
Revisiting Pebble
Games for Modeling
and Efficient Use of

Disaggregated
Memory Systems

Anusha Devulapally*^,

Mahantesh Halappanavar^, Bruno Jacob^,

Vijaykrishnan Narayanan*, Andres Marquez^

* The Pennsylvania State University,

^ Pacific Northwest National Laboratory

1

2

Hong-Kung Red-Blue Pebble Game

• Abstract model – to understand I/O complexity on 2-level memory
hierarchy.

• Pebble Types:

 Red – fast memory capacity ‘r’ (limited)

 Blue – slow memory with unlimited capacity

• Input: DAG, red pebbles ‘r’

• Goal:

 Compute every node in a DAG while moving few pebbles back and
forth b/w red and blue

 Capture the trade-off between fast‐memory size (cache) and total I/O
(loads/stores)

 Prove lower bounds on the number of memory transfers any algorithm
must perform

An example with 3 red pebbles and

unlimited blue pebbles

Jia-Wei Hong and H. T. Kung. 1981. “I/O complexity: The red-blue pebble game.” In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing

(Milwaukee, Wisconsin, USA) (STOC ’81). Association for Computing Machinery, New York, NY, USA, 326–333. https://doi.org/10.1145/800076.802486

https://doi.org/10.1145/800076.802486

3

Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any

source (input) node

Input: Computational DAGs, red pebbles (3 in

this case, unlimited blue pebbles

Output: how many moves between blue <->red

(data movement)

4

Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any

source (input) node

• Load: if a vertex has a blue pebble,

you may place a red pebble on it

Input: Computational DAGs, red pebbles (3 in

this case, unlimited blue pebbles

Output: how many moves between blue <->red

(data movement)

5

Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any

source (input) node

• Load: if a vertex has a blue pebble,

you may place a red pebble on it

• Compute: if all immediate

predecessors carry red pebbles, place

a red pebble on that vertex

Input: Computational DAGs, red pebbles (3 in

this case, unlimited blue pebbles

Output: how many moves between blue <->red

(data movement)

6

Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any

source (input) node

• Load: if a vertex has a blue pebble,

you may place a red pebble on it

• Compute: if all immediate

predecessors carry red pebbles, place

a red pebble on that vertex

• Evict: remove any red or blue pebble

at any time

Input: Computational DAGs, red pebbles (3 in

this case, unlimited blue pebbles

Output: how many moves between blue <->red

(data movement)

7

Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any

source (input) node

• Load: if a vertex has a blue pebble,

you may place a red pebble on it

• Compute: if all immediate

predecessors carry red pebbles, place

a red pebble on that vertex

• Evict: remove any red or blue pebble

at any time

• Store: convert a red pebble back to

blue on any pebbled vertex

Input: Computational DAGs, red pebbles (3 in

this case, unlimited blue pebbles

Output: how many moves between blue <->red

(data movement)

8

Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any

source (input) node

• Load: if a vertex has a blue pebble,

you may place a red pebble on it

• Compute: if all immediate

predecessors carry red pebbles, place

a red pebble on that vertex

• Evict: remove any red or blue pebble

at any time

• Store: convert a red pebble back to

blue on any pebbled vertex

• Termination: The game ends when

the sink node is blue.

Input: Computational DAGs, red pebbles (3 in

this case, unlimited blue pebbles

Output: how many moves between blue <->red

(data movement)

9

Introduction & Motivation

• Disaggregated memory systems separate on-chip cache, fabric-attached pool,
and storage, creating complex data-movement trade-offs.

• Pebble games abstract these tiers with colored pebbles and rules that mirror
load, compute, and store operations.

• This framework lets us predict I/O costs and derive bounds without exhaustive
benchmarking.

• Extending to a red-orange-blue model captures fabric-attached memory
explicitly and supports dynamic budget changes under SLAs.

• Enable system design for disaggregated memory systems for given set of
applications.

10

Origin: The Black Pebble Game (Sethi'72)

• Goal: Model space-bounded computation by minimizing the maximum number of pebbles (i.e.
registers) placed at once.

• Pebble Rules:

 Place a pebble on any source (leaf) node at any time.

 To pebble a non‐leaf node, all its immediate predecessors must currently carry pebbles

 Remove (evict) a pebble from any node at any time.

• By sequencing these rules over a DAG, we “compute” every node while reusing pebbles to keep
the peak count low.

• Key Applications
• Register allocation in compilers (minimize actual CPU registers)
• VLSI/circuit‐layout resource scheduling
• Analysis of propositional proof complexity
• Design of memory-hard functions in cryptography

Sethi, R. (1973, April). Complete register allocation problems. In Proceedings of the fifth annual ACM symposium on Theory of computing (pp. 182-195).

11

Ext: Multi-Level & Multiprocessor Games

• Savage (1995)

 k-level Memory Hierarchies

 S-Partition across L cache levels → matching I/O
lower bounds

 Static budgets, single-processor model

• Elango et al. (2014)

 Parallel Red-Blue-White Game

 Multi-node, multi-core with hierarchical caches &
interconnects

 Lower bounds on data movement for parallel
CDAGs

• Liu et al. Survey (2020)

 Comprehensive treatment of sequential & parallel,
red vs. black-white games

 Applications from register allocation to I/O modeling

• Kwasniewski et al. (2021)

 Greedy S-Partition Strategies

 Tight sequential & parallel I/O bounds for matrix–
matrix multiplication

 Empirical speedups in HPC kernels

• Böhnlein et al. (2024)

 Multiprocessor Red-Blue Game with Greedy
Heuristic

 Captures compute ↔ communication ↔ memory
trade-offs

 Static per-processor budgets, no shared‐pool tier

Gaps:

• Lack of empirical evaluations

• No explicit “shared-pool” (fabric/CXL) tier

• Static, pre-provisioned memory budgets only

• Limited or no support for dynamic, multi-

tenant allocation

12

Multiple Processor Red-Orange-Blue Game

Rules:

• Remote-Get: On processor p, if a vertex
already has a blue pebble, you may place an
orange pebble there (fetch from pool) or a
red pebble of another shade Rₙ (n≠p),
modelling an inter-processor message

• Data-Movement: On processor p, if a vertex
has any blue, orange, or a red pebble of a
different shade, you may load it into your
local cache by placing your red pebble there

• Remote-Put: Convert your red pebble to an
orange pebble (write back to pool) or to
another‐shade red (hand off to another CPU)

Multi-Level multi-processor memory hierarchy and data movement

costs in a disaggregated system.

We assume costs:

red ↔ blue = highest cost

blue ↔ orange = medium cost

orange ↔ red = lowest cost

We also assume different costs for Read versus Write tasks.

These are only representative numbers for empirical evaluation.

13

Experimental Setup: Applications & Metrices

• Applications

 Fast Fourier Transform (FFT) (sizes 128…2048)

 ResNet-Coarse (5 variants of resnet models)

• Metrices

 Total number of moves

 Total Cost

• Experiments:

 Red-Blue Greedy (baseline with minimum red pebbles and 2x minimum red pebbles)

 Red-Orange-Blue Greedy: Uses minimum red pebbles + minimum orange multiples (64×…512× minimum red)

 Varying Processors: p – 1 to 32

• Analysis:

 Per-processor memory constant (if no. of red pebbles is r, each processor will have ‘r’ red pebbles)

 Total memory constant (if no. of red pebbles is r, then r is divided across the processors equally)

• Note:

 Theoretical minimum red: which is max in-degree+1 for DAG

 For experiments, minimum red pebbles in the experimental number via trial &error as algorithms doesn’t give optimal
output. (it is much higher than theoretical minimum red)

14

Results-1: Fast Fourier Transform (FFT)

• RB cost drops by 56% from processor

1 to 32 for larger problem size (n)

• ROB cost drops by 21% from

processor for n.

• ROB is 47% lower than RB at p=1 and

4% lower at p=32

Analysis -1 (Per-processor Memory Constant)

Analysis -2 (Total Memory Constant)

• RB cost increases by 19% from

processor 1 to 32 for larger problem

size (n)

• ROB cost increases by 88% from

processor for n. (cost raises at p=16)

• ROB is 47% lower than RB at p=1 and

16% lower at p=32

15

Results-2: ResNet-Coarse

Analysis -1 (Per-processor Memory Constant)

Analysis -2 (Total Memory Constant)

The number of red pebbles for resnet-coarse models is just

3, so we cannot divide across processors.

• RB cost increases by 18% from

processor 1 to 32 for larger problem

size (n)

• ROB cost decreases by 20% from

processor for n. (cost raises at p=16)

• ROB is 12% lower than RB at p=1 and

40% lower at p=32

16

Limits of Static Allocation

• Fixed working-set budget requires accurate estimate of peak footprint;
misestimation leads to thrashing or wasted memory

• No adaptability: cannot respond to dynamic workload spikes, phase
changes, or idle periods

• Poor multi-tenant fairness: static quotas ignore job priority and SLA
requirements, causing performance imbalance

• Inefficient sharing: dedicated allocations block reusable orange memory,
while idle resources remain unused

17

Dynamic Single-Tenant Extension (DyPeG)

• Runtime Budget: red & orange allocations can grow or shrink in response to workload
needs and SLA guarantees

• Prefetch Rules: when budget increases, fetch data from blue→orange or orange→red
proactively

• Eviction Rule: on budget drop, dead red pebbles spill to orange or blue to free space

• Adaptive I/O Control: rules D1–D9 govern Input, Remote-Get/Put, Data-Move, Compute,
Eviction, Output, and Termination under dynamic quotas

• SLA Enforcement: ensures minimum red/orange reservations per job, allowing predictable
performance while adapting to phase changes

18

Summary & Future Work

• Contributions

 Formulated a three-tier Red-Orange-Blue pebble game (ROBP) and its dynamic extension

(DyPeG) for modeling CXL-style disaggregated memory

 Developed and analyzed both greedy heuristics schedulers under static and dynamic budgets

• Empirical Findings

 Multi-processors: smooth scaling and 50%+ savings for p≤8

• Key Takeaways

 Static budgets risk inefficiency; pooling (orange) bridges local vs. remote but needs right sizing

 Greedy is lightweight and near-optimal

• Future Work

 Build an RL-driven allocator for dynamic orange-pool management

 Validation on a hardware testbed with real CXL devices with diverse applications

 Extend DyPeG to multi-tenant scenarios with SLA-aware dynamic memory sharing.

19

Acknowledgment

Thank you

20

