TriPIM: Exact Triangle Counting on
UPMEM Processing-in-Memory for
Graph Analytics

Morteza Baradaran, Khyati Kiyawat, Akhil Shekar,
Abdullah T. Mughrabi, Kevin Skadron

Email: morteza@virginia.edu

== [UNIVERSITY
SllE "7VIRGINIA MEMSYS 2025 (=]

Introduction (Overview)

* Triangle counting
» Counting the triangles (three mutually connected vertices) in a graph.
* Acritical task in graph analytics applications such as social network analysis, link
recommendation and emerging Al workloads (like GNNs, structural reasoning in LLMSs).
« Existing implementations on CPUs and GPUs
« Struggle with memory efficiency and scalability limitations for large-scale graphs.

* To overcome these limitations: we propose TriPIM, which integrates
* Binary search intersection
« faster triangle counting
» Load-balanced partitioning of graphs
» Extensible to significantly larger graphs
« Uses a real-world Processing-In-Memory (PIM) DRAM technology
* Minimizing data movement and accelerating computations directly within memory.

Introduction (Triangle Counting)

« Example (naive intersection, O(n3)):
 A(u) and B (v) are connected
* NeighborList (A) = {B, D}

« NeighborList (B) = {A, D} F e e,
* NeighborList (A) Nn NeighborList (B) = {D} Naive intersection TC:
« Count 1 triangle ' Graph g

 for u < 0 to g.num nodes() - 1
foreach v in g.outNeigh(u)
it — g.outNeigh(v).begin() ;
foreach w in g.outNeigh(u)
while it <w
it + +
if w== %t then
total + + ; /[Triangle found

 Redundancy Issue: The triangle ABD is
counted multiple times (once for A, once for
B, and once for D) and also for each edge it
Is counted twice.
 We should divide the total result by 6.

Problem Statement

i n=number of vertices
' m= number of edges
. d=degree of a vertex

Triangle counting in large graphs presents two significant challenges:

1- Runtime Complexity
+ Naive approach: 3 nested for loops (O(n®))

» Ordered intersection, as in GAPBS [3]
» Sorting vertices
* Performing ordered intersections of neighbor
. O(m3?)
» Binary Search method for intersection, as in TriCORE [1]
» Sorting neighbor lists
» For neighbor lists of nodes v and v
» Suppose g.outNeigh(u) < g.outNeigh(v)
* Look up each node of g.outNeigh(u) in g.outNeigh(v)
using binary search
« Complexity of intersection: O(log(d))

. Ordered intersection TC:

' Graph g

, for u — 0 to g.num nodes() - 1
i foreach v in g.outNeigh(u)

' if v>uthen break ;

it — g.outNeigh(v).begin() ;
E foreach w in g.outNeigh(u)
! if w > v then break ;

while *it <w
[t + +
if w ==t then
total + + ; // Triangle found

Problem Statement

Triangle counting in large graphs presents two significant challenges:
2- Data Movement (For PIM)

» TriCORE: Evenly distributes the computational load across multiple GPU cores
« Maximizing the utilization of GPU parallel processing capabilities
+ Dividing the graph based on vertex ranges
» Balancing the number of edges across partitions
« Can handle edge data transfers efficiently via stream buffers
* PIM technologies require data to remain fixed in memory
 Least data movement between banks (no inter-DPU communications in UPMEM)

» We used TRUST [4] technique
* An extension to TriCORE
» Mitigates memory overhead by using a vertex-ordered balanced hash-based partitioning
« Extra memory resources for building hash maps for each intersect operation.

Background - UPMEM

» Standard DDR4-2400 DIMM containing several PIM chips.

 Each UPMEM PIM chip has 8 DPUs, each with

* 64-MB Main memory (MRAM)
« 24-KB Instruction RAM (IRAM)
* 64-KB Working RAM (WRAM)
* The host CPU can access MRAM to transfer input data and retrieve results.

* No inter-DPU communication — only via the host CPU

PIM Chip

P S\
Main Memor, e
- 14 /] Control/Status Interface <—>[DDR4 Interface]
\\ /
S — / A ==
chip || chip || chip || chip || chip || chip || chip || chip // ”ﬂ' = \\\\
) IDRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM) 4 G _\\\
chip || chip || chip || chip || chip || chip || chip |_DISPATCH
4% Chrc e 24°KB |
/ (—FeTcH3 IRAM]
READOPL 9 £ 64-MB
- READOP2 » O
[CREADOP3 gl 5 DRAM
FORMAT < Bank
Al
A 64-KB z (FIRAH)
o WRAM ny
MERGEL _55?;
PIM-enabled Memory — — P %8)

[Gomez-Luna, et. al "Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System,"]

TriPIM

* TriPIM is an approach that combines
» Load-balanced hash-based graph partitioning (inspired by TRUST)

» Ensures each partition has an approximately equal number of vertices

» The vertices are labeled according to their degrees to facilitate load balancing
 Binary search intersection technique (inspired by TriCORE)
« Parallelizing the triangle counting using a real-world PIM, UPMEM [2]
* Triangle counting in TriPIM happens in two steps:
* Local Triangle Counting: Counting triangles within individual partitions (intra-DPUSs)

* Cross-Partition Triangle Counting: Counts triangles that span multiple partitions
(inter-DPUs), which are not captured by local counting alone.

TriPIM

* TriPIM Steps
1- Partitioning the graph
2- Transfer partitions to DPUs
3- Local (intra-DPU) Triangle Counting
4- Cross-Partition (inter-DPU)Triangle Counting
5- Collecting the Triangle Count

0)
V9P, | P || P | Pro

Red= High degree nodes
Blue = Low degree nodes

Local Triangle Counting
= = = Cross-partition Triangle Counting

Methodology

CPU Baseline:

The GAP Benchmark Suite

GPU Baseline:
TriCORE

Graph Datasets: Synthetic graph datasets
generated using GAPBS

Kronecker [5]: replicates many real-world
network properties

Urand [6]: worst-case scenario for locality,
as every vertex has an equal probability of
being a neighbor to every other vertex

GPU

Model NVIDIA A40
CUDA Cores 10752
Boost Clock Speed 1.74 GHz
Memory 48 GB GDDRé6
Memory Bandwidth 696 GBs~1

PIM Configuration
Model UPMEM PIM
DPUs 2549 used / 2560 total
DPU Frequency 350 MHz
Memory per DPU 64 MB
Total Memory 160 GB
DIMMs 20
Memory Bandwidth 1000 GB s ™1

Host CPU

Model||Cores|| Threads Intel Xeon Silver 421616 |32
Clock Speed 2.10 GHz
Memory 256 GB
oS Ubuntu 22.04 LTS

L1||L2||L3 Cache

512kB (8-way)|| 16 MB (16-way)|| 22 MB (11-way)

Graph #Vertices #Edges Degree Size (MB) Triangle Count
Kron_13_20 8,191 246,888 20 1 1,744,952
Kron_16_18 65,536 2,026,386 18 8 19,672,632
Kron_18_17 262,143 8,057,720 17 32 93,521,523
Urand_13_16 8,192 261,556 16 1 5,559
Urand_16_16 65,536 1,965,534 16 8 4,467
Urand_17_32 131,072 8,386,472 32 32 43,363

Results

e TriPIM Binary Search vs. Base

» Base approach: Compares elements
of 1-hop and 2-hop adjacency lists;
counts a triangle when elements
match.

» Binary Search Approach: Inserts the
longer adjacency list into a binary
search tree; probes with elements
from the shorter list.

 Binary search achieves speedup of

« 7.3X on average across all datasets
« Uptoab51Xinthe Kron 16 18

Time (s)

Il TriPIM_Base

= TriPIM_BS

Results

*Scalability (small graphs):
* As the number of DPUs increases,

execution time decreases 10°;
* Exponential from 1 to 8 DPUs 1021

* Low DPU count = less parallelism,

. — 14
longer runtimes. @,
]
 Each DPU handles more work, E 100
increasing runtime
i ; .- 107L
* high DPU counts are crucial to maintain
TriPIM performance. 102

Kron_13_20
Kron_16_18
Kron_18_17
Urand_13 16
Urand_16_16
Urand_17_32
B

500

1000 1500
DPU Count

2000 2500

Results

e X-axis: factor by which base graph size is multiplied

e Measured only triangle counting kernel time (excluded setup, loading, and result collection).

B TriPIM @Bl GAP I TriCORE

Kron_13_20 Kron_16_18 Kron_18_17
10000 10000 10000
& 1000 = 1000 & 1000
100 o =} 100 o o 100 o o
= > o | S > M > 2
E £ 4 | E £ 4 | £ £ £
S] 1 | E @ i | F]]
5 10 = = S 10 = = S 10 = =
o 1 - - o 1 - - O 1 - -
2 3 H | 2 3 e | 2 3 3
“o0a Y01 Y01
0.01 0.01 0.01
32 128 512 1024 2048/2549 32 128 512 1024 2048/2549 128 512 1024 2048/2549
Urand_13_16 Urand_16_16 Urand_17_32
10000 10000 10000
= 1000 = 1000 - 1000
2 100 E E 2 100 E E 2 100 g E E
£ E i | £ E 4 | £ £ £ E
= @ 1 | F @ 1 | F @ @ @
S 10 = = S 10 = = oS 10 = = =
E] s | 5 s sl s s s
9 1 = - 9 1 e - o 1 - - =
3 3 3 ‘,1(' 3 3 13 3 3 3
it o © M <) © M o o (5}

32 128 512 1024 2048/2549 : 32 128 512 1024 2048/2549 : 512 1024 2048/2549

Results

e TriCORE fastest on small graphs (Size*32, *128) but fails beyond GPU memory limits.
e GAP > TriPIM for small graphs (better cache + higher CPU freq).

B TriPIM @Bl GAP I TriCORE

Kron_13_20 Kron_16_18 Kron_18_17
10000 10000 10000
& 1000 = 1000 & 1000
g 100 E E g 100 E E g 100 E E
£ E £ = E £ E = E
b 7]] e] 7]] 7]
s 10 = S | 10 = = IR = =
E] s = | 3 s c s k)
o 1 - - o 1 - - O 1 - -
2 3 H | 2 3 e | 2 3 3
“o0a Y01 Y01
0.01 0.01 0.01
32 128 512 1024 2048/2549 32 128 512 1024 2048/2549 128 512 1024 2048/2549
Urand_13_16 Urand_16_16 Urand_17_32
10000 10000 10000
= 1000 = 1000 - 1000
g 100 E E g 100 E E g 100 § E E
E E E E E £ E E E E
7] [} [}] [}] [}
5 10 = = S 10 = = s 10 = = =
i ™ RE sl SEE s Gl &
9 1 = - 9 1 e - o 1 - - =
) 3 3 ‘,1(' 3 3 13 3 3 3
w o o w o o w (=] (=] o

32 128 512 1024 2048/2549 : 32 128 512 1024 2048/2549 : 512 1024 2048/2549

Results

e TriPIM constant runtime as graphs grow
o CPUs suffer from cache misses
o GPUs hit memory limits.

B TriPIM @Bl GAP I TriCORE

Kron_13_20 Kron_16_18 Kron_18_17
10000 10000 10000
& 1000 & 1000 & 1000
2 100 E E 2 100 E E 2 100 E E
E £ 4 | E £ 4 | £ £ £
E @ o = @ [| F @ @
s 10 = S |5 10 = = BRI = =
=1 e T =] - — b= T -
- A CIEE e - N i
& 3] | & 3 | & 3 3
0.1 0.1 0.1
0.01 0.01 0.01
32 128 512 1024 2048/2549 32 128 512 1024 2048/2549 128 512 1024 2048/2549
Urand_13_16 Urand_16_16 Urand_17_32
10000 10000 10000
- 1000 ~ 1000 - 1000
2 100 E E 2 100 E E 2 100 g E E
5 E 4 | E £ £ S z E E
= @ 1 | F @ i | F @ @ @
s 10 = 4 |5 10 = S (s 10 = = =
E s sl s il | 3 s s s
9 1 = - 9 1 e - o 1 - - =
X 3 H |z 3] |z 3 3 3
¥ o Y0 ol Y
0.01 0.01 0.01

32 128 512 1024 2048/2549 : 32 128 512 1024 2048/2549 : 512 1024 2048/2549

Results

e TriPIM constant runtime as graphs grow
o CPUs suffer from cache misses
o GPUs hit memory limits.

B TriPIM @Bl GAP I TriCORE

Kron_13_20 Kron_16_18 Kron_18_17
10000 10000 10000

1000

—

o

S
=
o
S

100

ut of Memory
xecution Time (s)
xecution Time (s)

._.
o

Out of Memory

Out of Memory

(=
=

xecution Time (s)
=
- o
Out of Memory

-
(=]

Out of Memory

Out of Memory

o

TriPIM surpasses GAP at large scales and processes

graphs beyond GPU memory capacity

1

100
10 10

1 1

Execution Time

Out of Memor
Out of Memor
Execution Time

Out of Memo

Out of Memor
Execution Time
Out of Memor
Out of Memor
Out of Memor

0.1 0.1

0.01 0.01
128 512 1024 2048/2549 32 128 512 1024 2048/2549 32 128 512 1024 2048/2549

Conclusions

* Triangle counting is vital for graph analytics in social networks and Al,
but CPU/GPU methods struggle to scale due to cache inefficiency and
limited memory.

* TriPIM integrates TriCORE’s binary search algorithm with UPMEM PIM
to overcome these scalability barriers.

* Minimizes data movement, leverages thousands of DPUs, and keeps
runtime nearly constant as graphs grow.

* QOutperforms CPU/GPU on very large graphs and processes datasets
beyond GPU memory capacity, though less effective on small graphs
due to lower DPU frequency.

Future Directions

« Employing other intersection methods for the 1-hop and 2-hop intersection

 Using other graph partitioning methods such as bbTC to distributing nodes
iIn @ more balanced way to DPUs

» Explore tradeoffs under cost and power constraints.

 Evaluate TriPIM on other emerging PIM architectures to identify the most
beneficial features for triangle counting.

» Explore the generalization of this approach to other applications, i.e., other
graph algorithms.

* Investigate further optimizations for handling small graphs more efficiently
within the PIM architecture.

» Experimenting with real-world graphs, such as Twitter

References

[1] Y. Hu, H. Liu, and H. Huang, "TriCORE: Parallel Triangle Counting on GPUs,” SC18:
International Conference for High-Performance Computing, Networking, Storage and Analysis,
2018, pp. 171-182.

[2] UPMEM. (2020). UPMEM Website. [Online]. Available: https://www.upmem.com

[3] S. Beamer, K. Asanovic and D. A. Patterson, "The GAP benchmark suite,” arXiv:1508.03619,
August 2015.

[4] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie, C. Ding, D. Li, H. Liu,
"TRUST: Triangle Counting Reloaded on GPUs ,” arXiv:2103.08053.

[5] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and Z. Ghahramani, "Kronecker
Graphs: An Approach to Modeling Networks,” Journal of Machine Learning Research, vol. 11,
pp. 985-1042, 2010.

[6] P. Erdos and A. R “ enyi, "On Random Graphs |,” Publicationes Mathematicae, vol. 6, pp.
290-297, 1959.

https://www.upmem.com/

GitHub

