
Revisiting Pebble 
Games for Modeling 
and Efficient Use of

Disaggregated 
Memory Systems

Anusha Devulapally*^, 

Mahantesh Halappanavar^, Bruno Jacob^, 

Vijaykrishnan Narayanan*, Andres Marquez^

*  The Pennsylvania State University, 

^ Pacific Northwest National Laboratory

1



2

Hong-Kung Red-Blue Pebble Game

• Abstract model – to understand I/O complexity on 2-level memory 
hierarchy. 

• Pebble Types: 

 Red – fast memory capacity ‘r’ (limited)

 Blue – slow memory with unlimited capacity

• Input: DAG, red pebbles ‘r’

• Goal: 

 Compute every node in a DAG while moving few pebbles back and 
forth b/w red and blue

 Capture the trade-off between fast‐memory size (cache) and total I/O 
(loads/stores)

 Prove lower bounds on the number of memory transfers any algorithm 
must perform

An example with 3 red pebbles and 

unlimited blue pebbles

Jia-Wei Hong and H. T. Kung. 1981. “I/O complexity: The red-blue pebble game.” In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing

(Milwaukee, Wisconsin, USA) (STOC ’81). Association for Computing Machinery, New York, NY, USA, 326–333. https://doi.org/10.1145/800076.802486

https://doi.org/10.1145/800076.802486
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Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any 

source (input) node

Input: Computational DAGs, red pebbles (3 in 

this case, unlimited blue pebbles

Output: how many moves between blue <->red 

(data movement)
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Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any 

source (input) node

• Load: if a vertex has a blue pebble, 

you may place a red pebble on it

Input: Computational DAGs, red pebbles (3 in 

this case, unlimited blue pebbles

Output: how many moves between blue <->red 

(data movement)
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Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any 

source (input) node

• Load: if a vertex has a blue pebble, 

you may place a red pebble on it

• Compute: if all immediate 

predecessors carry red pebbles, place 

a red pebble on that vertex 

Input: Computational DAGs, red pebbles (3 in 

this case, unlimited blue pebbles

Output: how many moves between blue <->red 

(data movement)
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Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any 

source (input) node

• Load: if a vertex has a blue pebble, 

you may place a red pebble on it

• Compute: if all immediate 

predecessors carry red pebbles, place 

a red pebble on that vertex 

• Evict: remove any red or blue pebble 

at any time
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Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any 

source (input) node

• Load: if a vertex has a blue pebble, 

you may place a red pebble on it

• Compute: if all immediate 

predecessors carry red pebbles, place 

a red pebble on that vertex 

• Evict: remove any red or blue pebble 

at any time

• Store: convert a red pebble back to 

blue on any pebbled vertex

Input: Computational DAGs, red pebbles (3 in 

this case, unlimited blue pebbles

Output: how many moves between blue <->red 

(data movement)
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Red-Blue Pebble Game with an Example

Rules:

• Input: place a blue pebble on any 

source (input) node

• Load: if a vertex has a blue pebble, 

you may place a red pebble on it

• Compute: if all immediate 

predecessors carry red pebbles, place 

a red pebble on that vertex 

• Evict: remove any red or blue pebble 

at any time

• Store: convert a red pebble back to 

blue on any pebbled vertex

• Termination: The game ends when 

the sink node is blue.

Input: Computational DAGs, red pebbles (3 in 

this case, unlimited blue pebbles

Output: how many moves between blue <->red 

(data movement)
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Introduction & Motivation

• Disaggregated memory systems separate on-chip cache, fabric-attached pool, 
and storage, creating complex data-movement trade-offs.

• Pebble games abstract these tiers with colored pebbles and rules that mirror 
load, compute, and store operations.

• This framework lets us predict I/O costs and derive bounds without exhaustive 
benchmarking.

• Extending to a red-orange-blue model captures fabric-attached memory 
explicitly and supports dynamic budget changes under SLAs.

• Enable system design for disaggregated memory systems for given set of 
applications. 
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Origin: The Black Pebble Game (Sethi'72)

• Goal: Model space-bounded computation by minimizing the maximum number of pebbles (i.e. 
registers) placed at once.

• Pebble Rules:

 Place a pebble on any source (leaf) node at any time.

 To pebble a non‐leaf node, all its immediate predecessors must currently carry pebbles

 Remove (evict) a pebble from any node at any time.

• By sequencing these rules over a DAG, we “compute” every node while reusing pebbles to keep 
the peak count low.

• Key Applications
• Register allocation in compilers (minimize actual CPU registers)
• VLSI/circuit‐layout resource scheduling
• Analysis of propositional proof complexity
• Design of memory-hard functions in cryptography

Sethi, R. (1973, April). Complete register allocation problems. In Proceedings of the fifth annual ACM symposium on Theory of computing (pp. 182-195).
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Ext: Multi-Level & Multiprocessor Games

• Savage (1995)

 k-level Memory Hierarchies

 S-Partition across L cache levels → matching I/O 
lower bounds

 Static budgets, single-processor model

• Elango et al. (2014)

 Parallel Red-Blue-White Game

 Multi-node, multi-core with hierarchical caches & 
interconnects

 Lower bounds on data movement for parallel 
CDAGs

• Liu et al. Survey (2020)

 Comprehensive treatment of sequential & parallel, 
red vs. black-white games

 Applications from register allocation to I/O modeling

• Kwasniewski et al. (2021)

 Greedy S-Partition Strategies

 Tight sequential & parallel I/O bounds for matrix–
matrix multiplication

 Empirical speedups in HPC kernels

• Böhnlein et al. (2024)

 Multiprocessor Red-Blue Game with Greedy 
Heuristic

 Captures compute ↔ communication ↔ memory 
trade-offs

 Static per-processor budgets, no shared‐pool tier

Gaps:

• Lack of empirical evaluations

• No explicit “shared-pool” (fabric/CXL) tier

• Static, pre-provisioned memory budgets only

• Limited or no support for dynamic, multi-

tenant allocation
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Multiple Processor Red-Orange-Blue Game

Rules:

• Remote-Get: On processor p, if a vertex 
already has a blue pebble, you may place an 
orange pebble there (fetch from pool) or a 
red pebble of another shade Rₙ (n≠p), 
modelling an inter-processor message

• Data-Movement: On processor p, if a vertex 
has any blue, orange, or a red pebble of a 
different shade, you may load it into your 
local cache by placing your red pebble there

• Remote-Put: Convert your red pebble to an 
orange pebble (write back to pool) or to 
another‐shade red (hand off to another CPU)

Multi-Level multi-processor memory hierarchy and data movement

costs in a disaggregated system. 

We assume costs:

red ↔ blue = highest cost

blue ↔ orange = medium cost

orange ↔ red = lowest cost

We also assume different costs for Read versus Write tasks.

These are only representative numbers for empirical evaluation.
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Experimental Setup: Applications & Metrices

• Applications

 Fast Fourier Transform (FFT) (sizes 128…2048)

 ResNet-Coarse (5 variants of resnet models)

• Metrices

 Total number of moves

 Total Cost

• Experiments:

 Red-Blue Greedy (baseline with minimum red pebbles  and 2x minimum red pebbles)

 Red-Orange-Blue Greedy: Uses minimum red pebbles + minimum orange multiples (64×…512× minimum red)

 Varying Processors: p – 1 to 32

• Analysis:

 Per-processor memory constant (if no. of red pebbles is r, each processor will have ‘r’ red pebbles)

 Total memory constant (if no. of red pebbles is r, then r is divided across the processors equally)

• Note:

 Theoretical minimum red: which is max in-degree+1 for DAG

 For experiments, minimum red pebbles in the experimental number via trial &error as algorithms doesn’t give optimal 
output. ( it is much higher than theoretical minimum red) 
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Results-1: Fast Fourier Transform (FFT)

• RB cost drops by 56% from processor 

1 to 32 for larger problem size (n)

• ROB cost drops by 21% from 

processor for n.

• ROB is 47% lower than RB at p=1 and 

4% lower at p=32

Analysis -1  (Per-processor Memory Constant) 

Analysis -2  (Total Memory Constant) 

• RB cost increases by 19% from 

processor 1 to 32 for larger problem 

size (n)

• ROB cost increases by 88% from 

processor for n. (cost raises at p=16)

• ROB is 47% lower than RB at p=1 and 

16% lower at p=32 



15

Results-2: ResNet-Coarse

Analysis -1  (Per-processor Memory Constant) 

Analysis -2  (Total Memory Constant) 

The number of red pebbles for resnet-coarse models is just 

3, so we cannot divide across processors. 

• RB cost increases by 18% from 

processor 1 to 32 for larger problem 

size (n)

• ROB cost decreases by 20% from 

processor for n. (cost raises at p=16)

• ROB is 12% lower than RB at p=1 and 

40% lower at p=32 
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Limits of Static Allocation

• Fixed working-set budget requires accurate estimate of peak footprint; 
misestimation leads to thrashing or wasted memory

• No adaptability: cannot respond to dynamic workload spikes, phase 
changes, or idle periods

• Poor multi-tenant fairness: static quotas ignore job priority and SLA 
requirements, causing performance imbalance

• Inefficient sharing: dedicated allocations block reusable orange memory, 
while idle resources remain unused
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Dynamic Single-Tenant Extension (DyPeG)

• Runtime Budget: red & orange allocations can grow or shrink in response to workload 
needs and SLA guarantees

• Prefetch Rules: when budget increases, fetch data from blue→orange or orange→red 
proactively

• Eviction Rule: on budget drop, dead red pebbles spill to orange or blue to free space

• Adaptive I/O Control: rules D1–D9 govern Input, Remote-Get/Put, Data-Move, Compute, 
Eviction, Output, and Termination under dynamic quotas

• SLA Enforcement: ensures minimum red/orange reservations per job, allowing predictable 
performance while adapting to phase changes
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Summary & Future Work

• Contributions

 Formulated a three-tier Red-Orange-Blue pebble game (ROBP) and its dynamic extension 

(DyPeG) for modeling CXL-style disaggregated memory

 Developed and analyzed both greedy heuristics schedulers under static and dynamic budgets

• Empirical Findings

 Multi-processors: smooth scaling and 50%+ savings for p≤8

• Key Takeaways

 Static budgets risk inefficiency; pooling (orange) bridges local vs. remote but needs right sizing

 Greedy is lightweight and near-optimal

• Future Work

 Build an RL-driven allocator for dynamic orange-pool management

 Validation on a hardware testbed with real CXL devices with diverse applications

 Extend DyPeG to multi-tenant scenarios with SLA-aware dynamic memory sharing. 
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