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Introduction (Overview)
• Triangle counting 

• Counting the triangles (three mutually connected vertices) in a graph.
• A critical task in graph analytics applications such as social network analysis, link 

recommendation and emerging AI workloads (like GNNs, structural reasoning in LLMs).

• Existing implementations on CPUs and GPUs
• Struggle with memory efficiency and scalability limitations for large-scale graphs.

• To overcome these limitations: we propose TriPIM, which integrates
• Binary search intersection

• faster triangle counting
• Load-balanced partitioning of graphs

• Extensible to significantly larger graphs
• Uses a real-world Processing-In-Memory (PIM) DRAM technology  

• Minimizing data movement and accelerating computations directly within memory.



Introduction (Triangle Counting)
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Naïve intersection TC:
Graph g 
for u ← 0 to g.num nodes() - 1
  foreach v in g.outNeigh(u)
    it ← g.outNeigh(v).begin() ;
    foreach w in g.outNeigh(u)
      while ∗it < w
        it + + 
        if w == ∗it  then
           total + + ; // Triangle found



Problem Statement
Triangle counting in large graphs presents two significant challenges: 
1- Runtime Complexity

• Naïve approach: 3 nested for loops (O(n3))
• Ordered intersection, as in GAPBS [3]

• Sorting vertices  
• Performing ordered intersections of neighbor
• O(m3/2)

• Binary Search method for intersection, as in TriCORE [1]
• Sorting neighbor lists 
• For neighbor lists of nodes u and v

• Suppose g.outNeigh(u) < g.outNeigh(v)
• Look up each node of g.outNeigh(u) in g.outNeigh(v) 

    using binary search
• Complexity of intersection: O(log(d))

n=number of vertices
m= number of edges
d=degree of a vertex

Ordered intersection TC:
Graph g 
for u ← 0 to g.num nodes() - 1
  foreach v in g.outNeigh(u)
    if v > u then break ; 
    it ← g.outNeigh(v).begin() ;
    foreach w in g.outNeigh(u)
      if w > v then break ; 
      while ∗it < w
        it + + 
        if w == ∗it  then
           total + + ; // Triangle found



Triangle counting in large graphs presents two significant challenges: 
2- Data Movement (For PIM)

• TriCORE: Evenly distributes the computational load across multiple GPU cores 
• Maximizing the utilization of GPU parallel processing capabilities 

• Dividing the graph based on vertex ranges 
• Balancing the number of edges across partitions
• Can handle edge data transfers efficiently via stream buffers 

• PIM technologies require data to remain fixed in memory
• Least data movement between banks (no inter-DPU communications in UPMEM)

• We used TRUST [4] technique
• An extension to TriCORE
• Mitigates memory overhead by using a vertex-ordered balanced hash-based partitioning
• Extra memory resources for building hash maps for each intersect operation. 

Problem Statement



Background - UPMEM
• Standard DDR4-2400 DIMM containing several PIM chips. 

• Each UPMEM PIM chip has 8 DPUs, each with 
• 64-MB Main memory (MRAM) 
• 24-KB Instruction RAM (IRAM)
• 64-KB Working RAM (WRAM)

• The host CPU can access MRAM to transfer input data and retrieve results. 
• No inter-DPU communication → only via the host CPU

[Gómez-Luna, et. al "Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System," ]



TriPIM
• TriPIM is an approach that combines

• Load-balanced hash-based graph partitioning (inspired by TRUST)
• Ensures each partition has an approximately equal number of vertices 

• The vertices are labeled according to their degrees to facilitate load balancing 

• Binary search intersection technique (inspired by TriCORE)

• Parallelizing the triangle counting using a real-world PIM, UPMEM [2]

• Triangle counting in TriPIM happens in two steps:
• Local Triangle Counting: Counting triangles within individual partitions (intra-DPUs)

• Cross-Partition Triangle Counting: Counts triangles that span multiple partitions 
(inter-DPUs), which are not captured by local counting alone.



TriPIM
• TriPIM Steps

1- Partitioning the graph
2- Transfer partitions to DPUs
3- Local (intra-DPU) Triangle Counting 
4- Cross-Partition (inter-DPU)Triangle Counting
5- Collecting the Triangle Count

v%pm

u%pn



Methodology
CPU Baseline: 

The GAP Benchmark Suite

GPU Baseline:
TriCORE

Graph Datasets: Synthetic graph datasets 
generated using GAPBS 

Kronecker [5]: replicates many real-world 
network properties

Urand [6]: worst-case scenario for locality, 
as every vertex has an equal probability of 
being a neighbor to every other vertex



Results
• TriPIM Binary Search vs. Base

• Base approach: Compares elements 
of 1-hop and 2-hop adjacency lists; 
counts a triangle when elements 
match.

• Binary Search Approach: Inserts the 
longer adjacency list into a binary 
search tree; probes with elements 
from the shorter list. 

• Binary search achieves speedup of
• 7.3X on average across all datasets 
• Up to a 51X in the Kron_16_18 



Results

•Scalability (small graphs): 
• As the number of DPUs increases, 
execution time decreases

• Exponential from 1 to 8 DPUs
• Low DPU count ⇒ less parallelism, 

longer runtimes.
• Each DPU handles more work, 

increasing runtime
* high DPU counts are crucial to maintain 
TriPIM performance.



Results
● X-axis: factor by which base graph size is multiplied 

● Measured only triangle counting kernel time (excluded setup, loading, and result collection).



Results
● TriCORE fastest on small graphs (Size*32, *128) but fails beyond GPU memory limits.

● GAP > TriPIM for small graphs (better cache + higher CPU freq).



Results
● TriPIM constant runtime as graphs grow

○ CPUs suffer from cache misses
○ GPUs hit memory limits.



Results
● TriPIM constant runtime as graphs grow

○ CPUs suffer from cache misses
○ GPUs hit memory limits.

TriPIM surpasses GAP at large scales and processes 
graphs beyond GPU memory capacity



Conclusions
• Triangle counting is vital for graph analytics in social networks and AI, 

but CPU/GPU methods struggle to scale due to cache inefficiency and 
limited memory.

• TriPIM integrates TriCORE’s binary search algorithm with UPMEM PIM 
to overcome these scalability barriers.

• Minimizes data movement, leverages thousands of DPUs, and keeps 
runtime nearly constant as graphs grow.

• Outperforms CPU/GPU on very large graphs and processes datasets 
beyond GPU memory capacity, though less effective on small graphs 
due to lower DPU frequency.



Future Directions
• Employing other intersection methods for the 1-hop and 2-hop intersection
• Using other graph partitioning methods such as bbTC to distributing nodes 

in a more balanced way to DPUs
• Explore tradeoffs under cost and power constraints.
• Evaluate TriPIM on other emerging PIM architectures to identify the most 

beneficial features for triangle counting.
• Explore the generalization of this approach to other applications, i.e., other 

graph algorithms.
• Investigate further optimizations for handling small graphs more efficiently 

within the PIM architecture.
• Experimenting with real-world graphs, such as Twitter
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