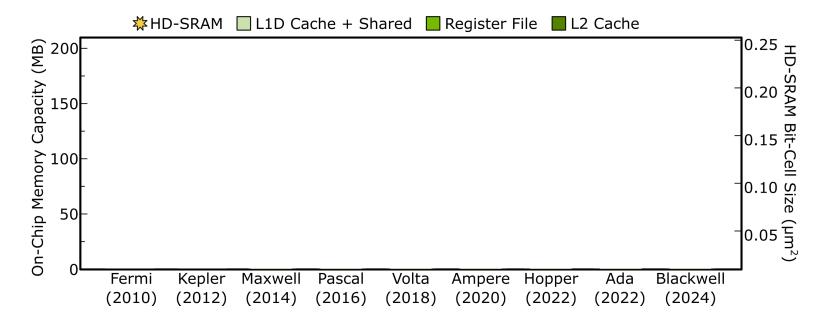
CMOS+X: Stacking Persistent Embedded Memories based on Oxide Transistors upon GPGPU Platforms

Faaiq Waqar, Ming-Yen Lee, Seongwon Yoon, Seongkwang Lim, Shimeng Yu

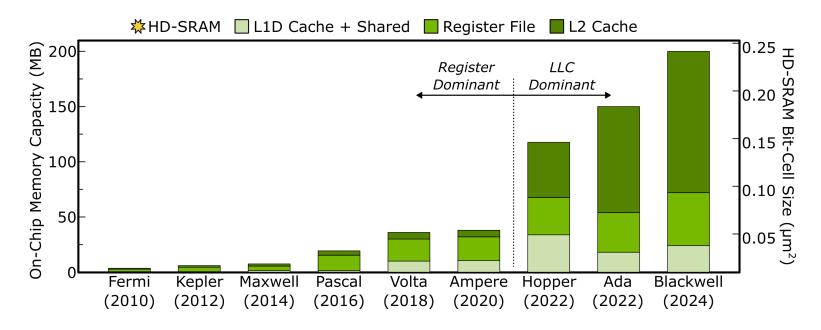
School of Electrical & Computer Engineering, Georgia Institute of Technology

On SRAM Densification and GPU Memories



NVIDIA GPGPU On-Chip Total Memory Capacity has grown >100× in 15 years

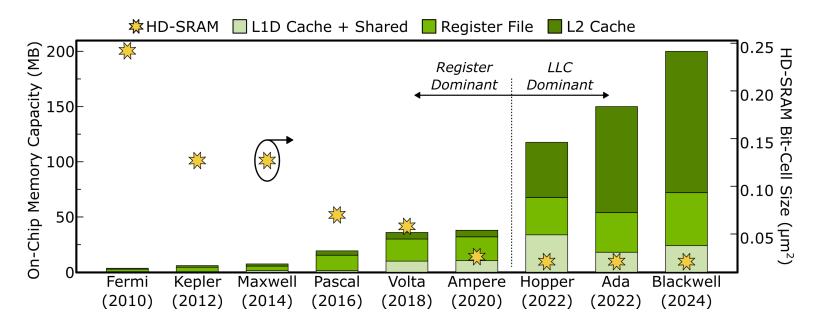
On SRAM Densification and GPU Memories



NVIDIA **GPGPU Total Memory Capacity** has grown **>100×** in 15 years *NVIDIA GPU Memory Scaling in 2 Eras*:

- (1) Register Dominated, Compute Driven (Pre-2022)
- (2) Last Level Cache Dominated, Data Driven (Post-2022)

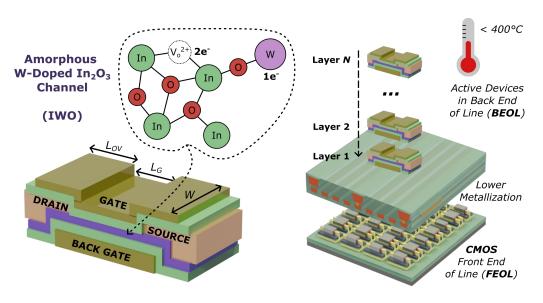
On SRAM Densification and GPU Memories



Meanwhile, (HD-)SRAM bit cell density has only improved by ~10×

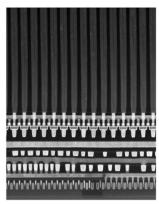
GPU memory capacity growth is driven by architectural demand, not technology scaling

A Path Upwards – Monolithic 3D Integration

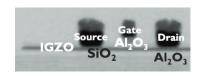


Opportunity: Amorphous Oxide Semiconductor (AOS) Transistors

- (+) Back-End-of-Line (BEOL) compatible fabrication temp.
 - (+) Ultra-Low Leakage (<10⁻¹⁹ A/µm), Wide Band-Gap
 - (+) Moderate Mobility (~20 $\frac{cm^2}{Vs}$), short write access

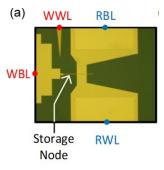


TSMC, Vertical BEOL eDRAM
K.Chiang et al. VLSI 2025



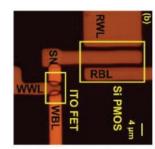
IMEC, Self-Aligned BEOL FET

A. Belmonte et al. IEDM 2021



GT, BEOL Double-Gated FET

H. Ye et al. IEDM 2020



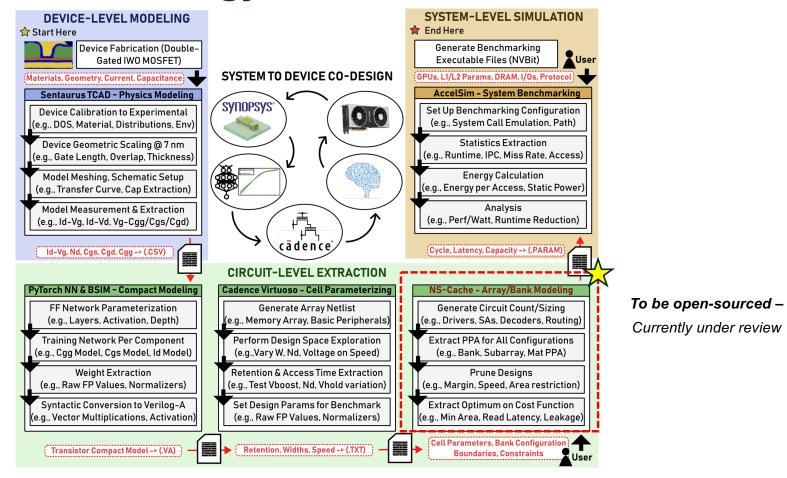
Stanford, BEOL Hybrid Gain-Cell

S. Liu et al. VLSI 2024

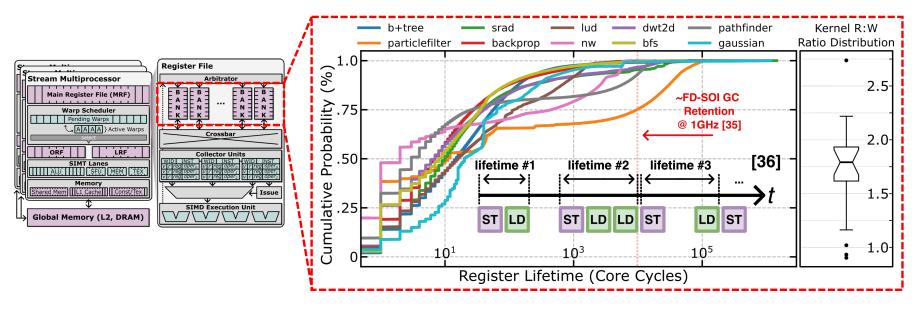
Questions Given the Technology:

- 1. In what GPU memory <u>subsystems</u> are AOS candidates (given their tradeoffs) most <u>suitable</u>?
- 2. What memory-cell topologies present the most significant opportunities?

Simulation Methodology



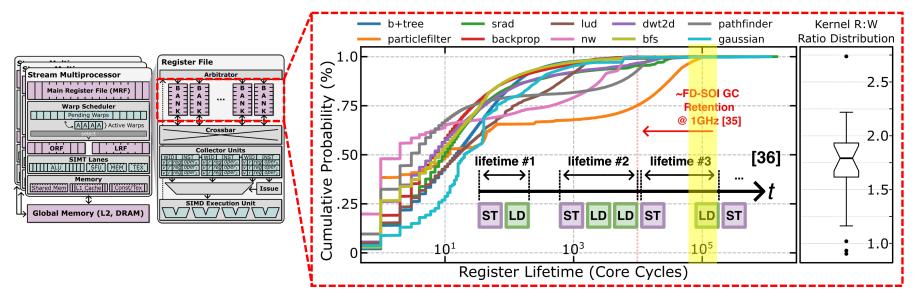
On Register Operands



The GPU Register File (RF) dictates computational capacity:

- Each stream-multiprocessor (SMP) contains 65k registers to hold operands
 - RF capacity dictates the number of resident threads/warps per SMP
 - RF parallelism (i.e. banking) dictates warp size

On Register Operands

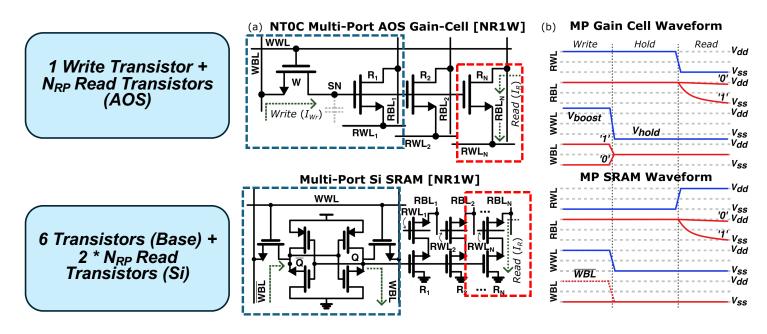


Register Operands Don't Have Long Lifetimes,:

- Measuring on Rodinia, nearly all operands live in a 10⁵-cycle boundary (100 μs @ 1GHz)
 - Most kernels have read-heavy behavior (indicative of NVIDIA 3R1W ORF)

Takeaway: Retention times in AOS exceed operand lifetimes, multi-read porting desirable

Multi-Ported AOS Gain-Cell



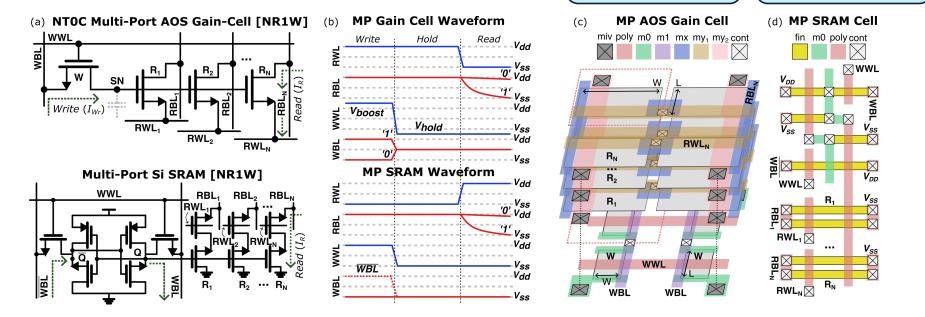
Gain-cell topologies are intrinsically bifurcated:

- Write access transistor (W) AOS \rightarrow long retention despite using parasitic C_{SN}
- SN can be attached to additional read paths \rightarrow opportunity for single transistor read port (R_i)

Multi-Ported AOS Gain-Cell

Opportunity for M3D Stacking

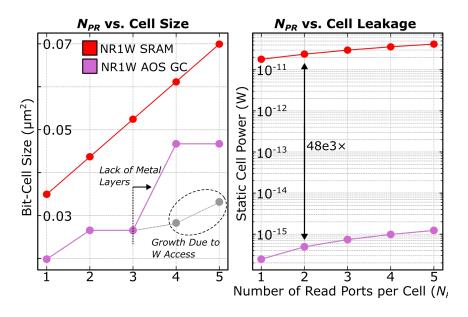
Each Read Port Takes Large FEOL Area



Gain-Cell topologies are naturally bifurcated:

- Write access transistor (W) AOS \rightarrow long retention despite using parasitic C_{SN}
- SN can be attached to additional read paths → opportunity for single transistor read port (R_i)

As a Function of N_{RP} (Number of Read Ports)

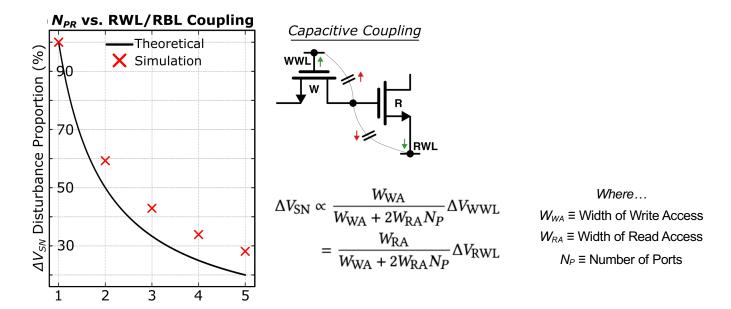


At 3R1W, the MP AOS GC is **76% smaller planar footprint** than SRAM counterpart

 Control over RWL & RBL at S/D of AOS FET + Exclusion of cross-coupled inverters sharply reduces static power (>10⁴ x)

<u>Takeaway</u>: Beyond M3D Integration, MP AOS GC can offer strong PPA advantages over Si Solution

As a Function of N_{RP} (Number of Read Ports)



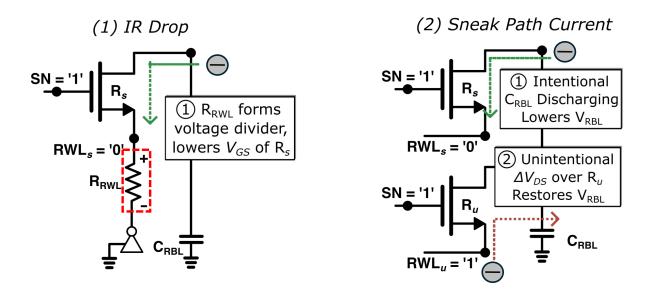
Capacitive coupling during RWL/WWL toggling:

- · Proportional to ratio of targeted capacitance & all parasitically coupled capacitances to storage node
 - Increased porting increases number of coupled caps → reduced CC

Takeaway: Combined with Geometric Solutions, MP cells provide topological pathway to reduce CC

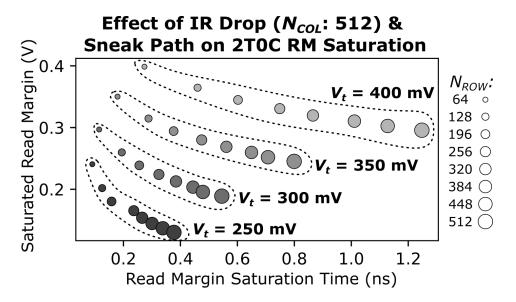
Quantifying Read Margin Degradation

Charge loss in single-transistor read port



Takeaway: Single transistor read port comes with difficulties, how much read margin is lost?

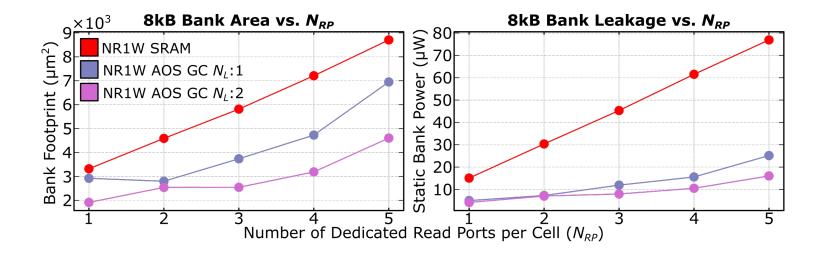
Quantifying Read Margin Degradation



Lower Read V_t Doesn't Always Improve Read Speed:

- Lower $V_t \rightarrow$ Larger Sneak Path currents from unselected '1' cells
- In high row counts, the V_t vs Speed relationship is parabolic; large N_{ROW} may not be readable

As a Function of N_{RP} (Number of Read Ports)

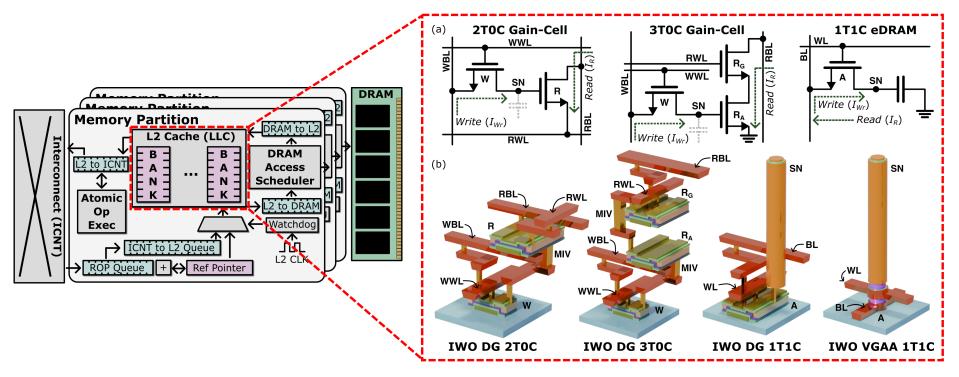


Modeling After NVIDIA Fermi's MRF (8kB Bank, 16B wide, 32b per register) under 750ms subarray RCT constraint

MP can reduce RF area (23-50%), static power (80%).

Static power dominated by peripherals. Multi-tier options improve static power by reducing load (and thus optimal sizing)

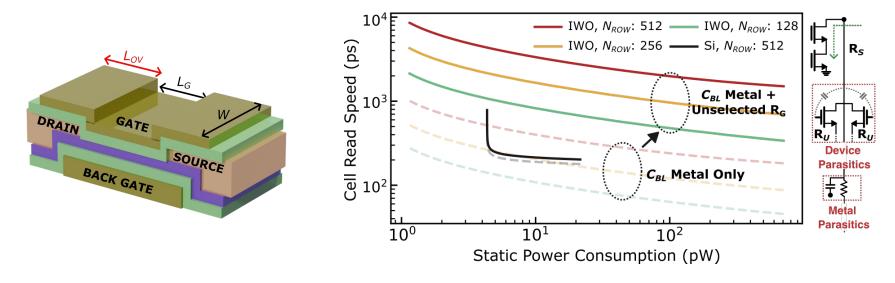
Candidates for Last Level Cache



What about cache? Access-optimized capacitive memories with high density

How do density, speed, and persistency tradeoffs affect their viability?

On 3T0C Leakage and Read Speed

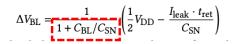


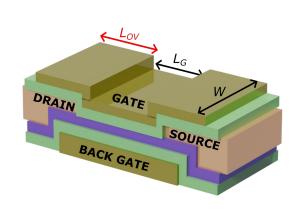
Overlap Contributes to a Speed-Static Power Tradeoff in 3T0C:

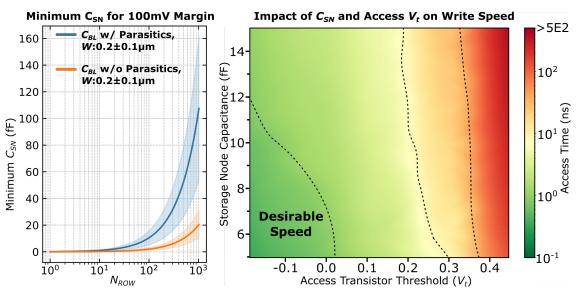
- L_{ov} contributes to BL capacitance, requiring greater read current density at iso-speed
 - Lower Vt yields larger potential over read port, greater leakage.

Takeaway: the combined higher C_{para} + lower mobility leads to poor read-power tradeoff in 3T0C

On Access Speed and Readout in 1T1C



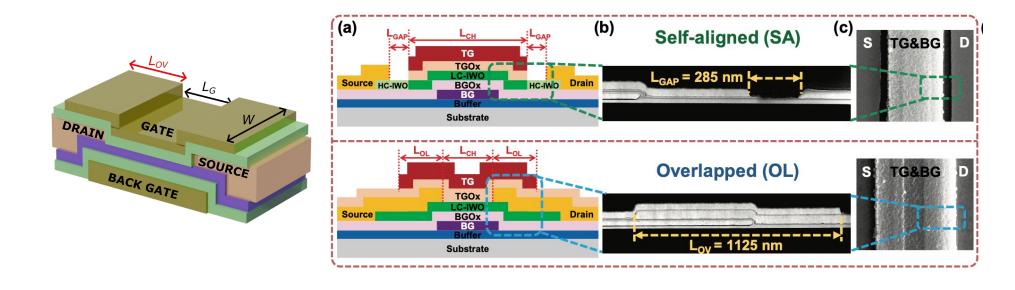




Overlap Contributes to a larger C_{SN} requirement

Scaling to >128 rows requires substantial capacitor due to C_{BL}/C_{SN} ratio, impeding stackability, sizing Large C_{SN} comes at cost of access speed to accumulate charge (Q_{SN}) , requiring Vt tuning

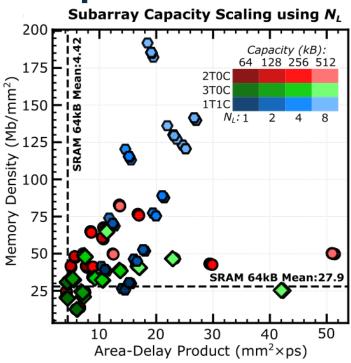
Emerging Solution - Self-Aligned Structures

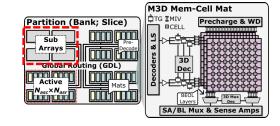


A potential solution to parasitic dominance exists in self-aligned structures!

Check us out at IEDM 2025! - S. Deng, J. Sowane, F. Waqar, O. Phadke et al.

Subarray Level Comparison



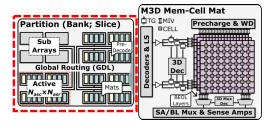


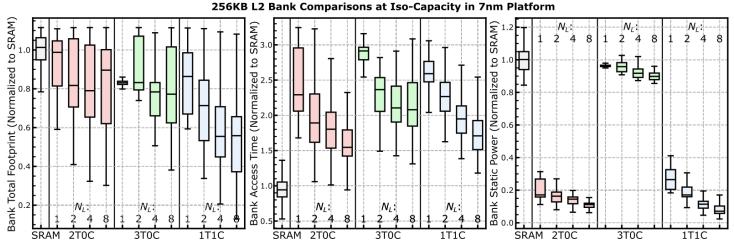
Varying Capacity with Number of Layers (N_L) in Single Subarray under 1.5ns RCT

- (1) AOS memories overall exhibit higher area-delay products than SRAM counterparts (low mobility)
 - (2) Density benefits of gain-cell topologies taper off, while 1T1C holds steady:

higher peripheral overheads, T-gates in 3D-decoding in GC, reduced voltage swing in 1T1C

Bank Level Comparison





- Varying Bank N_L under Fixed Capacity at 1.5ns RCT at fixed Footprint
- (1) 3T0C RA to RG Loading increases RC time, required greater partitioning
- (2) Both access time and density benefits level off in AOS gain-cells, reduced in 1T1C
- (3) Static power in 2T0C/1T1C significantly improved over SRAM, while speed tradeoff in 3T0C halts improvement

Benchmarking Setup

Table 3: Evaluated Benchmarks and Corresponding Domain

Application	Abbrev.	Domain		
Covariance Computation [7]	cov	Pattern Recognition		
Particle Filter [7]	pfil	Medical Imaging		
Discrete 2D Wavelet Transform [7]	dwt2d	Image/Video Compression		
Convolutional Neural Network Training [2]	cnn	Deep Learning		
Matrix Transpose and Vector Multiplication [23]	atax	Linear Algebra		
Back Propagation [7]	backprop	Pattern Recognition		
Matrix Vector Product and Transpose [23]	mvt	Linear Algebra		
Pathfinder [7]	pfin	Dynamic Programming		
3D Convolution [7]	3dconv	Image Processing		
GEMM Kernel Inference [2]	gemm	Deep Learning		
Needleman-Wunsch [7]	nw	Bioinformatics		
B+ Tree [7]	b+tree	Search		
RNN + GRU Training [2]	rnn	Deep Learning		
Correlation Computation [7]	corr	Signal Processing		
3 Matrix Multiplication [23]	3mm	Linear Algebra		

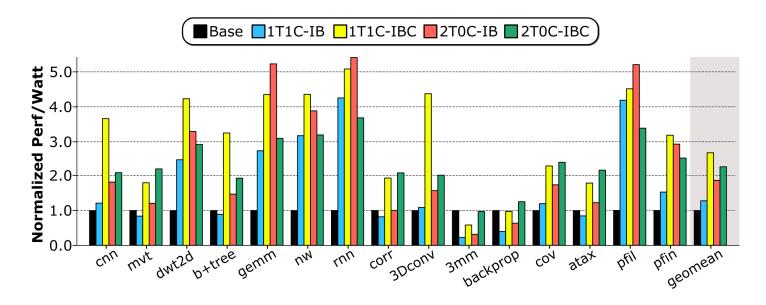
Table 4: Benchmarking L2 Cache Parameters

Config	Memory Type	Num Banks	L2 Capacity	N_L	L2 Clock Domain	L2 Area p. Partition	ROP Latency	Ref Period
Baseline	SRAM	8×2	4 MB	1	1132 MHz	$160,328 \ \mu \text{m}^2$	187 cyc.	N/A
2T0C IB	2T0C IWO	8×2	8 MB	2		$130,453 \mu \text{m}^2$		859 μs
2T0C IBC	2T0C IWO	8×8	16 MB	8	1132 MHz	195,044 μm^2	188 cyc.	215 μs
1T1C IB	1T1C IWO	8×2	32 MB	8	724 MHz	$175,771 \mu \text{m}^2$	190 cyc.	244 μs
1T1C IBC	1T1C IWO	8×16	32 MB	8		$166,785 \mu \text{m}^2$	190 cyc.	$244~\mu s$

Building upon Accel-Sim Modeling of NVIDIA Ampere RTX3070 with 2 Scenarios 2T0C & 1T1C:

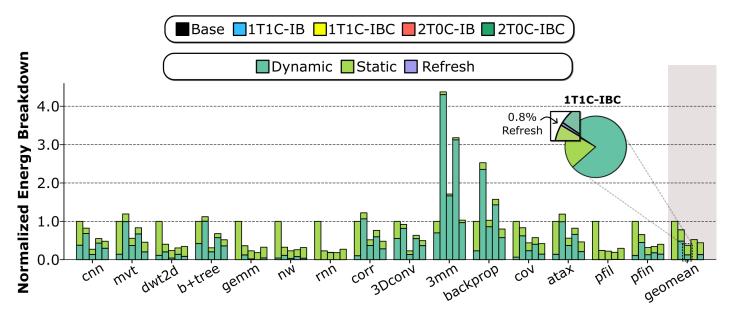
- (1) Iso-Banking (IB): Same number of banks & footprint, maximizing capacity
- (2) Iso-Bank Capacity (IBC): Same bank capacity & footprint, maximizing number of banks

Performance and Runtime



Though gain cell topologies offer superior access times and less restrictive sizing, reduced peripheral overhead in AOS 1T-1C is more suitable for LLC (2.8x perf/watt improvement)

Energy and Miss Ratio



Refresh operations in AOS 1T1C and 2T0C caches add only a minor energy overhead—typically <0.8% of total cache energy—since refreshes are infrequent due to long retention (ms-scale)

Static power drops sharply (≈70–80%) compared to SRAM, while dynamic power becomes the dominant contributor, mainly from write operations and larger driver capacitances

Reservation Failure Modes and Refresh

Reservation Failures:

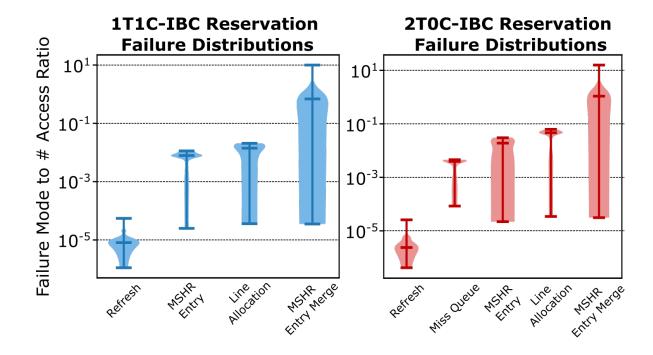
(i). Refresh: Refresh in Progress

(ii). MSHR Entry: MSHR table full

(iii). Line Allocation: All ways reserved

(iv). MSHR Entry Merge: Merge list full

(v). Miss Queue: Miss buffer full



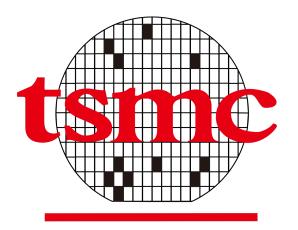
<u>Takeaway</u>: Refresh-induced reservation failures at ~100 μs periodicity are dwarfed by other failure modes, **modest ms-level retention needed**

Conclusions and Summary

Takeaway: The memory-hungry demands of future GPGPU systems exceed SRAM's capabilities

- The **lifetime of operands is short** (~10⁵ cycles upper bound) → opportunity for persistent memories
- Intrinsically bifurcated gain-cells can be used to reduce RF area (23-50%), static power (80%), and improve upon cell-level capacitive coupling (>70% @ 5-Ports)
- Though gain cell topologies offer superior access times and less restrictive sizing, **reduced peripheral overhead in AOS 1T-1C is more suitable for LLC** (2.8x perf/watt improvement)
- Overlap parasitics play a decisive role in row limitations and SN requirements of AOS memories
- A focus on access time pays off when exceeding ms-level retention of AOS cells in tail-states

This Work Was Supported By



Thank you for listening. Special thanks to Yu-Ming Lin and Huai-Ying Huang of TSMC, Taiwan Questions?

Email: faaiq.waqar@gatech.edu, shimeng.yu@ece.gatech.edu

