the future.
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baseline GPU, available scratchpad space (LDS) dictates #kernels
to be invoked and as such, as we go from left-to-right, GPU in-
vokes increasingly more kernels. With collaborative execution, the
net effect is we shift the (size-range)-to-(kernel-count) association
boundaries and effectively shrink the region where three GPU ker-
nels are needed as depicted in Figure 11. Overall, our collaborative
decomposition strategy has several benefits. First, it employs PIM
judiciously and as we show in Section 5.2 stands to better harness
PIM acceleration. Second, it does so while piggybacking on exist-
ing efficient mechanism of FFT decomposition. Finally, it avails
considerable data movement savings.

5.2 Performance Analysis of pim-colab

5.2.1 Speedup with pim-colab. We evaluate the performance of
pim-colab over GPU for various FFT sizes in Figure 12. Notice that
the size range we depict here is different from pim-base speedup
results (Figure 10). This is so, as first, the key tenet for pim-colab
is to invoke PIM judiciously. As such, for FFT sizes, where GPU
invokes single kernel (less than 2! on our setup) and is already
efficient, pim-colab does not harness PIM. As such, the performance
is the same as baseline GPU. Second, pim-colab harnesses both PIM
and GPU and as such, the maximum size we can harness PIM for
increases to maximum FFT size the GPU memory can support
(230 for our setup). Overall, as the figure depicts, by judiciously
using PIM, pim-colab outperforms pim-base. For several sizes, by
harnessing PIM only where it makes sense, we attain speedup over
GPU. For other cases, pim-colab presents a trade-off: data movement
savings of up to 64% at some performance cost.

The data movement savings stem from the following. First, by
using PIM to collaboratively process the FFT with PIM, we eliminate
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the data movement for the portion processed by PIM. Second, with
pim-colab, we possibly reduce the total number of FFT kernels
required by shrinking the region where three GPU kernels are
needed as shown in Figure 11. The resultant speedup is a function
of the total number of FFT kernels and the execution time of the
FFT portion executing on PIM. For example, for FFT size of 2%
in Figure 12, the total number of FFT kernels under GPU-only is
three kernels. However, with pim-colab, we use two FFT kernels
achieving 64% data movement savings; GPU processes a single FFT
of size 212, while PIM processes an FFT of size 213 However, we do
not observe a commensurate speedup in the overall execution time
as processing an FFT of size 2! on PIM result in a 56% slowdown,
compared to GPU baseline, as depicted in Figure 10.

5.2.2  Compute behavior of pim-colab. While pim-colab consider-
ably improves over pim-base, we analyze pim-colab further to un-
derstand its behavior and deduce additional optimizations. Figure 13
depicts pim-colab execution time proportioning for FFT sizes we em-
ploy as PIM-FFT-Tiles. We break down the execution time into that
spent executing PIM computation (pim-MADD), data movement
local to PIM unit (pim-MOV, move data from register to row-buffer
and vice versa) and rest of the time as Rest (contains DRAM row-
open overhead). We observe that the majority of PIM execution
time is spent on compute operations or pim-MADD commands,
the building blocks of the butterfly computation. Specifically, pim-
MADD commands represent an average of 76% of the PIM compute
commands and an average of 54% of the total PIM execution time
(average not shown for space reasons). The remaining time is spent
moving the FFT data in and out of PIM registers. As such, any
further improvements in PIM execution will have to lower resul-
tant compute operations. As a limit study, if pim-base used one
pim-MADD command instead of six we use now (Section 4.3), this
can lead to a speedup of up to 4.22X. To this end, we next focus
on software and hardware optimizations to lower PIM compute
commands.

6 PIMACOLABA

In this section, we motivate and analyze both software optimization
and hardware augmentation which aim to lower PIM compute
commands. We also discuss how these can be combined to further
lower PIM compute commands. We term the resultant FFT PIM
mapping, which harnesses collaborative decomposition and our
optimizations, as Pimacolaba.

6.1 Twiddle Factor Aware PIM Orchestration

We analyze the values of twiddle factors involved in FFT com-
putation at different stages and notice that we can harness these
differing values to lower PIM compute commands. Specifically, we
notice that first, while twiddle factors needed is a function of FFT
size N, they are deterministic based on FFT step being computed
on. That is FFT size N subsumes the twiddle factors needed for
size N — 1. Second, twiddle factors 1 or —j are used in initial FFT
steps. For these specific values, as Figure 14 depicts, we can reduce
the PIM compute commands needed for a single butterfly compu-
tation from six pim-MADD to four pim-ADD operations. As these
values are used repeatedly, by enabling twiddle factor aware PIM
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Figure 14: Twiddle factor aware PIM orchestration to reduce
the number of PIM compute commands.
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Figure 15: PIM ALU augmentations to reduce the number of
PIM compute commands.

orchestration from GPU, as we will show below, average number
of pim-MADD commands per butterfly can be lowered.

6.2 PIM Augmentations for FFT

Analyzing the operations in butterfly computation we observe that
the result of the same multiply operation (w X x7) is reused in an
addition and a subtraction. Using baseline PIM ALU design, while
we reuse the result of the multiplication, addition and subtraction
take two PIM commands to be orchestrated by the GPU. Instead,
we propose to augment the PIM ALU unit, as depicted in Figure 15,
such that a single PIM command realizes not just multiplication
and addition (pim-MADD) as the baseline PIM design supports,
but also an additional subtraction. This augmentation has the net
effect of bringing down the number of pim-MADD commands per
butterfly to four instead of six, independent of the used twiddle
factor. Our proposed PIM command does not affect PIM orchestra-
tion; however, this necessitates additional write port to PIM ALU
register file. That said, the proposed fused operation can accelerate
other workloads which manifest similar patterns such as complex
arithmetic, convolutions as FFTs, etc.

6.3 Combining Optimizations

Our PIM ALU augmentation helps us further enhance twiddle factor
aware orchestration. First, in computations with twiddle factors
of 1 and —j, each butterfly can now be computed using two PIM
commands. Furthermore, for butterflies with +1/ V2 twiddle factor,
the symmetry of the real and imaginary parts can be exploited to
reduce the number of PIM commands to three.

6.4 Performance Analysis of Pimacolaba

6.4.1 Optimized PIM-FFT-Tile. Figure 16 depicts the speedups at-
tained by the optimizations we discuss above for FFT sizes we

et
w”

Bbase-pim ®sw-opt Ehw-opt Bsw-hw-opt

=
BN

PIM speedup over GPU
o
0

o

Q e < 2 g g b= o a
3] N 3% 3 < < < <
N N N 3

PIM-FFT-Tile size

Figure 16: Optimized PIM-FFT-Tile.

o} @pim-colab

o l4 msw-opt

912 mhwopt

] B sw-hw-o

s 1 P

Qo

508

o

206

go.

Q

» 0.4

=

=0.2

o P

0
o < wn ©o ~ @ o o - o~ o™ < wn ©o ~ @ (=2} o
- - - - - - - o~ o~ o~ o~ o~ o~ o~N o™ N ~N o
< < < < < < < < < < < < < < < < < <
N N N N N N N N N N N N N N N N N N
FFT size

Figure 17: Pimacolaba speedup with optimized PIM-FFT-Tile

employ as PIM-FFT-Tiles. We denote our twiddle factor aware or-
chestration as sw-opt, PIM ALU augmentation as hw-opt, combining
the two as sw-hw-opt. We observe that sw-opt improves the perfor-
mance of small PIM-FFT-Tiles (< 2°) albeit with diminishing returns
as PIM-FFT-Tile increases. This is because as the FFT size increases
the proportion of twiddle factors we optimize for drops. Overall,
sw-opt addresses the PIM compute bottleneck to some extent by
reducing the average number of pim-MADD commands to range
from 4.85 and 5.54 per butterfly (vs. 6). Compared to sw-opt, hw-opt
leads to better speedups. This is because hw-opt benefits all butterfly
computations regardless of twiddle factors. This enables hw-opt to
tackle the PIM compute bottleneck by reducing the average number
of pim-MADD commands to four per butterfly across all PIM-FFT-
Tiles. Finally, sw-hw-opt gets us the best of both optimizations and
leads to even lower pim-MADD commands per butterfly (2.67 to
3.46). Overall, compared to GPU, sw-hw-opt provides higher accel-
eration for a range of PIM-FFT-Tiles and therefore enables more
options to be used when collaboratively decomposing a given FFT
between GPU and PIM as shown next.

6.4.2 Speedup with Pimacolaba. We analyze how overall FFT per-
formance looks (combining our optimized PIM-FFT-Tile with our
collaborative decomposition approach) in Figure 17. As discussed,
we term this Pimacolaba. Using our sw-opt and hw-opt approach
we see speedups up to 1.16X and 1.24X, respectively. Combining
the two, with Pimacolaba, we see a maximum speedup of 1.38X%.
An interesting benefit of our optimizations is that they increase
the possible PIM-FFT-Tile options available as depicted in Figure 17.
As discussed in Section 4.4.1, we intentionally subtract the trans-
pose kernels time to have a stronger GPU baseline to compete
against [19, 34]. If we do not subtract transposes time, Pimacolaba
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Figure 19: Pimacolaba sensitivity to potential PIM architec-
ture optimizations for (a) PIM-FFI-Tiles and (b) overall FFT.

results in higher PIM speedups of up to 2.46x (instead of 1.38x).
This is because, by offloading portion of FFT computation to PIM,
transposes needed for FFT portion mapped to GPU can be lowered.

6.5 Data Movement Savings of Pimacolaba

Figure 18 depicts the data movement savings of Pimacolaba. Recall
that by offloading portion of the computation to PIM, Pimacolaba
avoids data movement (GPU reads/writes from/to HBM) and as
such can lower energy expenditure.* We see this realization in
Figure 18 as Pimacolaba leads to 32—-64% data movement savings
for all evaluated FFT sizes (43% on average), which in turn can result
in energy savings and therefore improve the overall performance-
per-watt. We also depict in Figure 18 the savings in FFT computation
performed by GPU as a consequence of offloading work to PIM (in
terms of butterfly computation count reduction for GPU). Overall,
Pimacolaba leads to 17—62% compute savings for all evaluated FFT
sizes (33% on average).

6.6 PIM Architecture Sensitivity Studies

We discuss in this section the sensitivity of Pimacolaba performance
to PIM architecture variations. We depict speedups for optimized
PIM-FFT-Tiles and overall FFT in Figure 19.

PIM Register File. Similar to register file (RF) usage in baseline
GPU, RF size associated with PIM ALU allows reuse of data read
from memory. As such, a larger RF size is beneficial as depicted in
Figure 19. We see here that doubling the RF size, from 16 (baseline)

#Note, we account for data movement due to GPU transmitting commands/constants
to orchestrate PIM computation
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to 32, leads to a speedup for PIM-FFI-Tiles ranging from 6-22%
which translates to overall Pimacolaba maximum speedup of 1.41x.
Row-buffer Size. Similar to RF size, larger row-buffer (RB) size
lowers row-open overheads associated with PIM computation. We
study this effect in Figure 19 by doubling the RB size. While small
PIM-FFT-Tile sizes like 2° already fit in baseline RB and do not
benefit from larger RB size, other PIM-FFT-Tiles show speedups up
to 40% for 2°, which boosts the PIM speedup of FFT sizes 2! and
230 using this PIM-FFT-Tile.

PIM Units to Banks Ratio. Figure 19 depicts the effects of lower-
ing PIM unit sharing between DRAM banks by provisioning a PIM
unit per bank. As PIM FFT computation is bottlenecked by compute
operations, doubling the number of PIM units accelerates all the
PIM-FFT-Tiles by 2X translating to maximum Pimacolaba speedup
of 1.64X.

7 DISCUSSION
7.1 Future PIM Designs

In this work, we focus on current prototypes from memory ven-
dors [28, 29] which place a PIM unit per two banks. However, future
PIM advancements may result in placing multiple PIM units within
a bank (e.g., subarray-level), resulting in a higher bandwidth boost
due to the higher parallelism degree unlocked by these designs.
Our proposed Pimacolaba is applicable to these designs, resulting
in even higher speedups for FFTs.

7.2 Real-world Applications

As in recent FFT prior work [32], we focus on 1D complex-to-
complex FFT as this is the core operation of other transforms. We
varied the FFT sizes to represent a range of possible transforms that
are of interest to real-world HPC applications such as CHOLLA [44],
GESTS [42], and GENE [18]. Many of these applications, which run
on supercomputers such as Frontier as shown by ORNL [38, 39],
employ 1D FFTs of sizes 2'3 — 21 and 2% — 2° batches. Pimacolaba
provides significant speedups for these sizes. 2D/3D FFT are also of
interest and similarly decomposed to harness on-chip scratchpad
space. We can harness our proposed PIM routines to accelerate
each dimension separately.

7.3 FFT Variants

In our work, we focus on a radix-2 FFT for power-of-two sizes. We
discuss here how we can tackle other FFT variants.

Non-2 radix. Higher radix FFTs (radix-3, radix-5, etc.) are also of
interest and can improve compute intensity of FFT computation.
While we deduce optimized PIM FFT routine for radix-2, routines
for other radixes can be similarly deduced.

Non-power-of-two sizes. Non-power-of-two FFTs are often de-
composed (e.g., as 2% x 3? x 5¢ x 7¢ and beyond). While we discuss
optimized routines for 2¢ sizes, routines for other blocks can be
deduced and judiciously employed.

Real FFTs. Real input FFTs are also of interest and are typically
tackled using complex FFT routines [19, 34] we already discuss (e.g.,
by setting imaginary part of input to zero, packing real inputs into
complex input with half the size, etc.).

Precision. Current PIM prototypes, being focused on machine
learning, support 16bit arithmetic with 32bit accumulation. First
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note that 16bit FFTs on GPUs are also of interest [13, 31, 33].
If higher-precision FFTs are desired, these can be supported in
PIM with additional area expenditure for PIM units. Additionally,
since our performance model assumes free compute for GPU, for
higher precision (64bit), our speedups will stay intact (PIM com-
pute throughput drop will be matched with GPU memory traffic
increase).

Distributed FFT. We focus in our work on FFT sizes that fit in
local memory attached to GPU. For larger sizes, FFT computation
is distributed over multiple GPUs. In such cases, PIM can be har-
nessed for GPU-local portions of computations. However, resultant
communication between GPUs can eat into the overall speedup
that PIM can provide. That said, accelerating communication is
orthogonal to this work.

Larger scratchpads. Given how central on-chip scratchpads are for
efficient GPU execution, it is possible that scratchpad sizes increase
for future GPUs. This will certainly help improve GPU efficiency.
However, even in this scenario, for sizes where FFT does not fit in
scratchpad, decomposition will be employed, and our proposal can
be useful for performance and data movement savings.

7.4 PIM Software Implications

As discussed in Section 4.2, efficient computation offloading to
PIM requires that data be mapped/packed appropriately in mem-
ory. Where standalone FFT computations are launched, this can be
realized as a one-time cost. Further, for our collaborative decom-
position scheme, by prioritizing the execution of GPU component
of the decomposed FFT we achieve the following. First, the prior
non-FFT kernel does not need to shuffle the data before calling the
FFT library. Second, necessary data mapping for PIM can be realized
by augmenting existing writes from GPU at the end of GPU FFT
execution before launching pim-kernel. With the GPU FFT kernel
processing multiple FFTs in parallel, we expect the efficiency of
writing to memory to not drop considerably. Finally, such layouts
can be achieved via existing semantics in FFT libraries, namely
stride and distance [8].

8 RELATED WORK

Given the importance of DFT, FFT is a widely studied primitive and
there exists vendor provided FFT libraries for CPUs [4, 10, 11, 23],
GPUs [7, 37, 47], vendor-independent auto-tuning FFT frameworks
such as Fastest Fourier Transform in the West (FFTW) [16, 17],
and also for heterogeneous architectures as in HeFFTe [12]. We
believe that our PIM FFT routines can be a good complement to
these existing efficient FFT solutions. As an example, Pimacolaba
can be integrated in those libraries as part of the auto-tuning and
plan selection process. While this can add complexity to the FFT
plan selection, it can be a one-time cost to be reused for a given
FFT size.

Additionally, many prior works which optimize FFT implemen-
tation exist such as harnessing built-in generalized matrix multi-
plication (GEMM) accelerator [15, 31, 41, 45], exploiting symmetry
and periodicity of the butterflies [32] and more. As accelerators
and processors alike are coupled with memory, PIM can serve as
augmentations over and above such existing FFT acceleration solu-
tions that only harness optimizations targeted for the processors.

As such, our work complements the rich spectrum of existing (and
potentially future) efforts which aim to accelerate the important
primitive of FFT.

To the same effect, FourierPIM [30] recently investigated the
use of digital memristive PIM designs [51] to accelerate FFT algo-
rithms, convolutions, and polynomial multiplication. In contrast,
Pimacolaba investigates PIM designs such as those realized by mem-
ory vendors [28, 29]. Also, our work is the first to propose collab-
orative GPU/PIM execution which enables running larger FFTs
(compared to FourierPIM being limited by crossbar size).

Overall, compared to PIM designs using speculative technol-
ogy (e.g., memristor), incurring considerable area overheads due to
significant changes to DRAM, or having PIM and non-PIM mem-
ory spaces (which requires memory copies) [21], Pimacolaba con-
sciously focuses on commercially viable PIM designs getting wide
traction as evident by multiple memory vendors converging to this
design [28, 29]. Furthermore, HBM-based PIM solutions are suitable
for GPUs which are bandwidth hungry and as such are coupled
with HBM. Finally, other than FFT acceleration, many works ex-
ploit PIM’s data movement reduction and performance boost to
accelerate key ML and HPC workloads [2, 20, 22, 27, 40].

9 CONCLUSION

We observe in this work that high-performance implementations
of discrete Fourier transforms, aka fast Fourier transform (FFT)
are memory bandwidth bound on accelerators such as GPUs. As
such, we evaluate in this work the efficacy of emerging commer-
cial processing-in-memory (PIM) solutions, which have a memory
bandwidth advantage over GPU by pushing compute to in-memory
compute units, to accelerate FFT. By deducing a PIM FFT routine
with specialized data mapping and compute orchestration, we see
that PIM does not accelerate FFT. To overcome this, we propose
collaborative acceleration, which augments existing FFT decompo-
sition mechanism to use our PIM optimized FFT routines. Further,
we also propose hardware augmentation and software optimization
to lower PIM operations needed for a given FFT. Our proposed
design, Pimacolaba, which efficiently harnesses PIM, delivers per-
formance of up to 1.38X over a range of FFT sizes and further
leads to data movement savings of up to 64%. Overall, our work
introduces a complimentary FFT acceleration technique that can
be combined with current (and potentially future) processor-side
FFT acceleration efforts.
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