
Data Access Complexity:
Monotonicity and Proportionality

Chen Ding Yifan Zhu

University of Rochester

MEMSYS 2025

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 1 / 25



Outline

1 Introduction

2 Background

3 Monotonicity

4 Example: Matrix Multiplication

5 Proportionality

6 Summary

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 2 / 25



The Memory Hierarchy Challenge

Memory Wall Problem:

Bandwidth constraint is fundamental
bottleneck

Cache manages locality

Performance depends on:

Algorithm
Problem size
Cache size & policy

Processor

Cache (Local)

Main Memory
Slow!

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 3 / 25



Memory Work Complexity

Time Complexity vs Data Access Complexity

Time Complexity: Measures “processor work” (operations)

Data Access Complexity: Measures “memory work” (data transfers)

Locality = Lower data access complexity

Theoretical Questions

Does larger problem size always mean worse locality?

What is the worst-case cache performance we can guarantee?

But first, why theory?

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 4 / 25



Shannon’s Discovery of Entropy

The Three Axioms

Shannon sought a measure of uncertainty H(p1, . . . , pn) that satisfies:

1 Continuity: H is continuous in all pi
2 Monotonicity: H increases with n for equally likely outcomes

3 Additivity: H adds for independent events:
H(X ,Y ) = H(X ) + H(Y ) for independent X , Y

The Unique Solution

These axioms lead uniquely to the form:

H(p1, . . . , pn) = −K
n∑

i=1

pi log pi

Setting K = 1 and using base-2 logarithm gives bits.

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 5 / 25



Brief Digression: Shared Exclusive Cache Hierarchy

Split LRU Stack Abstraction

Models exclusive cache hierarchy with two partitions:

Upper partition H: Private cache (size h)

Lower partition L: Shared victim cache (size l)

Data evicted from H becomes victims stored in L

Prog. 1

H

L

(a)

h1

Prog. 1

h2

Prog. 2

l

Shared Cache

(b)

Victim Cache Requirement (VCR)

VCR Equation: For a single program using an exclusive hierarchy, the miss ratio must equal
that of a combined cache:

vmr(h, l) = mr(h + l) for all h, l ≥ 0

Intuition: VCR ensures consistency with a single-level cache.

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 6 / 25



Footprint in Victim Cache [Ye et al. TACO 2017]

Victim Footprint (VFP) Definition

VFP(h, x) = fp(xh + x)− h, where fp(xh) = h

fp: footprint in single-level cache

h: upper level cache size

Theorem (VFP Theorem 3.1)

The VFP defined above is the only solution that satisfies the Victim Cache Requirement.

Theoretical Significance

Uniqueness: VFP is the only solution satisfying VCR

Composability: VFPs of individual programs can be combined to model shared victim
cache

Portability: Single measurement predicts performance across different cache
configurations

Generality: Extends HOTL theory to exclusive cache hierarchies

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 7 / 25



Locality Terminology

Definition (Data Reuse)

Two consecutive accesses to the same data item

Reuse Measures

Reuse Interval (RI): Time between consecutive accesses

Reuse Distance (RD): Number of distinct items accessed between reuses

Example

For sequence “abcca”:

Reuse of ’a’: RI = 4, RD = 3

Reuse of ’c’: RI = 1, RD = 1

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 8 / 25



Cache Models

LRU Cache

Fixed size c

Evicts Least Recently Used

Miss when RD > c

Most common in hardware

Working-Set Cache

Variable size

Data stays for time x

Miss ratio: mr(c) = P(ri > x)

Theoretical model

Focus

Data movement = demand caching (no prefetching).

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 9 / 25



Locality Monotonicity: The Question

Does a larger problem always have worse locality?

Intuition Says YES

More data to process

More memory pressure

Like time complexity

But...

Cache behavior is complex

Depends on access patterns

Not always monotonic!

Example: n-body simulation

Goal: Formalize conditions under which monotonicity holds

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 10 / 25



LRU Cache Monotonicity

Definition (Problem Size Ordering)

P ′ is larger than P if:

1 Sequence Embedding: Trace of P embedded in trace of P ′

2 Intercept-Free: No additional accesses to same data between reuses

Example (Intercept-Free)

P = (a, b, c, a, d) embedded in P ′ = (x , a, b, y , c, z , a, d ,w)

Blue shows embedded accesses

No intercept between the two ’a’ accesses

✓ Intercept-free

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 11 / 25



Intercept Example

Example (With Intercept)

P = (a, b, c, a, d) and P ′ = (x , a, b, a, c , a, z , d ,w)

Blue: embedded accesses from P

Red: intercept access at position 4

× NOT intercept-free

The red ’a’ disrupts the reuse pattern

Theorem (LRU Monotonicity)

For LRU cache of size c: mc(P ′, c) ≥ mc(P, c)
if P has intercept-free embedding in P ′

Proof Sketch.

Every miss in P (RD > c) remains a miss in P ′ (RD’ ≥ RD)

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 12 / 25



Alternative: Monotonic RD Injection

Definition (Monotonic RD Injection)

For each RD of value d in P, there exists an RD in P ′ of value d ′ ≥ d

Comparison

Order-independent condition

Less intuitive than intercept-free embedding

Maybe difficult to verify

Theorem (LRU Monotonicity via RD)

Monotonic RD injection implies mc(P ′, c) ≥ mc(P, c) for all c ≥ 0

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 13 / 25



Working-Set Cache Monotonicity

Definition (Monotonic RI Injection)

For each RI of value r in P, there exists an RI in P ′ of value r ′ ≥ r

Theorem (Working-Set Monotonicity)

Let S be cache hits in P that remain hits in P ′.
Then cache consumption c(P ′,S) ≥ c(P,S)

Cache Consumption

Measured as time-space product

Tenancy = time from access to next reuse/eviction

Monotonic RI ⇒ Monotonic consumption

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 14 / 25



Naive Matrix Multiplication

Algorithm:

for i = 1 to n do
for j = 1 to n do
for k = 1 to n do
C [i , j ] +=
A[i , k] ∗ B[k , j ]

end for
end for

end for

Table: RI & RD for 3-access (element granularity)

ri Count rd Count

3 n3 − n2 3 n3 − n2

3n n3 − n2 2n + 1 n3 − n2

3n2 n3 − n2 n2 + 2n n3 − n2

∞ 3n2 ∞ 3n2

Observation

Both RI and RD values and counts are monotone in n

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 15 / 25



Matrix Multiplication Monotonicity

Corollary

Naive matrix multiplication has monotonic locality for:

Element granularity caching

Block granularity caching

Both LRU and working-set caches

Proof Sketch.

Element granularity: RD/RI values monotonic in n (from table)

Block granularity: Similar analysis with spatial reuse

Monotonic injection exists when increasing n to n + 1

Therefore, miss count increases with problem size

Important Note

Miss count is monotonic, but miss ratio may not be!
Cold-start miss ratio = 3n2

4n3
= 3

4n decreases as n increases

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 16 / 25



Block Granularity Matrix Multiplication

Table: RI for 4-access matrix multiplication (block size b)

ri P(ri) Count

1 1
4 n3

3 1
4 − 1

4bn n3 − n2

b

4 1
4 − 1

4b n3 − n3

b

4n − 4b + 4 1
4b − 1

4bn
n3

b − n2

b

4n 1
4 − 1

4b n3 − n3

b

4n2 − 4nb + 4n 1
4b − 1

4bn
n3

b − n2

b

∞ 3
4bn

3n2

b

All values and counts are monotone in n ⇒ Monotonic RI injection

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 17 / 25



Worst-Case Locality

Question

What is the worst locality we can expect under optimal caching?

Theorem (Random Access Miss Ratio)

When accessing n blocks randomly with any stack algorithm:

mr(c) =

{
n−c
n 0 ≤ c ≤ n

0 c > n

Stack algorithms: LRU, MRU, LFU, Random, OPT

All have the same miss ratio for random access

Linear decrease with cache size

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 18 / 25



Cyclic Access Patterns

OPT stack for cyclic accesses (n = 4)

Cyclic Pattern: a, b, c, d , a, b, c, d , . . .

Theorem (Cyclic Access Locality)

Optimal locality of cyclic accesses is asymptotically
the same as random access

Proof Sketch.

OPT distance uniformly distributed in [2, n]

mr(c) =
n − c

n − 1
≈ n − c

n

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 19 / 25



Worst-Case Proportionality

Theorem (Main Result: Proportionality)

For any workload accessing n data items, with optimal caching:

mr(c) ≤

{
n−c
n−1 0 ≤ c ≤ n

0 c > n

Proof Idea.

Sort items by access frequency

Cache top c most frequently accessed blocks

Each appears at least kc
n times (in k total accesses)

Guarantees: mr(c) ≤ n−c
n ≤ n−c

n−1

Key Insight

Performance improves at least linearly with cache size!

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 20 / 25



Proportionality: Implications

Universal Guarantee

Holds for all programs and inputs

Requires only optimal cache management

No program optimization needed

Bound is reachable

What it means:

Doubling cache size

⇒ At least halves miss ratio

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 21 / 25



Contributions

1. Monotonicity

Formalized conditions for locality monotonicity

LRU: Intercept-free embedding or Monotonic RD injection

Working-set: Monotonic RI injection

Proved for naive matrix multiplication (element & block granularity)

2. Proportionality

Worst-case miss ratio is ≤ n−c
n−1 for optimal caching

Universal property (all programs)

Linear improvement with cache size is guaranteed

Bound is tight (achieved by cyclic/random access)

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 22 / 25



Practical Implications

For Algorithm Designers

Check monotonicity conditions for your algorithm

Monotonic programs: cannot improve locality by increasing problem size

For Cache Implementers

Target at least linear performance scaling

If observed performance is sub-linear, optimization possible

Proportionality is achievable with frequency-based replacement

Key Message

These are complexity theorems — properties that hold across all inputs

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 23 / 25



Future Directions

Monotonicity:
Characterize larger class of monotonic programs
Automated proofs of monotonicity
Extension to parallel programs

Proportionality:
Practical algorithms achieving proportionality
Multi-level shared cache

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 24 / 25



Thank You!

Questions?

Data Access Complexity:
Monotonicity and Proportionality

Chen Ding Yifan Zhu
University of Rochester

cding@cs.rochester.edu

yifanzhu@rochester.edu


	Introduction
	Background
	Monotonicity
	Example: Matrix Multiplication
	Proportionality
	Summary

