Ding & Zhu (Rochester)

Data Access Complexity:

Monotonicity and Proportionality

Chen Ding  Yifan Zhu
University of Rochester

MEMSYS 2025

Data Access Complexity

MEMSYS 2025



@ Introduction

© Background

© Monotonicity

0 Example: Matrix Multiplication

© Proportionality

© Summary

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025



The Memory Hierarchy Challenge

Memory Wall Problem:

@ Bandwidth constraint is fundamental
bottleneck

@ Cache manages locality
@ Performance depends on:

o Algorithm
o Problem size
o Cache size & policy

‘ Processor ‘

1
Cache (Local)

1 Slow!
‘ Main Memory
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Memory Work Complexity

Time Complexity vs Data Access Complexity

e Time Complexity: Measures “processor work” (operations)
e Data Access Complexity: Measures “memory work” (data transfers)

@ Locality = Lower data access complexity

Theoretical Questions

@ Does larger problem size always mean worse locality?
@ What is the worst-case cache performance we can guarantee?
o But first, why theory?
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Shannon's Discovery of Entropy

The Three Axioms

Shannon sought a measure of uncertainty H(p1, ..., pn) that satisfies:

© Continuity: H is continuous in all p;
@ Monotonicity: H increases with n for equally likely outcomes

© Additivity: H adds for independent events:
H(X,Y) = H(X)+ H(Y) for independent X, Y

The Unique Solution

These axioms lead uniquely to the form:

n
H(p1,...,pn) = —K Y _ pilogp;
i=1

Setting K = 1 and using base-2 logarithm gives bits.

= i - = = yex
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Brief Digression: Shared Exclusive Cache Hierarchy

Prog. 1 Prog. 2

Split LRU Stack Abstraction
Models exclusive cache hierarchy with two partitions:

e Upper partition H: Private cache (size h)
o Lower partition L: Shared victim cache (size /) L

@ Data evicted from H becomes victims stored in L @) v

Victim Cache Requirement (VCR)

VCR Equation: For a single program using an exclusive hierarchy, the miss ratio must equal
that of a combined cache:

vmr(h,1) = mr(h+1) forall h,/ >0

Intuition: VCR ensures consistency with a single-level cache.
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Footprint in Victim Cache [Ye et al. TACO 2017]

Victim Footprint (VFP) Definition

VFP(h, x) = fp(xp + x) — h, where fp(xp) = h

o fp: footprint in single-level cache

@ h: upper level cache size

Theorem (VFP Theorem 3.1)
The VFP defined above is the only solution that satisfies the Victim Cache Requirement.

Theoretical Significance

@ Uniqueness: VFP is the only solution satisfying VCR

o Composability: VFPs of individual programs can be combined to model shared victim
cache
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Locality Terminology

Definition (Data Reuse)

Two consecutive accesses to the same data item

Reuse Measures

o Reuse Interval (RI): Time between consecutive accesses

o Reuse Distance (RD): Number of distinct items accessed between reuses

For sequence “abcca”:
@ Reuse of 'a’: Rl =4, RD =3

@ Reuseof 'c: RI=1,RD =1
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Cache Models

Working-Set Cache

o Fixed size ¢ @ Variable size

@ Evicts Least Recently Used @ Data stays for time x

@ Miss when RD > ¢ @ Miss ratio: mr(c) = P(ri > x)
@ Most common in hardware @ Theoretical model

Data movement = demand caching (no prefetching).
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Locality Monotonicity: The Question

Does a larger problem always have worse locality?

Intuition Says YES

@ Cache behavior is complex
@ More data to process

@ Depends on access patterns
@ More memory pressure )
@ Not always monotonic!

@ Like time complexity

@ Example: n-body simulation

Goal: Formalize conditions under which monotonicity holds

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025

10/25



LRU Cache Monotonicity

Definition (Problem Size Ordering)

P’ is larger than P if:
O Sequence Embedding: Trace of P embedded in trace of P’

@ Intercept-Free: No additional accesses to same data between reuses

Example (Intercept-Free)
P = (a, b, c,a,d) embedded in P = (x,a,b,y,c,z,a,d,w)

@ Blue shows embedded accesses

@ No intercept between the two 'a’ accesses

@ v Intercept-free
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Intercept Example

Example (With Intercept)

P = (a,b,c,a,d) and P' = (x,a,b,a,c,a,z,d,w)
@ Blue: embedded accesses from P
@ Red: intercept access at position 4

@ X NOT intercept-free

@ The red 'a’ disrupts the reuse pattern

Theorem (LRU Monotonicity)

For LRU cache of size c: mc(P’, c) > mc(P, c)
if P has intercept-free embedding in P’

Proof Sketch.
Every miss in P (RD > ¢) remains a miss in P’ (RD' > RD) O
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Alternative: Monotonic RD Injection

Definition (Monotonic RD Injection)
For each RD of value d in P, there exists an RD in P’ of value d’ > d

Comparison

@ Order-independent condition
@ Less intuitive than intercept-free embedding
e Maybe difficult to verify

Theorem (LRU Monotonicity via RD)

Monotonic RD injection implies mc(P’, c) > mc(P, c) for all ¢ > 0
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Working-Set Cache Monotonicity

Definition (Monotonic RI Injection)

For each Rl of value r in P, there exists an Rl in P’ of value r' > r

Theorem (Working-Set Monotonicity)

Let S be cache hits in ‘P that remain hits in P’.
Then cache consumption c(P',S) > ¢(P,S)

Cache Consumption

@ Measured as time-space product
@ Tenancy = time from access to next reuse/eviction

@ Monotonic Rl = Monotonic consumption
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Naive Matrix Multiplication

Algorithm:

for i =1 to ndo

Table: Rl & RD for 3-access (element granularity)
for j=1to ndo

for k — 1 to n do ri | Count | rd | Count
= 33n Zi - Zz 2n3+ 1 Zz - Zi
Ali, k] * B[k, j] 32 | w3 — 2 249 3_ 2
d for n n° —n n“4+2n | n°—n
en 00 3n? 00 3n?
end for
end for

Observation
Both Rl and RD values and counts are monotone in n
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Matrix Multiplication Monotonicity

Naive matrix multiplication has monotonic locality for:
o Element granularity caching
® Block granularity caching
@ Both LRU and working-set caches

Proof Sketch.

@ Element granularity: RD/RI values monotonic in n (from table)

@ Block granularity: Similar analysis with spatial reuse
@ Monotonic injection exists when increasing nto n+ 1

@ Therefore, miss count increases with problem size
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Block Granularity Matrix Multiplication

Table: RI for 4-access matrix multiplication (block size b)

ri | P(ri) | Count
1 % n
1_ 1 3_n°
3 4 abn |7 b,
1_ 1 3_n°
4 2= |7
1 1 n n
_ 1 3_n
4n iy n3 5
2 _ 1 1 | n _ n
4n 4nb + 4n 35 — It b b
00 3 3n
4bn b

All values and counts are monotone in n = Monotonic Rl injection
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Worst-Case Locality

What is the worst locality we can expect under optimal caching?

Theorem (Random Access Miss Ratio)

When accessing n blocks randomly with any stack algorithm:

n—c < <
mr(c):{ 0<c<n

n
0 c>n

@ Stack algorithms: LRU, MRU, LFU, Random, OPT
@ All have the same miss ratio for random access
@ Linear decrease with cache size
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Cyclic Access Patterns

Cyclic Pattern: a,b,c,d,a, b,c,d,...

Theorem (Cyclic Access Locality)

Trace| abedabedabed Optimal locality of cyclic accesses is asymptotically

a the same as random access

OPT Stack 1 | alb c dla by 4 a blc
| alala dlﬂ a clc c4b|b
I lbhal:adldd
| a
|
|
I

W b

EW Proof Sketch.

wwwm23423423 OPTdistance uniformly distributed in [2, n]

OPT Dist
c=2 Hits H H H
. n—c n—c
OPT stack for cyclic accesses (n = 4) mr(c) = - ~
n— n

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 19 /25



Worst-Case Proportionality

Theorem (Main Result: Proportionality)

For any workload accessing n data items, with optimal caching:

n—c
=1 OSCSH
0 c>n

mr(c) < {

Proof Idea.

Sort items by access frequency

Cache top ¢ most frequently accessed blocks
Each appears at least % times (in k total accesses)

5 n—c n—c
Guarantees: mr(c) < ¢ < =%
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Proportionality: Implications

Universal Guarantee

@ Holds for all programs and inputs

@ Requires only optimal cache management
@ No program optimization needed
°

Bound is reachable

What it means:
@ Doubling cache size

@ = At least halves miss ratio
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Contributions

1. Monotonicity

o Formalized conditions for locality monotonicity
@ LRU: Intercept-free embedding or Monotonic RD injection
© Working-set: Monotonic Rl injection

@ Proved for naive matrix multiplication (element & block granularity)

. Proportionality

@ Worst-case miss ratio is < 7= for optimal caching
@ Universal property (all programs)
@ Linear improvement with cache size is guaranteed

@ Bound is tight (achieved by cyclic/random access)
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Practical Implications

For Algorithm Designers

@ Check monotonicity conditions for your algorithm

@ Monotonic programs: cannot improve locality by increasing problem size

For Cache Implementers

o Target at least linear performance scaling
@ If observed performance is sub-linear, optimization possible

@ Proportionality is achievable with frequency-based replacement

Key Message

These are complexity theorems — properties that hold across all inputs
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Future Directions

o Monotonicity:

o Characterize larger class of monotonic programs
e Automated proofs of monotonicity
o Extension to parallel programs

o Proportionality:

e Practical algorithms achieving proportionality
o Multi-level shared cache
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Thank You!

Questions?

Data Access Complexity:
Monotonicity and Proportionality

Chen Ding  Yifan Zhu
University of Rochester

cding@cs.rochester.edu
yifanzhu@rochester.edu
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