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Motivation

● Graph Neural Networks (GNNs) are widely used in social networks, bioinformatics, 

recommendation systems, etc.

● Many accelerators have been proposed for static GNNs:

○ HyGCN, AWB-GCN, GCoD, StreamGCN, FlowGCN, etc.

○ Offers orders-of-magnitude better inference throughput and latency over CPU/GPU.

● However, most real-world graphs are dynamic in nature, not static:

○ E.g., on social networks, users are forming new connections, deleting old ones, and 

groups are constantly evolving.

○ Prediction accuracy can be improved drastically by leveraging this temporal 

information → temporal GNNs (TGNNs).
● Very challenging to design an accelerator for TGNNs. We found only prior accelerator for 

TGNNs → FPGA-based tFGPA [IPDPS'22].
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Challenges in Designing a TGNN Accelerator (1)

● No standard TGNN model architecture.

○ Graph Convolutional Network (GCN) is the standard model architecture for static 

GNNs. However, there is no such standard model architecture for TGNNs.

○ Preferred architecture boils down to accuracy-complexity tradeoff.

● Cannot be easily decomposed into fixed execution phases.

○ Static GNNs can be decomposed into aggregation and combination phases.

■ Aggregation phase uses graph structure and neighbor interactions to update 

the feature vector of the nodes.

■ Combination phase passes the aggregated features through a neural network 

to compute node embeddings.

○ TGNNs cannot be decomposed into such simplistic phases.
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Challenges in Designing a TGNN Accelerator (2)
● Must be able to handle both memory-bound and compute-bound kernels

○ This table shows the operational intensity of various TGNN kernels.

○ Red indicates memory-bound kernels, blue indicates compute-bound kernels.

○ Even the same kernel can be either memory- and compute-bound based on the batch size!

○ TGNN accelerator have to efficiently support both types of workloads.

● Workload balancing is also a critical issue in evolving graphs.

○ Cannot preprocess and statically partition the nodes.

[1]
[1]
[2]
[3]
[4]

[1] Rossi et al., arXiv, 2020                [2] Xu et al., arXiv, 2020                [3] Kumar et al., SIDKDD, 2019        [4] Zhou et al., IPDPS, 2022. 
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TGN-PNM: Key Idea

● Near-memory accelerator targeting TGNN workloads.

● Built on 3D-stacked memory (Hybrid Memory Cube).

● Vault-level parallelism:

○ Each vault has a Vault Processing Unit (VPU).

○ VPU = SIMD unit (memory-intensive ops) + systolic array (compute-intensive ops).

● Achieves linear scalability with memory capacity.

Fig: Hybrid Memory Cube. VPUs are placed in the logic layer.
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TGN-PNM: Architecture Overview

● Main components:
○ Vault Processing Units (VPUs): Core compute.
○ Global Control Unit (GLCU): Instruction broadcast & scalar tasks. 
○ Partial-Sum Accumulation Unit (PSAU): Efficient inter-vault reductions.
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TGN-PNM: Architecture Overview

● Vault Processing Units (VPUs):
○ Each vault in the HMC logic layer contains one VPU.
○ Each VPU has a SIMD unit (for memory-bound ops) and a systolic array (for GEMM).

■ Operands for these can come from various sources: scratchpad memory, broadcasted 
scalar value from GLCU, or cached weights from the weight buffer.

○ All VPUs are operated in lockstep, controlled by the GLCU.
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TGN-PNM: Architecture Overview

● Global Control Unit (GLCU):
○ Operates the VPUs by broadcasting instructions.
○ Contains a scalar core for doing complex operations that cannot be done by VPUs.
○ Can broadcast scalar values to all VPUs by writing the values to a broadcast buffer.
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TGN-PNM: Workload Balancing
● Naive approach:

○ Partition the graph by nodes, where each vault contains a subset of the nodes.
○ Requires significant inter-vault communication during neighbor aggregation.

● Feature-dimension partitioning:
○ Each vault holds a subset of the features of all nodes.
○ All element-wise operations becomes localized within each VPU.
○ Inter-vault communication is only required for dot-product reduction operations during matrix-

vector and matrix-matrix multiplications.
■ Has a regular pattern and can be handled efficiently by the partial-sum acc unit.

○ Does not need to duplicate weights across all the vaults.
○ Enables lockstep operations of the VPUs.
○ However, does not work well if the feature dimension is small as we cannot utilize all SIMD 

and systolic array lanes!
● Hybrid partitioning:

○ For small feature dimension, sub-partitions the lanes and use duplicate weights.
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Evaluation Setup

● Benchmarks: TGN-attn & TGN-sum model architectures [1]
○ TGN-attn: Single layer multi-head attention for neighbor aggregation

■ Memory + compute intensive
○ TGN-sum: Simple average for neighbor aggregation

■ Memory intensive
● Datasets: Wikipedia, Reddit, GDELT
● Two variants of our proposed architecture:

○ TGN_PIM_feat uses feature-dimension partitioning scheme
○ TGN_PIM_hybrid uses hybrid partitioning scheme

● Comparisons against:
○ CPU (AMD EPYC 7742 64-core)
○ GPU (NVIDIA A100)
○ Gearbox (subarray-level PIM) [2]
○ Newton (bank-level PIM) [3]
○ tFPGA (FPGA-based TGNN accelerator) [4]

[1] Rossi et al., arXiv, 2020.      [2] Lenjani et al., ISCA, 2022.      [3] He et al., MICRO, 2020.      [4] Zhou et al., IPDPS, 2022.
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Results – Throughput & Latency - TGN-attn

● On TGN-attn benchmark, TGN_PIM_hybrid 

provides the best throughput:

○ 26.8× over CPU 

○ 16.7× over GPU

○ 5.2× over Gearbox

○ 4.4× over Newton

○ 10.4× over tFPGA

○ 1.14x over TGN_PIM_feat
● Significant reductions in batch processing 

latency across datasets.
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Results – Throughput & Latency - TGN-sum

● On TGN-sum benchmark, TGN_PIM_hybrid 

provides the best throughput:

○ 42.1x over CPU

○ 34.8x over GPU

○ 2.4x over Gearbox

○ 2.2× over Newton

○ 31.1× over tFPGA

○ 1.23x over TGN_PIM_feat

● Gearbox and Newton performed fairly well 

due to the benchmark being memory bound
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Impact of Batch Size

● TGN-PNM throughput improves with batch size up to SIMD width (16).
○ At this point, systolic arrays leverages maximum reuse.

● Batching does not impact Gearbox and Newton.
○ No reuse because GEMM implemented as multiple independent GEMV ops.
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Area Estimation

● Processing elements and control logics: by RTL synthesis
● SRAM buffers and scratchpad memories: using CACTI-3DD
● Memory controller and interconnect: using McPAT

Total estimated area is 35.83mm2, which is 53% of the total logic-die area of 68mm2 HMC stack.

On SAED 
14nm node
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Conclusions

● First near-memory accelerator for TGNN inference.

● Efficient handling of both memory- and compute-bound kernels.

● Feature-dimension partitioning ensures balanced workload.

● Outperforms CPU, GPU, FPGA, and other general purpose PIM architectures.

● Scalable and flexible for future TGNN variations.



Thank you!

Questions?


