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Motivation

e Graph Neural Networks (GNNs) are widely used in social networks, bioinformatics,
recommendation systems, etc.
e Many accelerators have been proposed for static GNNs:
o HyGCN, AWB-GCN, GCoD, StreamGCN, FlowGCN, etc.
o Offers orders-of-magnitude better inference throughput and latency over CPU/GPU.
e However, most real-world graphs are dynamic in nature, not static:
o E.g., on social networks, users are forming new connections, deleting old ones, and
groups are constantly evolving.
o Prediction accuracy can be improved drastically by leveraging this temporal
information — temporal GNNs (TGNNSs).
e Very challenging to design an accelerator for TGNNs. We found only prior accelerator for
TGNNs — FPGA-based tFGPA [IPDPS'22].



Challenges in Designing a TGNN Accelerator (1)

e No standard TGNN model architecture.
o Graph Convolutional Network (GCN) is the standard model architecture for static
GNNs. However, there is no such standard model architecture for TGNNSs.
o Preferred architecture boils down to accuracy-complexity tradeoff.
e (Cannot be easily decomposed into fixed execution phases.
o Static GNNs can be decomposed into aggregation and combination phases.
m Aggregation phase uses graph structure and neighbor interactions to update
the feature vector of the nodes.
m Combination phase passes the aggregated features through a neural network
to compute node embeddings.

o TGNNs cannot be decomposed into such simplistic phases.



Challenges in Designing a TGNN Accelerator (2)

e Must be able to handle both memory-bound and compute-bound kernels

o This table shows the operational intensity of various TGNN kernels.

o Red indicates memory-bound kernels, blue indicates compute-bound kernels.
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o Even the same kernel can be either memory- and compute-bound based on the batch size!

o TGNN accelerator have to efficiently support both types of workloads.

e \Workload balancing is also a critical issue in evolving graphs.
o Cannot preprocess and statically partition the nodes.

[1] Rossi et al., arXiv, 2020 [2] Xu et al., arXiv, 2020 [3] Kumar et al., SIDKDD, 2019 [4] Zhou et al., IPDPS, 2022.



TGN-PNM: Key Idea

e Near-memory accelerator targeting TGNN workloads.
e Built on 3D-stacked memory (Hybrid Memory Cube).

e Vault-level parallelism:
o Each vault has a Vault Processing Unit (VPU).
o VPU = SIMD unit (memory-intensive ops) + systolic array (compute-intensive ops).

e Achieves linear scalability with memory capacity.

Fig: Hybrid Memory Cube. VPUs are placed in the logic layer.



TGN-PNM: Architecture Overview
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Vault Processing Units (VPUs): Core compute.
Global Control Unit (GLCU): Instruction broadcast & scalar tasks.
Partial-Sum Accumulation Unit (PSAU): Efficient inter-vault reductions.
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e Vault Processing Units (VPUs):
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Each vault in the HMC logic layer contains one VPU.
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Each VPU has a SIMD unit (for memory-bound ops) and a systolic array (for GEMM).
Operands for these can come from various sources: scratchpad memory, broadcasted

scalar value from GLCU, or cached weights from the weight buffer.

All VPUs are operated in lockstep, controlled by the GLCU.
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Operates the VPUs by broadcasting instructions.
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Contains a scalar core for doing complex operations that cannot be done by VPUs.
Can broadcast scalar values to all VPUs by writing the values to a broadcast buffer.




TGN-PNM: Workload Balancing

e Naive approach:

©)

©)

Partition the graph by nodes, where each vault contains a subset of the nodes.
Requires significant inter-vault communication during neighbor aggregation.

e Feature-dimension partitioning:
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Each vault holds a subset of the features of all nodes.
All element-wise operations becomes localized within each VPU.
Inter-vault communication is only required for dot-product reduction operations during matrix-
vector and matrix-matrix multiplications.
m Has aregular pattern and can be handled efficiently by the partial-sum acc unit.
Does not need to duplicate weights across all the vaults.
Enables lockstep operations of the VPUs.

However, does not work well if the feature dimension is small as we cannot utilize all SIMD
and systolic array lanes!

Hybrid partitioning:

For small feature dimension, sub-partitions the lanes and use duplicate weights.



Evaluation Setup

e Benchmarks: TGN-attn & TGN-sum model architectures [1]

o TGN-attn: Single layer multi-head attention for neighbor aggregation

m Memory + compute intensive
o TGN-sum: Simple average for neighbor aggregation
m  Memory intensive
Datasets: Wikipedia, Reddit, GDELT
e Two variants of our proposed architecture:
o TGN _PIM feat uses feature-dimension partitioning scheme
o TGN_PIM hybrid uses hybrid partitioning scheme
e Comparisons against:
o CPU (AMD EPYC 7742 64-core)
GPU (NVIDIA A100)
Gearbox (subarray-level PIM) [2]
Newton (bank-level PIM) [3]
tFPGA (FPGA-based TGNN accelerator) [4]

O O O O

[1] Rossi et al., arXiv, 2020.  [2] Lenjani et al., ISCA, 2022.  [3] He et al., MICRO, 2020.  [4] Zhou et al., IPDPS, 2022.
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Results — Throughput & Latency - TGN-attn

e On TGN-attn benchmark, TGN_PIM_hybrid
provides the best throughput:
o 26.8x over CPU
o 16.7x over GPU
o 5.2x over Gearbox
o 4.4x over Newton
o 10.4x over tFPGA

o 1.14x over TGN _PIM feat

e Significant reductions in batch processing
latency across datasets.



Results — Throughput & Latency - TGN-sum

e On TGN-sum benchmark, TGN_PIM _hybrid
provides the best throughput:
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42.1x over CPU

34.8x over GPU

2.4x over Gearbox

2.2x over Newton

31.1x over tFPGA

1.23x over TGN PIM feat

e Gearbox and Newton performed fairly well

due to the benchmark being memory bound
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Impact of Batch Size

e TGN-PNM throughput improves with batch size up to SIMD width (16).
o At this point, systolic arrays leverages maximum reuse.
e Batching does not impact Gearbox and Newton.
o No reuse because GEMM implemented as multiple independent GEMV ops. 13



Area Estimation

On SAED
14nm node

e Processing elements and control logics: by RTL synthesis
e SRAM buffers and scratchpad memories: using CACTI-3DD
e Memory controller and interconnect: using McPAT

Total estimated area is 35.83mm?, which is 53% of the total logic-die area of 68mm? HMC stack. .,



Conclusions

e First near-memory accelerator for TGNN inference.

e Efficient handling of both memory- and compute-bound kernels.

e Feature-dimension partitioning ensures balanced workload.

e Outperforms CPU, GPU, FPGA, and other general purpose PIM architectures.

e Scalable and flexible for future TGNN variations.
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Thank you!

Questions?



