
TriPIM: Exact Triangle Counting on
UPMEM Processing-in-Memory for

Graph Analytics
Morteza Baradaran, Khyati Kiyawat, Akhil Shekar,

Abdullah T. Mughrabi, Kevin Skadron
Email: morteza@virginia.edu

MEMSYS 2025

Introduction (Overview)
• Triangle counting

• Counting the triangles (three mutually connected vertices) in a graph.
• A critical task in graph analytics applications such as social network analysis, link

recommendation and emerging AI workloads (like GNNs, structural reasoning in LLMs).

• Existing implementations on CPUs and GPUs
• Struggle with memory efficiency and scalability limitations for large-scale graphs.

• To overcome these limitations: we propose TriPIM, which integrates
• Binary search intersection

• faster triangle counting
• Load-balanced partitioning of graphs

• Extensible to significantly larger graphs
• Uses a real-world Processing-In-Memory (PIM) DRAM technology

• Minimizing data movement and accelerating computations directly within memory.

Introduction (Triangle Counting)

A

DC

B

Naïve intersection TC:
Graph g
for u ← 0 to g.num nodes() - 1
 foreach v in g.outNeigh(u)
 it ← g.outNeigh(v).begin() ;
 foreach w in g.outNeigh(u)
 while ∗it < w
 it + +
 if w == ∗it then
 total + + ; // Triangle found

Problem Statement
Triangle counting in large graphs presents two significant challenges:
1- Runtime Complexity

• Naïve approach: 3 nested for loops (O(n3))
• Ordered intersection, as in GAPBS [3]

• Sorting vertices
• Performing ordered intersections of neighbor
• O(m3/2)

• Binary Search method for intersection, as in TriCORE [1]
• Sorting neighbor lists
• For neighbor lists of nodes u and v

• Suppose g.outNeigh(u) < g.outNeigh(v)
• Look up each node of g.outNeigh(u) in g.outNeigh(v)

 using binary search
• Complexity of intersection: O(log(d))

n=number of vertices
m= number of edges
d=degree of a vertex

Ordered intersection TC:
Graph g
for u ← 0 to g.num nodes() - 1
 foreach v in g.outNeigh(u)
 if v > u then break ;
 it ← g.outNeigh(v).begin() ;
 foreach w in g.outNeigh(u)
 if w > v then break ;
 while ∗it < w
 it + +
 if w == ∗it then
 total + + ; // Triangle found

Triangle counting in large graphs presents two significant challenges:
2- Data Movement (For PIM)

• TriCORE: Evenly distributes the computational load across multiple GPU cores
• Maximizing the utilization of GPU parallel processing capabilities

• Dividing the graph based on vertex ranges
• Balancing the number of edges across partitions
• Can handle edge data transfers efficiently via stream buffers

• PIM technologies require data to remain fixed in memory
• Least data movement between banks (no inter-DPU communications in UPMEM)

• We used TRUST [4] technique
• An extension to TriCORE
• Mitigates memory overhead by using a vertex-ordered balanced hash-based partitioning
• Extra memory resources for building hash maps for each intersect operation.

Problem Statement

Background - UPMEM
• Standard DDR4-2400 DIMM containing several PIM chips.

• Each UPMEM PIM chip has 8 DPUs, each with
• 64-MB Main memory (MRAM)
• 24-KB Instruction RAM (IRAM)
• 64-KB Working RAM (WRAM)

• The host CPU can access MRAM to transfer input data and retrieve results.
• No inter-DPU communication → only via the host CPU

[Gómez-Luna, et. al "Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System,"]

TriPIM
• TriPIM is an approach that combines

• Load-balanced hash-based graph partitioning (inspired by TRUST)
• Ensures each partition has an approximately equal number of vertices

• The vertices are labeled according to their degrees to facilitate load balancing

• Binary search intersection technique (inspired by TriCORE)

• Parallelizing the triangle counting using a real-world PIM, UPMEM [2]

• Triangle counting in TriPIM happens in two steps:
• Local Triangle Counting: Counting triangles within individual partitions (intra-DPUs)

• Cross-Partition Triangle Counting: Counts triangles that span multiple partitions
(inter-DPUs), which are not captured by local counting alone.

TriPIM
• TriPIM Steps

1- Partitioning the graph
2- Transfer partitions to DPUs
3- Local (intra-DPU) Triangle Counting
4- Cross-Partition (inter-DPU)Triangle Counting
5- Collecting the Triangle Count

v%pm

u%pn

Methodology
CPU Baseline:

The GAP Benchmark Suite

GPU Baseline:
TriCORE

Graph Datasets: Synthetic graph datasets
generated using GAPBS

Kronecker [5]: replicates many real-world
network properties

Urand [6]: worst-case scenario for locality,
as every vertex has an equal probability of
being a neighbor to every other vertex

Results
• TriPIM Binary Search vs. Base

• Base approach: Compares elements
of 1-hop and 2-hop adjacency lists;
counts a triangle when elements
match.

• Binary Search Approach: Inserts the
longer adjacency list into a binary
search tree; probes with elements
from the shorter list.

• Binary search achieves speedup of
• 7.3X on average across all datasets
• Up to a 51X in the Kron_16_18

Results

•Scalability (small graphs):
• As the number of DPUs increases,
execution time decreases

• Exponential from 1 to 8 DPUs
• Low DPU count ⇒ less parallelism,

longer runtimes.
• Each DPU handles more work,

increasing runtime
* high DPU counts are crucial to maintain
TriPIM performance.

Results
● X-axis: factor by which base graph size is multiplied

● Measured only triangle counting kernel time (excluded setup, loading, and result collection).

Results
● TriCORE fastest on small graphs (Size*32, *128) but fails beyond GPU memory limits.

● GAP > TriPIM for small graphs (better cache + higher CPU freq).

Results
● TriPIM constant runtime as graphs grow

○ CPUs suffer from cache misses
○ GPUs hit memory limits.

Results
● TriPIM constant runtime as graphs grow

○ CPUs suffer from cache misses
○ GPUs hit memory limits.

TriPIM surpasses GAP at large scales and processes
graphs beyond GPU memory capacity

Conclusions
• Triangle counting is vital for graph analytics in social networks and AI,

but CPU/GPU methods struggle to scale due to cache inefficiency and
limited memory.

• TriPIM integrates TriCORE’s binary search algorithm with UPMEM PIM
to overcome these scalability barriers.

• Minimizes data movement, leverages thousands of DPUs, and keeps
runtime nearly constant as graphs grow.

• Outperforms CPU/GPU on very large graphs and processes datasets
beyond GPU memory capacity, though less effective on small graphs
due to lower DPU frequency.

Future Directions
• Employing other intersection methods for the 1-hop and 2-hop intersection
• Using other graph partitioning methods such as bbTC to distributing nodes

in a more balanced way to DPUs
• Explore tradeoffs under cost and power constraints.
• Evaluate TriPIM on other emerging PIM architectures to identify the most

beneficial features for triangle counting.
• Explore the generalization of this approach to other applications, i.e., other

graph algorithms.
• Investigate further optimizations for handling small graphs more efficiently

within the PIM architecture.
• Experimenting with real-world graphs, such as Twitter

References
[1] Y. Hu, H. Liu, and H. Huang, ”TriCORE: Parallel Triangle Counting on GPUs,” SC18:
International Conference for High-Performance Computing, Networking, Storage and Analysis,
2018, pp. 171-182.

[2] UPMEM. (2020). UPMEM Website. [Online]. Available: https://www.upmem.com

[3] S. Beamer, K. Asanovic and D. A. Patterson, ”The GAP benchmark suite,” arXiv:1508.03619,
August 2015.

[4] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie, C. Ding, D. Li, H. Liu,
”TRUST: Triangle Counting Reloaded on GPUs ,” arXiv:2103.08053.

[5] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, C. Faloutsos, and Z. Ghahramani, ”Kronecker
Graphs: An Approach to Modeling Networks,” Journal of Machine Learning Research, vol. 11,
pp. 985-1042, 2010.

[6] P. Erdos and A. R ˝ enyi, ”On Random Graphs I,” Publicationes Mathematicae, vol. 6, pp.
290-297, 1959.

https://www.upmem.com/

Q & A

