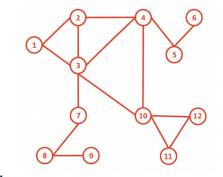
TriPIM: Exact Triangle Counting on UPMEM Processing-in-Memory for Graph Analytics

Morteza Baradaran, Khyati Kiyawat, Akhil Shekar, Abdullah T. Mughrabi, Kevin Skadron

Email: morteza@virginia.edu

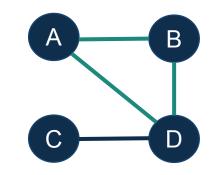
Introduction (Overview)

- Triangle counting
 - Counting the triangles (three mutually connected vertices) in a graph.
 - A critical task in graph analytics applications such as social network analysis, link recommendation and emerging Al workloads (like GNNs, structural reasoning in LLMs).
- Existing implementations on CPUs and GPUs
 - Struggle with memory efficiency and scalability limitations for large-scale graphs.
- To overcome these limitations: we propose TriPIM, which integrates
 - Binary search intersection
 - faster triangle counting
 - Load-balanced partitioning of graphs
 - Extensible to significantly larger graphs
 - Uses a real-world Processing-In-Memory (PIM) DRAM technology
 - Minimizing data movement and accelerating computations directly within memory.



Introduction (Triangle Counting)

- Example (naïve intersection, O(n³)):
 - A (u) and B (v) are connected
 - NeighborList (A) = {B, D}
 - NeighborList (B) = {A, D}
 - NeighborList (A) ∩ NeighborList (B) = {D}
 - Count 1 triangle
- Redundancy Issue: The triangle ABD is counted multiple times (once for A, once for B, and once for D) and also for each edge it is counted twice.
 - We should divide the total result by 6.



```
Naïve intersection TC:

Graph g

for u ← 0 to g.num nodes() - 1

foreach v in g.outNeigh(u)

it ← g.outNeigh(v).begin();

foreach w in g.outNeigh(u)

while *it < w

it + +

if w == *it then

total + +; // Triangle found
```

Problem Statement

n=number of vertices m= number of edges d=degree of a vertex

Triangle counting in large graphs presents two significant challenges:

1- Runtime Complexity

- Naïve approach: 3 nested for loops (O(n³))
- Ordered intersection, as in GAPBS [3]
 - Sorting vertices
 - Performing ordered intersections of neighbor
 - $O(m^{3/2})$
- Binary Search method for intersection, as in TriCORE [1]
 - Sorting neighbor lists
 - For neighbor lists of nodes u and v
 - Suppose g.outNeigh(u) < g.outNeigh(v)
 - Look up each node of g.outNeigh(u) in g.outNeigh(v) using binary search
 - Complexity of intersection: O(log(d))

```
Ordered intersection TC:
Graph g
for u \leftarrow 0 to g.num nodes() - 1
 foreach v in g.outNeigh(u)
  if v > u then break;
  it \leftarrow g.outNeigh(v).begin();
  foreach w in g.outNeigh(u)
    if w > v then break :
    while *it < w
     it + +
     if w == *it then
       total + + ; // Triangle found
```

Problem Statement

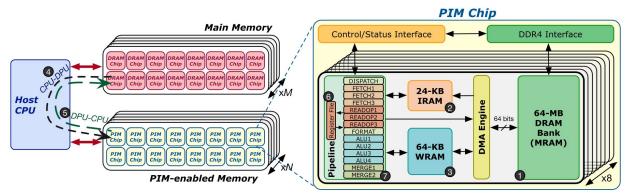
Triangle counting in large graphs presents two significant challenges:

2- Data Movement (For PIM)

- TriCORE: Evenly distributes the computational load across multiple GPU cores
 - Maximizing the utilization of GPU parallel processing capabilities
 - Dividing the graph based on vertex ranges
 - Balancing the number of edges across partitions
 - Can handle edge data transfers efficiently via stream buffers
- PIM technologies require data to remain fixed in memory
 - Least data movement between banks (no inter-DPU communications in UPMEM)
- We used TRUST [4] technique
 - An extension to TriCORE
 - Mitigates memory overhead by using a vertex-ordered balanced <u>hash-based partitioning</u>
 - Extra memory resources for building hash maps for each intersect operation.

Background - UPMEM

- Standard DDR4-2400 DIMM containing several PIM chips.
 - Each UPMEM PIM chip has 8 DPUs, each with
 - 64-MB Main memory (MRAM)
 - 24-KB Instruction RAM (IRAM)
 - 64-KB Working RAM (WRAM)
 - The host CPU can access MRAM to transfer input data and retrieve results.
 - No inter-DPU communication → only via the host CPU



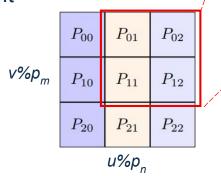
[Gómez-Luna, et. al "Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System,"]

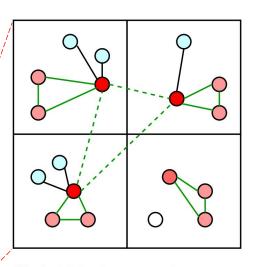
TriPIM

- <u>TriPIM</u> is an approach that combines
 - Load-balanced hash-based graph partitioning (inspired by TRUST)
 - Ensures each partition has an approximately equal number of vertices
 - The vertices are labeled according to their degrees to facilitate load balancing
 - Binary search intersection technique (*inspired by* TriCORE)
 - Parallelizing the triangle counting using a real-world PIM, UPMEM [2]
- Triangle counting in TriPIM happens in two steps:
 - Local Triangle Counting: Counting triangles within individual partitions (intra-DPUs)
 - **Cross-Partition Triangle Counting**: Counts triangles that span multiple partitions (inter-DPUs), which are not captured by local counting alone.

TriPIM

- TriPIM Steps
 - 1- Partitioning the graph
 - 2- Transfer partitions to DPUs
 - 3- Local (intra-DPU) Triangle Counting
 - 4- Cross-Partition (inter-DPU)Triangle Counting
 - 5- Collecting the Triangle Count





Red= High degree nodes
Blue = Low degree nodes

Local Triangle Counting

L – Cross-partition Triangle Counting

Methodology

CPU Baseline:

The GAP Benchmark Suite

GPU Baseline:

TriCORE

Graph Datasets: Synthetic graph datasets generated using GAPBS

Kronecker [5]: replicates many real-world network properties

Urand [6]: worst-case scenario for locality, as every vertex has an equal probability of being a neighbor to every other vertex

GPU					
Model	NVIDIA A40				
CUDA Cores	10752				
Boost Clock Speed	1.74 GHz				
Memory	48 GB GDDR6				
Memory Bandwidth	$696{\rm GB}{\rm s}^{-1}$				

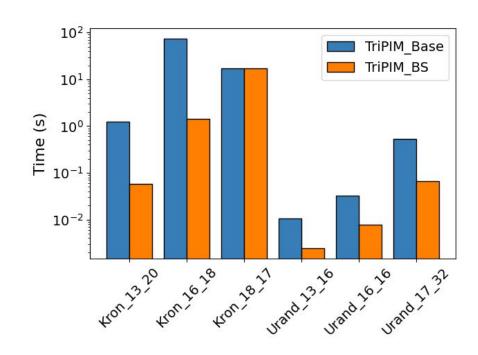
PIM Configuration					
Model	UPMEM PIM				
DPUs	2549 used / 2560 total				
DPU Frequency	350 MHz				
Memory per DPU	64 MB				
Total Memory	160 GB				
DIMMs	20				
Memory Bandwidth	$1000{\rm GBs^{-1}}$				

Host CPU					
Model Cores Threads	Intel Xeon Silver 4216 16 32				
Clock Speed	$2.10\mathrm{GHz}$				
Memory	256 GB				
OS	Ubuntu 22.04 LTS				
L1 L2 L3 Cache	512 kB (8-way) 16 MB (16-way) 22 MB (11-way)				

Graph	#Vertices	#Edges	Degree	Size (MB)	Triangle Count
Kron_13_20	8,191	246,888	20	1	1,744,952
Kron_16_18	65,536	2,026,386	18	8	19,672,632
Kron_18_17	262,143	8,057,720	17	32	93,521,523
Urand_13_16	8,192	261,556	16	1	5,559
Urand_16_16	65,536	1,965,534	16	8	4,467
Urand_17_32	131,072	8,386,472	32	32	43,363

• TriPIM Binary Search vs. Base

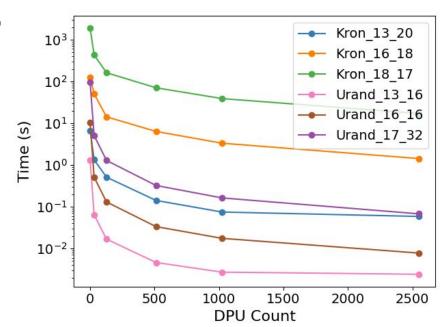
- <u>Base approach</u>: Compares elements of 1-hop and 2-hop adjacency lists; counts a triangle when elements match.
- <u>Binary Search Approach</u>: Inserts the longer adjacency list into a binary search tree; probes with elements from the shorter list.
- Binary search achieves speedup of
 - 7.3X on average across all datasets
 - Up to a **51X** in the Kron_16_18



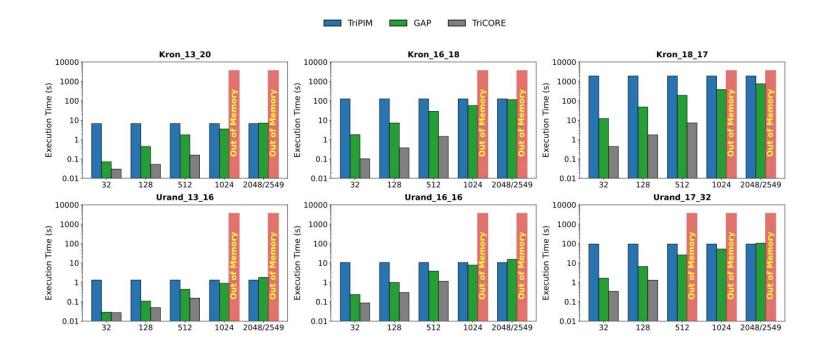
Scalability (small graphs):

- As the number of DPUs increases, execution time decreases
 - Exponential from 1 to 8 DPUs
 - Low DPU count ⇒ less parallelism, longer runtimes.
 - Each DPU handles more work, increasing runtime

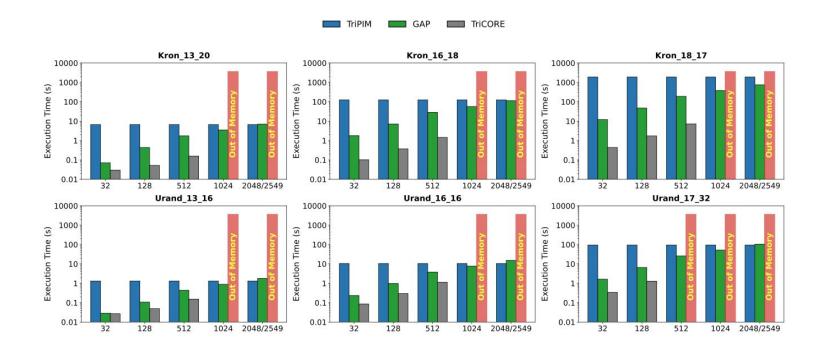
* high DPU counts are crucial to maintain TriPIM performance.



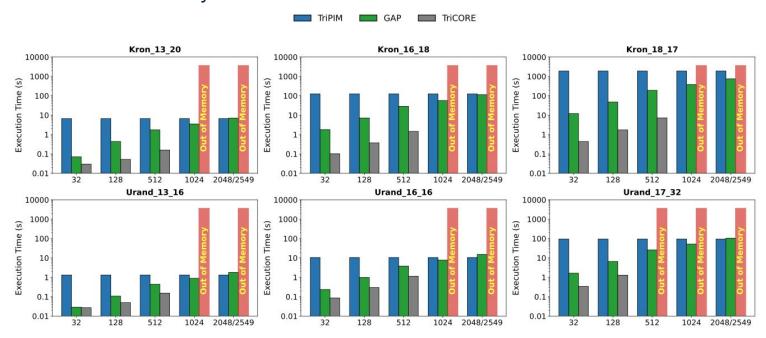
- X-axis: factor by which base graph size is multiplied
- Measured only triangle counting kernel time (excluded setup, loading, and result collection).



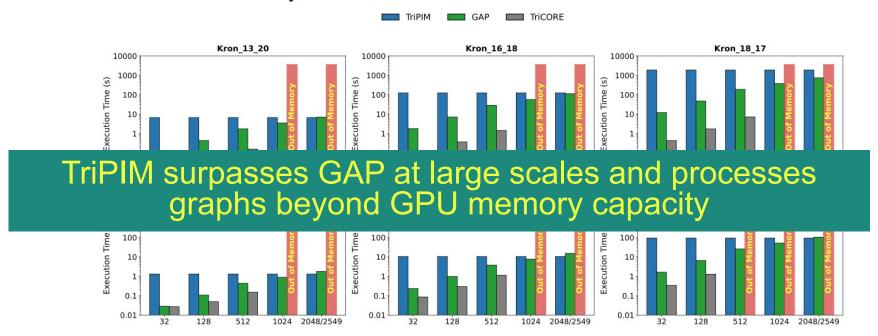
- TriCORE fastest on small graphs (Size*32, *128) but fails beyond GPU memory limits.
- GAP > TriPIM for small graphs (better cache + higher CPU freq).



- TriPIM constant runtime as graphs grow
 - CPUs suffer from cache misses
 - GPUs hit memory limits.



- TriPIM constant runtime as graphs grow
 - CPUs suffer from cache misses
 - GPUs hit memory limits.



Conclusions

- Triangle counting is vital for graph analytics in social networks and AI, but CPU/GPU methods struggle to scale due to cache inefficiency and limited memory.
- TriPIM integrates TriCORE's binary search algorithm with UPMEM PIM to overcome these scalability barriers.
- Minimizes data movement, leverages thousands of DPUs, and keeps runtime nearly constant as graphs grow.
- Outperforms CPU/GPU on very large graphs and processes datasets beyond GPU memory capacity, though less effective on small graphs due to lower DPU frequency.

Future Directions

- Employing other intersection methods for the 1-hop and 2-hop intersection
- Using other graph partitioning methods such as bbTC to distributing nodes in a more balanced way to DPUs
- Explore tradeoffs under cost and power constraints.
- Evaluate TriPIM on other emerging PIM architectures to identify the most beneficial features for triangle counting.
- Explore the generalization of this approach to other applications, i.e., other graph algorithms.
- Investigate further optimizations for handling <u>small</u> graphs more efficiently within the PIM architecture.
- Experimenting with real-world graphs, such as Twitter

References

- [1] Y. Hu, H. Liu, and H. Huang, "TriCORE: Parallel Triangle Counting on GPUs," *SC18: International Conference for High-Performance Computing, Networking, Storage and Analysis*, 2018, pp. 171-182.
- [2] UPMEM. (2020). UPMEM Website. [Online]. Available: https://www.upmem.com
- [3] S. Beamer, K. Asanovic and D. A. Patterson, "The GAP benchmark suite," arXiv:1508.03619, August 2015.
- [4] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie, C. Ding, D. Li, H. Liu, "TRUST: Triangle Counting Reloaded on GPUs," arXiv:2103.08053.
- [5] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and Z. Ghahramani, "Kronecker Graphs: An Approach to Modeling Networks," Journal of Machine Learning Research, vol. 11, pp. 985-1042, 2010.
- [6] P. Erdos and A. R "enyi, "On Random Graphs I," Publicationes Mathematicae, vol. 6, pp. 290-297, 1959.

Q & A

GitHub