
Benchmarking Cache 
Programming Against 

Optimal Caching

YANHUI  WU,  UR

VINCENT MICHELINI,  RIT

CHEN DING, UR

DORIN PATRU, RIT

1

THE INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS 2025

10/8/25 (C) LEASE CACHE PROJECT 2025



OUTLINE and Acknowledgements
ØThe Problem – What, Why, and 
How?
ØHardware Prototype
ØApplication and Goals
ØReference Leases – Definitions and 
Terms
ØLease Algorithms
ØExperimental Setup
ØTest Results and Discussions 
ØConclusions

210/8/25 (C) LEASE CACHE PROJECT 2025

Ø The research is partly supported by 
the National Science Foundation 
(Contract No. SHF-2217395, CCF-
2114285, CCF-2114319)

Ø Any opinions, findings, conclusions 
or recommendations expressed in 
this material are those of the 
author(s) and do not necessarily 
reflect the views of the funding 
organizations.



The Problem – What, Why, and How?
ØWhat is our focus? Cache 
levels between the processing 
core(s) and main memory

ØWhy is this important? 
ØManual management is 

complex and not portable
ØAutomatic management (HW-

based) is sub-optimal
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Conventional 
Cache

Lease Cache

Primary (Eviction) 
Replacement Policy

Automatic Reference Leases, 
Programmable

Information Used Recent History at 
Runtime (Dynamic)

Program Analysis at 
Compile Time (Static)

Secondary Policy N/A Random Eviction
ØHow are we proposing to solve it? 
ØUsing a Lease-Based Programmable Cache
ØA lease protects items (data blocks or cache lines) in cache for a specified amount of time, i.e., 

these can only be evicted once the lease period elapses (expires)



Lease Cache – Emulation and Test System or 
Hardware Prototype

ØFPGA: Altera Cyclone-V
ØRISC-V Core: Unprivileged 
Instruction Set
ØI-Cache: 64-Byte lines; 64 and 
128 lines (2KB and 4KB); PLRU
ØD-Cache: 64-Byte lines; 64 and 
128 lines (2KB and 4KB); PLRU, 
CLAM or SHELL
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FPGA Fabric

CPU
Pipelined 
RISCV –
integer 

and float

Unified 
MM

DDRx
RAMD-Cache: PLRU – baseline; 

CLAM, PRL, SHEL and C-SHEL

Programable (D) Cache and Memory 
Management Unit - PCMMU

I-Cache: PLRU

ØBenchmark execution and data collection are controlled remotely from a host computer via a JTAG 
connection. 

ØThe host program, written in C and compiled with GCC, provides commands to load binaries, run 
benchmarks, and collect metrics (misses, hits, cycle counts, samples, and traces). 

ØThis setup allows for reproducible evaluation across a range of benchmarks while isolating the 
impact of cache policy from other architectural factors.



Application 
and Goals

ØThis work is not tied to a specific application domain such as embedded, client, or HPC systems 

ØRather, our goal is to evaluate lease-based programable cache in a controlled hardware environment 
and to quantify how closely it can approach the theoretical optimum (OPT)

ØThe RISC-V FPGA prototype provides a simple, reproducible platform that exposes cache behavior 
without interference from complex multicore or out-of-order features

ØThis makes it useful for controlled evaluation, but the techniques and findings are not restricted to 
RISC-V or FPGA platforms

ØLease caches are a generic mechanism that can be applied across system classes wherever fixed-size 
caches are deployed

510/8/25 (C) LEASE CACHE PROJECT 2025

FPGA Fabric

CPU
Pipelined 
RISCV –
integer 

and float

Unified 
MM

DDRx
RAMD-Cache: PLRU – baseline; 

CLAM, PRL, SHEL and C-SHEL

Programable (D) Cache and Memory 
Management Unit - PCMMU

I-Cache: PLRU



Reference Leases – Definitions and Terms
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ØA Reference is defined as the instruction that invokes a memory access, i.e., the program 
counter for the load/store instruction.

ØReuse Interval (RI) is defined as the change in logical time between a data block's use and its 
reuse.
◦ Suppose we have a trace abccba, the reuse interval of the datum a is RI=5.

ØThe RI distribution of a reference (RID) is the distribution of RI's among all of its accesses.
◦ Using the same trace abccba given in previous definition and assuming there is only one reference, the 

RI distribution of this reference would contain 3 different reuses 1, 3, 5 caused by the access to datum 
c, b and a respectively, each accounting for 1/3.

ØThe Access Ratio (AR) of a reference is the portion of all accesses in the trace that are invoked 
by that reference.

ØLeases are derived from RIs. 



Lease Algorithms/ Techniques/ Policies – 
From Previous Work

Leases are generated by assignment algorithms based on program analysis:
ØCompiler Assigned Reference Leases (CARL)

◦ Variable-sized or virtual cache;

ØCompiler Lease of Cache Memory (CLAM)
◦ Fixed-sized cache;

ØScope-Hooked Eviction Leases (SHEL)
◦ Fixed-sized cache;

Cost-based greedy algorithms, variable 
lease assignments, using Profit Per 
Unit Cost (PPUC) benefit of lease 
assignment normalized to its cost 
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Leases are derived from reuse intervals (Ris).
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Experimental Setup
ØBenchmark Suite: PolyBench compiled using 
GCC -O3} optimization level without 
vectorization
ØTarget: RISC-V core configured on an Altera 
Cyclone-V FPGA
ØThe Memory Hierarchy: consists of a single-
level, separate instruction and data caches, 
and a DDR3 off-chip main memory
ØI-Cache: 64-Byte lines; 64 and 128 lines (2KB 
and 4KB); PLRU
ØD-Cache: 64-Byte lines; 64 and 128 lines (2KB 
and 4KB); CLAM or SHELL
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ØA metric collection system is embedded 
inside both data and instruction caches and 
the RISC-V core
◦ These collect relevant metrics such as: cache 

hits, misses, and total accesses by snooping 
the internal cache signals

ØA program on a host computer reads and 
writes data in DDR3 memory or memory-
mapped registers (MMR)
◦ It controls benchmark execution and 

metric/results collection

Ø The MMRs are hardware registers that are 
accessed using memory space mapped 
addresses



Experimental Setup – Data Collection
ØThere are three main code sections during each 
benchmark execution that are relevant to data 
collection:
◦ Setup Code: allocates benchmark arrays in the heap 

and initializes their default values
◦ Kernel Code: executes the benchmark algorithm; it 

is during this code segment that metrics are 
collected

◦ Cleanup Code: frees the heap allocated memory

ØAt the end of the setup code, the core writes to 
the metrics-control MMR enabling collection

ØAt the end of the kernel code, the core will again 
write to the metrics-control MMR disabling 
collection.
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ØData Collected:
◦ PLRU Run: cache hits, misses, and total accesses 
◦ Lease Runs (CLAM or SHEL): cache hits, misses, and 

total accesses 
◦ Data Access Sample Information – Reuse Interval 

Distributions (RIDs)
◦ The sampler is embedded in the data cache and snoops each 

access to ultimately generate the forward reuse interval of 
memory blocks  

◦  The sampler consists of a sample table and a sample buffer

◦ Trace Data is the record of every request to the data 
cache during the execution of the kernel code of the 
benchmark
◦ A trace data entry consists of the core program counter (PC), 

word address, and hit/miss information



Experimental Setup – Optimal Caching
ØOPT Simulator:

◦ Optimal offline caching simulator in Rust
◦ Provides a theoretical lower bound for the cache 

miss ratio for each benchmark
◦ Models Belady’s MIN algorithm (also called OPT)
◦ Operation:

◦ Input: Trace information collected by the emulation and test 
system

◦ Output: The precise sequence of cache hits and misses, as well 
as the miss ratio under optimal caching

ØOPT Rationale:
◦ Provides the absolute best miss ratio possible for 

any cache replacement strategy in a fixed available 
cache size setup, assuming perfect knowledge of the 
future
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ØBelady’s MIN Algorithm: 
◦ Always evicts the cached block whose next reuse is 

farthest in the future (or, equivalently, that will not 
be used again for the longest time)

◦ Operation:
◦ Pre-process the access trace to compute, for each 

access, when the next occurrence of each block will be – 
Forward Reuse Interval

◦ Simulate:
◦ If the block is present in the cache (a hit) – proceed
◦ Else if not (a miss), and the cache is full, we evict the 

block in the cache whose next use is farthest in the 
future (or never used again)

◦ The accessed block is then inserted into the cache.



Test Results and Discussions 
PolyBench Suite – Performance Scores

ØThe PolyBench/C 4.2.1 suite:
◦ Contains 30 scientific computing workloads
◦ The kernels span a range of domains, including linear 

algebra, image processing, physics simulation, statistics, 
and dynamic programming

◦ This wide variety of kernel choices provides a good 
analysis for cache performance across multiple caching 
policies. 

Ø29/30 were chosen for analysis
◦ jacobi-1d is excluded due to the small data size and almost 

zero miss ratio

ØThe 29 benchmarks can be categorized into single- and 
multi-scope

◦ Each of the 16 single-scope benchmarks consists of kernel 
code that has a single loop nest

◦ The 13 multi-scope benchmarks contain two or more 
distinct loop nests back-to-back
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ØTo evaluate the lease cache performance, we compute 
a score to quantify how much closer it is to OPT 
compared to PLRU:

ØThe score is at most 100, which means that the 
performance has reached the theoretical optimum

ØA positive score means an improvement over PLRU

ØThe formula is symmetric with respect to hit or miss 
ratios; substituting hit ratios yields the same value

number of accesses. This procedure is repeated for each cache size
of interest to generate the complete OPT miss ratio curve.

OPT Caching Rationale. The OPT policy provides the absolute
best miss ratio possible for any cache replacement strategy in a
!xed available cache size setup, assuming perfect knowledge of the
future. Any practical cachemanagement policy—whether hardware-
based (PLRU), software-based (Lease Cache), or hybrid—will have
a miss ratio that is at least as high as OPT for the same trace and
cache size. By comparing Lease Cache and PLRU against the OPT
baseline, we can quantify the gap between realistic, programmable,
and theoretical caching strategies.

3.3 PolyBench Suite
The PolyBench/C 4.2.1 [14] suite contains 30 scienti!c computing
workloads. The kernels span a range of domains, including linear al-
gebra, image processing, physics simulation, statistics, and dynamic
programming. This wide variety of kernel choices provides a good
analysis for cache performance across multiple caching policies.

Out of the 30 available benchmarks, 29 were chosen for analysis.
jacobi-1d is excluded due to the small data size and zero miss
ratio when run on the four input con!gurations (two input data
sizes and two cache sizes). The input array contains 120 and 400
single-precision "oating-point elements for small and medium,
respectively. All input combinations resulted in a 0% miss ratio
as the entire array !ts inside the cache and remains present after
initialization.

The 29 benchmarks can be categorized into single- and multi-
scope. Each of the 16 single-scope benchmarks consists of kernel
code that has a single loop nest. The 13 multi-scope benchmarks
contain two or more distinct loop nests back-to-back.

4 RESULTS AND ANALYSIS
Prior work, such as CLAM [16], demonstrated the feasibility and
correctness of using CARL-assigned leases in !xed-size caches, but
did not systematically compare lease cache performance to the opti-
mal policy (OPT). In this work, we close that gap by systematically
evaluating lease cache performance under a range of practical !xed-
size conditions, directly comparing it to both PLRU and the OPT
baseline. We examine the e#ects of input size, cache size, and scope
granularity in lease assignment. We want to clarify both the poten-
tial and the limits of lease-based cache management in practical
scenarios. Throughout this section, we !rst quantify overall perfor-
mance using a normalized score, then examine how loop structure
and phase granularity impact e#ectiveness, and !nally assess the
robustness of lease policies under practical resource tightening.

4.1 Performance Scores
To evaluate the lease cache performance, we compute a score to
quantify how much closer it is to OPT compared to PLRU.

Let mr𝐿𝑀𝑁𝑂𝑃𝑄 (𝐿) be the miss ratio at cache size 𝐿 for one of the
three caching policies: lease programming, PLRU, and OPT. The
score for lease cache performance is

Score =
100(mr𝑅𝑆𝑇𝑈 (𝐿) →mr𝑆𝑉𝑊𝑋𝑉 (𝐿))

mr𝑅𝑆𝑇𝑈 (𝐿) →mr𝑌𝐿𝑍 (𝐿)

The score is at most 100, which means that the performance has
reached the theoretical optimum. A positive score means an im-
provement over PLRU. The formula is symmetric with respect to
hit or miss ratios; substituting hit ratios yields the same value. It
is intuitive to visualize the score of hit ratios. Imagine that a score
marks the position on a vertical ruler where the PLRU hit ratio is
the baseline or the zero mark, and the OPT hit ratio is the top line
or the 100 mark.

We score the test programs on two input sizes (small, medium)
and two cache sizes (64 lines and 128 lines). Table 4 shows the
arithmetic average in these four cases.

On average, scores are over 60. For small input, the average score
improves from 61 to 76 as the cache size increases. For the medium
input, the score is e#ectively unchanged, 65 for the 64-block cache
and 66 for the 128-block cache. This trend re"ects the fact that
smaller working sets !t better in larger caches, leaving less room
for further improvement from better caching policies.

To further illuminate the sources of variation, we analyze the
impact of program scope granularity. A test program is either single-
scope or multi-scope. Table 2 shows a statistical summary of the
scores for these two groups for the medium size input and for
two cache sizes. Multi-scope programs have clearly higher and
more stable scores: means of 85 or higher, with standard deviations
around 10, compared to means near 50 and standard deviations
around 64 for single-scope. In comparison, single-scope programs
have extreme min/max values, from -181.61 to 99.99. In addition,
128-line cache sees higher multi-scope program scores, with a mean
of 87 vs. 83 for 64-line.

Table 3 extends the comparison across input sizes. Multi-scope
“superiority” holds for both small (mean 84 in multi vs 56 in single)
and medium inputs (85 vs 50). Multi-scope “stability” also holds,
as shown by the low std deviation. Combining the e#ect of both
inputs, the medium input scores have greater variability than small
input scores, with a higher std deviation, 51 vs 39. This is somewhat
surprising, since small inputs are more sensitive to cold starts and
other initialization or !nalization e#ects.

Combining the results from both tables, multi-scope lease pro-
gramming consistently scores 30–35% higher and is 5x more stable
than single-scope, regardless of input or cache size. On both cache
sizes, the median score is over 85 for medium input but 66 or lower
for small input. The min score is 47.

We show individual scores in Appendix A and miss ratio results
in Appendix B and may refer to them in the following discussion
about individual tests.

4.2 Impact of Loop Nest Shape on Lease Cache
E!ectiveness

To better understand these variations, we next examine how loop
nest shape in"uences lease cache performance. A key di#erentiator
is the geometric structure of loop nests that also plays a direct and
signi!cant role in the e#ectiveness of lease cache optimization.

Triangular vs. Rectangular LoopNests. A consistent pattern emerges
across our benchmarks: lease cache provides less improvement for
codes with triangular loop nests—those in which inner loop bounds
depend on the index of an outer loop variable (e.g., for 𝑀 = 0 to 𝑁 ,
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Score Arithmetic means for two inputs and two cache 
sizes – How close are we to optimum (OPT)

ØObservations:
◦ On average, scores are over 60
◦ For small input, the average score improves from 61 to 76 as the cache size increases
◦ For the medium input, the score is effectively unchanged, 65 for the 64-block cache and 66 

for the 128-block cache 
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Inputs Cache Size Scope mean std min 25% 50% 75% max

medium Both Sizes Single 49.85 63.88 -181.61 46.86 65.22 87.38 99.99
medium 64 Single 49.99 63.23 -103.99 48.87 63.82 93.89 99.99
medium 128 Single 49.71 66.61 -181.61 46.85 66.37 79.35 99.47
medium Both Sizes Multi 85.07 10.68 56.78 83.76 88.29 91.88 99.47
medium 64 Multi 83.37 12.98 56.78 79.09 84.64 92.45 99.47
medium 128 Multi 86.77 7.94 68.78 85.92 89.90 91.50 93.63

Table 2: Statistical summary of scores for single- and multi-scope tests for medium input

Inputs Cache Size Scope mean std min 25% 50% 75% max

small Both Sizes Both 68.46 38.52 -163.16 58.04 79.93 87.67 99.72
small Both Sizes Single 56.12 47.74 -163.16 45.52 66.45 81.43 99.72
small Both Sizes Multi 83.63 11.06 46.79 77.74 85.30 90.32 98.54
medium Both Sizes Both 65.64 50.81 -181.61 60.77 81.32 91.30 99.99
medium Both Sizes Single 49.85 63.88 -181.61 46.86 65.22 87.38 99.99
medium Both Sizes Multi 85.07 10.68 56.78 83.76 88.29 91.88 99.47

Table 3: Statistical summary of scores for small and medium inputs for both cache sizes

performance scores 64 cache lines 128 cache lines mean
small input 61.43 75.48 68.46
medium input 64.96 66.32 65.64
mean 63.20 70.90 67.05

Table 4: Arithmetic means for two inputs and two cache sizes

for 𝐿 = 0 to 𝑀). In contrast, programs with rectangular or other non-
triangular loop nests (where loop bounds are independent) achieve
much higher cache performance gains or high scores under lease-
based management. Table 6 classi!es the PolyBench programs used
in our study according to whether they exhibit triangular or rectan-
gular loop nests. Table 5 then summarizes the statistical distribution
of lease cache performance scores for each group.

Lease cache achieves a mean improvement above 80% for non-
triangular loop nests, with low variance. However, for triangular
loop nests, not only is the mean lower (often below 50%), but the
variance is much higher. This trend is consistent across input and
cache sizes.

Since the loop nest iteration space “shrinks” along one dimension
in triangular loops, the number of memory accesses per inner loop
iteration decreases as the outer loop index increases. This leads to a
much wider and more uneven distribution of reuse intervals across
the execution. Some references are reused very soon, while others
experience much longer gaps between uses, especially near the end
of the triangular region. As a result, the RI histogram becomes more
spread out, and lease assignment based on average statistics may be
less e"ective, leading to bigger performance variability compared
to regular, rectangular iteration spaces.

4.3 Miss Ratio Breakdown by Scope Assignment
We now examine detailed miss ratio results for lease assignment
under two scope granularities: single-scope (CLAM) and multi-
scope (SHEL).

4.3.1 Single-Scope Assignment (CLAM). Figure 2 shows the miss
ratios for the 16 single-scope PolyBench benchmarks (medium
input, 128-line cache). Overall, CLAM narrows the gap between
PLRU and OPT, but the degree of improvement is variable across
benchmarks.

For each benchmark, we compare three policies:
• PLRU: pseudo-LRU hardware replacement policy,
• Lease (CLAM): compiler-assigned single-scope leases,
• OPT: Belady’s theoretical minimum miss policy.

Figure 2: Miss ratio comparison for PolyBench single-scope
benchmarks (medium input, 128-line cache). Programs are
sorted by the Lease–OPT gap.

At the high end, programs such as doitgen, syrk, and symm

show clear reductions in miss ratio: CLAM achieves up to 84%
fewer misses compared to PLRU, consistently moving performance
closer to OPT.
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number of accesses. This procedure is repeated for each cache size
of interest to generate the complete OPT miss ratio curve.

OPT Caching Rationale. The OPT policy provides the absolute
best miss ratio possible for any cache replacement strategy in a
!xed available cache size setup, assuming perfect knowledge of the
future. Any practical cachemanagement policy—whether hardware-
based (PLRU), software-based (Lease Cache), or hybrid—will have
a miss ratio that is at least as high as OPT for the same trace and
cache size. By comparing Lease Cache and PLRU against the OPT
baseline, we can quantify the gap between realistic, programmable,
and theoretical caching strategies.

3.3 PolyBench Suite
The PolyBench/C 4.2.1 [14] suite contains 30 scienti!c computing
workloads. The kernels span a range of domains, including linear al-
gebra, image processing, physics simulation, statistics, and dynamic
programming. This wide variety of kernel choices provides a good
analysis for cache performance across multiple caching policies.

Out of the 30 available benchmarks, 29 were chosen for analysis.
jacobi-1d is excluded due to the small data size and zero miss
ratio when run on the four input con!gurations (two input data
sizes and two cache sizes). The input array contains 120 and 400
single-precision "oating-point elements for small and medium,
respectively. All input combinations resulted in a 0% miss ratio
as the entire array !ts inside the cache and remains present after
initialization.

The 29 benchmarks can be categorized into single- and multi-
scope. Each of the 16 single-scope benchmarks consists of kernel
code that has a single loop nest. The 13 multi-scope benchmarks
contain two or more distinct loop nests back-to-back.

4 RESULTS AND ANALYSIS
Prior work, such as CLAM [16], demonstrated the feasibility and
correctness of using CARL-assigned leases in !xed-size caches, but
did not systematically compare lease cache performance to the opti-
mal policy (OPT). In this work, we close that gap by systematically
evaluating lease cache performance under a range of practical !xed-
size conditions, directly comparing it to both PLRU and the OPT
baseline. We examine the e#ects of input size, cache size, and scope
granularity in lease assignment. We want to clarify both the poten-
tial and the limits of lease-based cache management in practical
scenarios. Throughout this section, we !rst quantify overall perfor-
mance using a normalized score, then examine how loop structure
and phase granularity impact e#ectiveness, and !nally assess the
robustness of lease policies under practical resource tightening.

4.1 Performance Scores
To evaluate the lease cache performance, we compute a score to
quantify how much closer it is to OPT compared to PLRU.

Let mr𝐿𝑀𝑁𝑂𝑃𝑄 (𝐿) be the miss ratio at cache size 𝐿 for one of the
three caching policies: lease programming, PLRU, and OPT. The
score for lease cache performance is

Score =
100(mr𝑅𝑆𝑇𝑈 (𝐿) →mr𝑆𝑉𝑊𝑋𝑉 (𝐿))

mr𝑅𝑆𝑇𝑈 (𝐿) →mr𝑌𝐿𝑍 (𝐿)

The score is at most 100, which means that the performance has
reached the theoretical optimum. A positive score means an im-
provement over PLRU. The formula is symmetric with respect to
hit or miss ratios; substituting hit ratios yields the same value. It
is intuitive to visualize the score of hit ratios. Imagine that a score
marks the position on a vertical ruler where the PLRU hit ratio is
the baseline or the zero mark, and the OPT hit ratio is the top line
or the 100 mark.

We score the test programs on two input sizes (small, medium)
and two cache sizes (64 lines and 128 lines). Table 4 shows the
arithmetic average in these four cases.

On average, scores are over 60. For small input, the average score
improves from 61 to 76 as the cache size increases. For the medium
input, the score is e#ectively unchanged, 65 for the 64-block cache
and 66 for the 128-block cache. This trend re"ects the fact that
smaller working sets !t better in larger caches, leaving less room
for further improvement from better caching policies.

To further illuminate the sources of variation, we analyze the
impact of program scope granularity. A test program is either single-
scope or multi-scope. Table 2 shows a statistical summary of the
scores for these two groups for the medium size input and for
two cache sizes. Multi-scope programs have clearly higher and
more stable scores: means of 85 or higher, with standard deviations
around 10, compared to means near 50 and standard deviations
around 64 for single-scope. In comparison, single-scope programs
have extreme min/max values, from -181.61 to 99.99. In addition,
128-line cache sees higher multi-scope program scores, with a mean
of 87 vs. 83 for 64-line.

Table 3 extends the comparison across input sizes. Multi-scope
“superiority” holds for both small (mean 84 in multi vs 56 in single)
and medium inputs (85 vs 50). Multi-scope “stability” also holds,
as shown by the low std deviation. Combining the e#ect of both
inputs, the medium input scores have greater variability than small
input scores, with a higher std deviation, 51 vs 39. This is somewhat
surprising, since small inputs are more sensitive to cold starts and
other initialization or !nalization e#ects.

Combining the results from both tables, multi-scope lease pro-
gramming consistently scores 30–35% higher and is 5x more stable
than single-scope, regardless of input or cache size. On both cache
sizes, the median score is over 85 for medium input but 66 or lower
for small input. The min score is 47.

We show individual scores in Appendix A and miss ratio results
in Appendix B and may refer to them in the following discussion
about individual tests.

4.2 Impact of Loop Nest Shape on Lease Cache
E!ectiveness

To better understand these variations, we next examine how loop
nest shape in"uences lease cache performance. A key di#erentiator
is the geometric structure of loop nests that also plays a direct and
signi!cant role in the e#ectiveness of lease cache optimization.

Triangular vs. Rectangular LoopNests. A consistent pattern emerges
across our benchmarks: lease cache provides less improvement for
codes with triangular loop nests—those in which inner loop bounds
depend on the index of an outer loop variable (e.g., for 𝑀 = 0 to 𝑁 ,
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Impact of Loop Nest Shape on Lease Cache Effectiveness

ØMean improvement above 80% for non-triangular 
loop nests, with low variance

ØHowever, for triangular loop nests, not only is the 
mean lower (often below 50%), but the variance is 
much higher

ØThis trend is consistent across input and cache sizes
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Inputs Cache Size Iteration Space mean std min 25% 50% 75% max

Both Inputs Both Sizes Triangular 48.52 59.45 -181.61 45.96 67.74 79.53 97.43
small 64 Triangular 42.80 65.65 -163.16 43.07 71.42 74.39 79.11
small 128 Triangular 73.02 27.43 0.00 76.46 83.29 87.72 97.43
medium 64 Triangular 36.10 63.41 -103.99 43.47 58.70 66.70 84.64
medium 128 Triangular 42.16 70.98 -181.61 47.99 63.74 70.75 88.30
Both Inputs Both Sizes Rectangular 82.10 17.54 22.92 77.20 87.81 93.20 99.99
small 64 Rectangular 76.56 20.28 22.92 70.81 82.33 89.84 99.72
small 128 Rectangular 77.48 20.75 25.00 65.68 85.29 90.40 98.54
medium 64 Rectangular 88.40 11.85 60.71 82.44 92.82 96.82 99.99
medium 128 Rectangular 85.95 14.01 39.05 85.79 90.08 92.16 99.47
Table 5: Statistical summary of scores for rectangular and triangular loop nest programs

Rectangular Triangular
2mm cholesky
3mm correlation
adi covariance
atax durbin
bicg gramschmidt
deriche lu
doitgen ludcmp
fdtd-2d nussinov
!oyd-warshall symm
gemm syr2k
gemver syrk
gesummv trisolv
heat-3d trmm
jacobi-2d
mvt
seidel-2d

Table 6: PolyBench benchmarks classi!ed by loop nest shape.

A second category consists of benchmarks where PLRU, CLAM,
and OPT curves nearly overlap. Here, the absolute miss ratios are
very small, so even minute di"erences in miss counts can translate
into disproportionately large variation in normalized scores. For
example, several kernels show CLAM within < 0.005 miss ratio
of PLRU, yet still receive volatile scores because of the normaliza-
tion formula. Despite this, CLAM generally provides a small but
consistent advantage in raw miss count.

The only benchmark where CLAM produces a negative score is
trisolv. In this case, the PLRUmiss ratio is 0.012813, CLAM’s miss
ratio is slightly higher at 0.013094, while OPT achieves 0.012536.
Although this results in a poor normalized score, the raw di"erence
is just 0.000281 in miss ratio. Given a total trace length of 419,035
memory accesses (medium input), this corresponds to only 118
additional misses. Thus, while CLAM technically underperforms
PLRU in this isolated case, the absolute impact on execution is
negligible.

4.3.2 Multi-Scope Assignment (SHEL). Figure 3 shows the corre-
sponding results for 13 multi-scope benchmarks using SHEL instead
of CLAM. Here, the lease table is reloaded at the start of each scope,

allowing leases to adapt across di"erent program phases. We again
compare PLRU, SHEL, and OPT.

Benchmarks are sorted in descending order of the lease result–
OPT gap, so the leftmost bars represent programs where lease
caching leaves the most room for improvement.

Figure 3: Miss ratio comparison for PolyBench benchmarks
(medium input, multi-scope lease, cache size 128). Programs
are sorted by the gap between the Lease result and OPT

Across multi-scope benchmarks, the lease cache policy consis-
tently narrows the gap between PLRU and OPT, yielding substan-
tial reductions in miss ratio. For instance, in ludcmp, 2mm, and
covariance. In contrast, for benchmarks with high temporal lo-
cality or highly predictable access patterns (e.g., gemver, adi), all
policies perform similarly and closely track the OPT baseline, as
the room for improvement is inherently limited. SHEL adapts more
e"ectively to phase changes and yields a smoother miss pro#le
than CLAM. Overall, multi-scope adaptation improves both the
mean score and stability, with fewer extreme outliers than in the
single-scope case.

For completeness, the full set of miss ratio results for all Poly-
Bench benchmarks—across both input sizes and cache sizes—is
provided in the appendix. In these four summary plots (Figure 9,
Figure 10, Figure 11, Figure 12), both single-scope and multi-scope
programs are displayed together, with di"erent colors used to dis-
tinguish the scope assignment of each benchmark.
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Inputs Cache Size Iteration Space mean std min 25% 50% 75% max

Both Inputs Both Sizes Triangular 48.52 59.45 -181.61 45.96 67.74 79.53 97.43
small 64 Triangular 42.80 65.65 -163.16 43.07 71.42 74.39 79.11
small 128 Triangular 73.02 27.43 0.00 76.46 83.29 87.72 97.43
medium 64 Triangular 36.10 63.41 -103.99 43.47 58.70 66.70 84.64
medium 128 Triangular 42.16 70.98 -181.61 47.99 63.74 70.75 88.30
Both Inputs Both Sizes Rectangular 82.10 17.54 22.92 77.20 87.81 93.20 99.99
small 64 Rectangular 76.56 20.28 22.92 70.81 82.33 89.84 99.72
small 128 Rectangular 77.48 20.75 25.00 65.68 85.29 90.40 98.54
medium 64 Rectangular 88.40 11.85 60.71 82.44 92.82 96.82 99.99
medium 128 Rectangular 85.95 14.01 39.05 85.79 90.08 92.16 99.47
Table 5: Statistical summary of scores for rectangular and triangular loop nest programs

Rectangular Triangular
2mm cholesky
3mm correlation
adi covariance
atax durbin
bicg gramschmidt
deriche lu
doitgen ludcmp
fdtd-2d nussinov
!oyd-warshall symm
gemm syr2k
gemver syrk
gesummv trisolv
heat-3d trmm
jacobi-2d
mvt
seidel-2d

Table 6: PolyBench benchmarks classi!ed by loop nest shape.
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ØTriangular loop nest: inner loop bounds 
depend on the index of an outer loop variable 
(e.g., for i=0 to N, for j=0 to i)

ØRectangular or non-triangular: loop bounds 
are independent 



Miss Ratio Breakdown by Scope Assignment
Single-Scope Assignment – CLAM

ØMiss ratio comparison 
for PolyBench single-
scope benchmarks 
(medium input, 128-
line cache)

ØPrograms are sorted 
by the Lease--OPT gap
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Miss Ratio Breakdown by Scope Assignment
Multi-Scope Assignment – SHEL

ØMiss ratio 
comparison for 
PolyBench 
benchmarks (medium 
input, multi-scope 
lease, cache size 128)

ØPrograms are sorted 
by the Lease--OPT gap
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Strengths of Lease Cache
ØLease programming demonstrates its greatest 
benefit on programs with:

◦ Frequent, regular reuse: Where compiler or profile-
based analysis can assign leases that tightly match 
reuse intervals (e.g., matrix multiplication kernels)

◦ Multi-phase locality: Multi-scope lease assignment 
(SHEL) adapts leases across different program phases, 
overcoming limitations seen with both hardware 
policies (PLRU) and single-scope lease assignment 
(CLAM)

ØExample: Sliding window miss counts for 3mm 
(cache size 128, window overlap 25%)

◦ Distinct steady phases are visible, reflecting strong 
alignment between lease scopes and true locality 
phases
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Limitations of Lease Cache
ØExample: Sliding window miss counts for ludcmp 
(cache size 128, window overlap 25%)

◦ More variable and irregular locality limits the 
effectiveness of even multi-scope lease assignment, but 
SHEL still outperforms CLAM and PLRU

◦ Even advanced techniques like SHEL, which assigns leases 
per program phase, can struggle because static scope 
boundaries may not align with the true, fine-grained 
changes in locality

ØA key fundamental limitation is that OPT leverages 
perfect knowledge of the entire future access trace

◦ For example, OPT knows precisely when each cache block 
will be accessed next, or if it will never be accessed again

◦ In contrast, lease cache must assign leases based on past 
or predicted behavior, without knowing the precise 
position of the last access
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Lease Cache RationingØConsiders the robustness of lease cache 
under resource under-allocation, a key 
practical concern in shared systems
ØObservations: 

◦ Rationing is safe and may be beneficial
◦ Insensitivity near the optimum
◦ Implications for multi-programmed environments

◦ These findings support the strategy of conservative lease 
assignment in environments with uncertain or fluctuating 
cache availability

◦ By under-reporting the cache size during lease table generation, 
programs can guard against transient cache pressure due to 
other workloads or system events, without significant risk of 
performance loss

ØGraph: Geometric mean miss ratio across 
PolyBench benchmarks vs. rationed block 
count (actual cache: 128 blocks); Miss ratio is 
minimized with a slight under-allocation, and 
remains flat near the ground truth.
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Conclusions and Acknowledgements
ØLease-based cache programming closes 
much of the gap to OPT, especially for 
programs with regular structure and multi-
phase locality

ØHowever, more space for improvement 
remains necessary for irregular or triangular 
access patterns

ØAdditionally, lease cache rationing is robust 
to resource under-allocation, making it 
practical in shared environments
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