I zy U '

40 B iv(Cs

} k)d &

’ ca S0 7 ¢

q ¢ O Xis

PennState ¢ (3uus R

PaC|f|c | . g
Northwest L *

NATIONAL LABORATORY

Revisiting Pebble
Games for Modeling
and Efficient Use of E S 774 PRy

) 5 B o8
. 2 : @
Disaggregated s <A lear Sum. 8
7(3 3 & * ® A
S ’os
Memory Systems “a P AT
% 26 & Ak
: ® ¢ ™ PYd W ‘ L~1Xp~g) i 10, @ K} : ;
Anusha Devulapally*, © B $:5:8 10 Ty |
: 2 | E'p = 34 ¥ : o ®
Mahantesh Halappanavar”®, Bruno Jacob”, - - L Ags @
j CX/el >Ww A > ‘
.. . o
Vijaykrishnan Narayanan*, Andres Marquez” e R A WA
- . - l(~~’.<] @ 8
..‘. b \r‘ b
. . . u ha "D) §
* The Pennsylvania State University, - W o -
e % / = ARS
A Pacific Northwest National Laboratory ‘ w ;(“" sosnl 3”;; ?g’; 3
U.5. DEPARTMENT OF ’ 8 bj , q <@ : : n
ENERGY BATTELLE) ,ﬁ To8e. O o0 By g o
PNNL is operated by Battelle for the U.S. Department of Energy “i‘R \ ° / % 1 MGS T ? s 1 {a

3 l A OS%‘A Af'I[w
\ <CGI 8 t
fMET vyC 'Suusa?2C1 M- T61f 1VemwG

Pacific

Northwest Hong-Kung Red-Blue Pebble Game

Z @ PennState

Abstract model — to understand I/O complexity on 2-level memory

hierarchy. 3
Pebble Types: \

= Red - fast memory capacity ‘r’ (limited) 4 OS5

= Blue — slow memory with unlimited capacity \ \Q
Input: DAG, red pebbles ‘r’ 1 3

Goal: 2

= Compute every node in a DAG while moving few pebbles back and An example with 3 red pebbles and
forth b/w red and blue unlimited blue pebbles

= Capture the trade-off between fast-memory size (cache) and total 1/0
(loads/stores)

* Prove lower bounds on the number of memory transfers any algorithm
must perform

Jia-Wei Hong and H. T. Kung. 1981. “I/O complexity: The red-blue pebble game.” In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing
(Milwaukee, Wisconsin, USA) (STOC *81). Association for Computing Machinery, New York, NY, USA, 326-333. https://doi.org/10.1145/800076.802486

https://doi.org/10.1145/800076.802486

5 @ PennState

Pacific

Northwest ~ Red-Blue Pebble Game with an Example

NATIONAL LABORATORY

Input: Computational DAGSs, red pebbles (3 in

this case, unlimited blue pebbles

i Output: how many moves between blue <->red
5

(data movement)

‘4\! \9 Rules:
1 3 * Input: place a blue pebble on any
2 source (input) node

5 @ PennState

Nothwest Red-Blue Pebble Game with an Example

Input: Computational DAGS, red pebbles (3 in
this case, unlimited blue pebbles
Output: how many moves between blue <->red

‘\js \ (data movement)

‘\! N V N V N Rules:
3 : T 3 * Input: place a blue pebble on any

2 2 2 source (input) node
« Load: if a vertex has a blue pebble,
you may place a red pebble on it

»
»

| 1. Start |. R1(1)|3. 6 R1(2)

w
[y

6 '3 PennState

Pacific

Northwest ~ Red-Blue Pebble Game with an Example

NATIONAL LABORATORY

Input: Computational DAGSs, red pebbles (3 in
this case, unlimited blue pebbles

»
»

1. Start . R1(1) 3. R1(2)[4. R3(4)
P 3 3 6 Output: how many moves between blue <->red
X} ‘\j \ (data movement)
i DS 5 05

5
\@f\ v\@ »“\[\@ 4[\9 Rules:
® |¢ & . | _
3 |1 3 3 |1 3 nput: place a blue pebble on any
2

source (input) node

» Load: if a vertex has a blue pebble,
you may place a red pebble on it

« Compute: if all immediate
predecessors carry red pebbles, place
a red pebble on that vertex

Y

5 @ PennState

Pacific

Northwest ~ Red-Blue Pebble Game with an Example

NATIONAL LABORATORY

> Input: Computational DAGSs, red pebbles (3 in

1: Start | 2. R1(1)|3. R1(2)|4. R3(4) this case, unlimited blue pebbles
3 R > 2 Output: how many moves between blue <->red
" \Os . \75 . \05] ls (data movement)
@\Z\@ .\Zx J . '\[\@ Rules:
1 3 | 1 3 |5 g |5 3 * Input: place a blue pebble on any
< £ ¢ i source (input) node
% g R - Load: if a vertex has a blue pebble,
\ you may place a red pebble on it
4 OF « Compute: if all immediate
d \ © predecessors carry red pebbles, place
1 3 a red pebble on that vertex

« Evict: remove any red or blue pebble
at any time

5 @ PennState

Pacific

Northwest ~ Red-Blue Pebble Game with an Example

NATIONAL LABORATORY

> Input: Computational DAGSs, red pebbles (3 in

1 Start | 2. R1(1)|3. R1(2)|4. R3(4) this case, unlimited blue pebbles
4 e \6 P Output: how many moves between blue <->red
\Os &5 -] X}s (data movement)
4 4 4
\@ \,B % Rules:
o) @ © ©
1 3 | 1 3 |5 g |5 3 * Input: place a blue pebble on any
G £ ¢ i source (input) node
% g6 g R . Load: if a vertex has a blue pebble,
\ \3 you may place a red pebble on it
4 O5 4 05 « Compute: if all immediate
N d d pebbles, pl
o o | 4 ° predecessors carry red pebbles, place
r 3 3 |1 - & a red pebble on that vertex
* Evict: remove any red or blue pebble
at any time

« Store: convert a red pebble back to
blue on any pebbled vertex

Z @ PennState

Pacific

Northwest ~ Red-Blue Pebble Game with an Example

NATIONAL LABORATORY

> Input: Computational DAGSs, red pebbles (3 in

1. Start | 2. R1(1)|3. R1(2)|4. R3(4) this case, unlimited blue pebbles
6 6 6 6
\) \D \ b\ Output: how many moves between blue <->red
., bs . b5 s 05 . 05 (data movement)
e\!\e ‘\z\@ [A \[\e Rules:
1 3 |2 3 |1 3 |1 3 * Input: place a blue pebble on any
; 5 = 2 £ source (input) node
2 g RIS g N2 g R13)[8. g) « Load: if a vertex has a blue pebble,
\ X} \ \ you may place a red pebble on it
4 O3S 4 O3 4 O3 4 95 « Compute: if all immediate
S [N N :
o o | ¢ e | ¢ ® | ¢ ® predecessors carry red pebbles, place
I A T A R - a red pebble on that vertex
5 _ Ra@)| 10 Ra@2)|11 CRI@[12 R3O r26)] ° Evict: remove any red or blue pebble

'»i blue on any pebbled vertex
« Termination: The game ends when
3 . .
the sink node is blue.

13.
6 Finish at any time
\ - Store: convert a red pebble back to
4
I\
1
2

37 @ PennState

Pacific

Northwest [Ntroduction & Motivation

AAAAAAAAAAAAAAAAAA

« Disaggregated memory systems separate on-chip cache, fabric-attached pool,
and storage, creating complex data-movement trade-offs.

* Pebble games abstract these tiers with colored pebbles and rules that mirror
load, compute, and store operations.

 This framework lets us predict I/O costs and derive bounds without exhaustive
benchmarking.

« Extending to a red-orange-blue model captures fabric-attached memory
explicitly and supports dynamic budget changes under SLAs.

« Enable system design for disaggregated memory systems for given set of
applications.

Pacific

@ PennState
Northwest Origin: The Black Pebble Game (Sethi'72) ~

NATIONAL LABORATORY

« Goal: Model space-bounded computation by minimizing the maximum number of pebbles (i.e.
registers) placed at once.
» Pebble Rules:
» Place a pebble on any source (leaf) node at any time.
» To pebble a non-leaf node, all its immediate predecessors must currently carry pebbles
= Remove (evict) a pebble from any node at any time.

» By sequencing these rules over a DAG, we “compute” every node while reusing pebbles to keep
the peak count low.

« Key Applications
* Register allocation in compilers (minimize actual CPU registers)
* VLSI/circuit-layout resource scheduling
 Analysis of propositional proof complexity
» Design of memory-hard functions in cryptography

Sethi, R. (1973, April). Complete register allocation problems. In Proceedings of the fifth annual ACM symposium on Theory of computing (pp. 182-195).

iY 7°~
/1Tt

cC-0.
HZm -+
1} Z

ee

ba D?
kK;nihW

= 6

37 @ PennState

Pacific - .
Northwest EXT. Multi-Level & Multiprocessor Games
« Savage (1995) « BoOhnlein et al. (2024)
= k-level Memory Hierarchies = Multiprocessor Red-Blue Game with Greedy
= S-Partition across L cache levels — matching /O Heuristic
lower bounds = Captures compute < communication <> memory

trade-offs

= Static budgets, single-processor model
= Static per-processor budgets, no shared-pool tier

« Elango et al. (2014)
= Parallel Red-Blue-White Game

= Multi-node, multi-core with hierarchical caches &
interconnects Gaps:
= Lower bounds on data movement for parallel « Lack of empirical evaluations
CDAGs + No explicit “shared-pool” (fabric/CXL) tier
* Liu et al. Survey (2020) « Static, pre-provisioned memory budgets only
= Comprehensive treatment of sequential & parallel, Limited or no support for dynamic, multi-
red vs. black-white games tenant allocation
= Applications from register allocation to 1/0O modeling

« Kwasniewski et al. (2021)
= Greedy S-Partition Strategies

» Tight sequential & parallel I/O bounds for matrix—
matrix multiplication

= Empirical speedups in HPC kernels

Pacific

Northwest Multiple Processor Red-Orange-Blue Game ~

NATIONAL LABORATORY

;5 @ PennState

Rules:

 Remote-Get: On processor p, if a vertex
already has a blue pebble, you may place an
orange pebble there (fetch from pool) or a

Bl Fast Memory (Limited, Compute)
Bl Shared Memory (Limited)

red pebble of another shade R (n#p), : W= o g
modelling an inter-processor message S . == Processor Communication Cost

: : F — Wrnite Operation Cost
« Data-Movement: On processor p, if a vertex
has any blue, orange, or a red pebble of a
different shade, you may load it into your
local cache by placing your red pebble there

Multi-Level multi-processor memory hierarchy and data movement
costs in a disaggregated system.

* Remote-Put: Convert your red pebble to an We assUme costs:
orange pebble (write back to pool) or to red <> blue = highest cost
another-shade red (hand off to another CPU) blue orange = medium cost

orange < red = lowest cost

We also assume different costs for Read versus Write tasks.
These are only representative numbers for empirical evaluation.

Pacific

Northwest EXperimental Setup: Applications & Metrices ™

NATIONAL LABORATORY

;5 @ PennState

Applications
= Fast Fourier Transform (FFT) (sizes 128...2048)
= ResNet-Coarse (5 variants of resnet models)

Metrices
= Total number of moves
= Total Cost

Experiments:
» Red-Blue Greedy (baseline with minimum red pebbles and 2x minimum red pebbles)
» Red-Orange-Blue Greedy: Uses minimum red pebbles + minimum orange multiples (64%...512x minimum red)
= \arying Processors: p —1 to 32

Analysis:
= Per-processor memory constant (if no. of red pebbles is r, each processor will have ‘r’ red pebbles)
= Total memory constant (if no. of red pebbles is r, then r is divided across the processors equally)

Note:
= Theoretical minimum red: which is max in-degree+1 for DAG

= For experiments, minimum red pebbles in the experimental number via trial &error as algorithms doesn’t give optimal
output. (it is much higher than theoretical minimum red)

Pacific

@ PennState
Northwest ~ Results-1: Fast Fourier Transform (FFT) |

NATIONAL LABORATORY

Analysis -1 (Per-processor Memory Constant)
400

® RB, p=1 ® ROB, p=1
* RB, p=8 « ROB, =8 RB cost drops by 56% from processor
%0 re, p=16 / 150 . ROB, p=16 . 1 to 32 for larger problem size (n)
. SRR § R0)/ ROB cost drops by 21% from
3 2 = processor for n.
100 ' T s ROB is 47% lower than RB at p=1 and

4% lower at p=32

1220 226 512 1024 2048 128 25 512 1024 2048

FFT Problem Sizes FFT Problem Sizes

RB cost increases by 19% from
processor 1 to 32 for larger problem
size (n)

00
® RB, p=1 : ® ROB, p=1
4 RB, p=4 400 4 ROB, p=4

400 * RB,p=16 a0 " ROB.p=16
RB, p=32 & ROB, p=32 /

ROB cost increases by 88% from
processor for n. (cost raises at p=16)
ROB is 47% lower than RB at p=1 and
16% lower at p=32

Total Cost

s 8
K\\
8
Total Cost
o 8 8
|

128 256 512 1024 2048 128 256 512 1024 2048

FFT Problem Sizes

FFT Problem Sizes

Pacific
Northwest

NATIONAL LABORATORY

Results-2: ResNet-Coarse

Analysis -1 (Per-processor Memory Constant)

8 8
® RB, p=1 ® ROB, p=1

6* RB, p=16 6 * ROB, p=16

RB, p=32 ROB, p=32 é

Total Cost

Total Cost
N

0 F:’:‘T:_-U
&\’8’ o &) e\\él'
& & & 7 & @9,0

Different resnet configurations

Different resnet configurations

Analysis -2 (Total Memory Constant)

The number of red pebbles for resnet-coarse models is just
3, S0 we cannot divide across processors.

@ PennState

RB cost increases by 18% from
processor 1 to 32 for larger problem
size (n)

ROB cost decreases by 20% from
processor for n. (cost raises at p=16)
ROB is 12% lower than RB at p=1 and
40% lower at p=32

;5 @ PennState

Pacific

Northwest | Imits of Static Allocation

NATIONAL LABORATORY

Fixed working-set budget requires accurate estimate of peak footprint;
misestimation leads to thrashing or wasted memory

No adaptability: cannot respond to dynamic workload spikes, phase
changes, or idle periods

Poor multi-tenant fairness: static quotas ignore job priority and SLA
requirements, causing performance imbalance

Inefficient sharing: dedicated allocations block reusable orange memory,
while idle resources remain unused

Pacific

Northwest Dynamic Single-Tenant Extension (DyPeG) ~

;5 @ PennState

NATIONAL LABORATORY

 Runtime Budget: red & orange allocations can grow or shrink in response to workload
needs and SLA guarantees

» Prefetch Rules: when budget increases, fetch data from blue—orange or orange—red
proactively

« Eviction Rule: on budget drop, dead red pebbles spill to orange or blue to free space

« Adaptive I/O Control: rules D1-D9 govern Input, Remote-Get/Put, Data-Move, Compute,
Eviction, Output, and Termination under dynamic guotas

 SLA Enforcement: ensures minimum red/orange reservations per job, allowing predictable
performance while adapting to phase changes

37 @ PennState

Pacific

Northwest ~ Summary & Future Work

NATIONAL LABORATORY

Contributions
» Formulated a three-tier Red-Orange-Blue pebble game (ROBP) and its dynamic extension
(DyPeG) for modeling CXL-style disaggregated memory
» Developed and analyzed both greedy heuristics schedulers under static and dynamic budgets
Empirical Findings
= Multi-processors: smooth scaling and 50%-+ savings for p<8
Key Takeaways
» Static budgets risk inefficiency; pooling (orange) bridges local vs. remote but needs right sizing
= Greedy is lightweight and near-optimal
Future Work
» Build an RL-driven allocator for dynamic orange-pool management
» Validation on a hardware testbed with real CXL devices with diverse applications
» Extend DyPeG to multi-tenant scenarios with SLA-aware dynamic memory sharing.

~7

Pacific

Northwest ~ Acknowledgment

AMAIS

ARTIFICIAL INTELLIGENCE (Al)
FOR SCIENCE

@PNNL

ADVANCED MEMORY TO SUPPORT

@ PennState

Semiconductor
Research
Corporation

I zy U '

} k)d
; ca S0 7 ¢
. qx ¢ O X
. '~¥ PennState i
Pacific , . & %
2 4 3 _ L
Northwest ' A 3
NATIONAL LABORATORY D s x
=
=N 4
» W
& P
B 7 K .(’ | . b
gV /" 2 I Q sy ¢) ¢ $
i ® 9. O
3) e ” U - i v, @ &
¥ ' R o 2 @3 @
‘ p "~’ ' Y (w I.A .‘
uf 1 1 /UPUY I . J v
@ f } & * @
- e - @& b !
E= 12 .
® . : ¢ X 0 % | 7y F 31 J.
% ra ' \ Q,f v : !
'Thank you B8 8 LI
| ¢ B o wilzs® @.9 ¢
3 . -
L N x 1 E'B;= 3A ZF § a2
o @ CX/ek\ >w A 5 ® ®
> & BN Bl
- g) !’()1’(i hk v
e . o S8F Y. . : Th
u)= hEm 'H.l o £ o 9

gz: -y A Bt
(D2d n Mo pudNSEIE) T < i UTH)

'W ' Jc "80SDFEN) 0).72b ¥ 1AA 7
y C3 awiIE'a“ D)2 <@l axXh Q

S 2 23 1 2=80.(H u+2] bSuU a @
: v T QSERN o/%IMGfP"' Q .
,"? “I-f;v # 0 z<zla@avXx.] ® 9
aa | : O : .-Dl 5~¢1'I[}w
\ <CGI 8 t (R je]e8: W 20
FAPEVC SHUBLPCL *M-T6 i f ivenwG e G } e O

