Data Access Complexity: Monotonicity and Proportionality

Chen Ding Yifan Zhu

University of Rochester

MEMSYS 2025

Outline

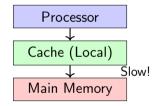
- Introduction
- 2 Background
- Monotonicity
- 4 Example: Matrix Multiplication
- 6 Proportionality
- 6 Summary

2/25

The Memory Hierarchy Challenge

Memory Wall Problem:

- Bandwidth constraint is fundamental bottleneck
- Cache manages locality
- Performance depends on:
 - Algorithm
 - Problem size
 - Cache size & policy



Memory Work Complexity

Time Complexity vs Data Access Complexity

- Time Complexity: Measures "processor work" (operations)
- Data Access Complexity: Measures "memory work" (data transfers)
- Locality = Lower data access complexity

Theoretical Questions

- Does larger problem size always mean worse locality?
- What is the worst-case cache performance we can guarantee?
- But first, why theory?

Shannon's Discovery of Entropy

The Three Axioms

Shannon sought a measure of uncertainty $H(p_1, \ldots, p_n)$ that satisfies:

- **① Continuity**: H is continuous in all p_i
- **4 Monotonicity**: H increases with n for equally likely outcomes
- **Additivity**: H adds for independent events: H(X, Y) = H(X) + H(Y) for independent X, Y

The Unique Solution

These axioms lead uniquely to the form:

$$H(p_1,\ldots,p_n)=-K\sum_{i=1}^n p_i\log p_i$$

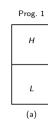
Setting K = 1 and using base-2 logarithm gives **bits**.

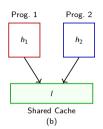
Brief Digression: Shared Exclusive Cache Hierarchy

Split LRU Stack Abstraction

Models exclusive cache hierarchy with two partitions:

- Upper partition *H*: Private cache (size *h*)
- Lower partition L: Shared victim cache (size I)
- Data evicted from H becomes victims stored in L





Victim Cache Requirement (VCR)

VCR Equation: For a single program using an exclusive hierarchy, the miss ratio must equal that of a combined cache:

$$vmr(h, l) = mr(h + l)$$
 for all $h, l \ge 0$

Intuition: VCR ensures consistency with a single-level cache.

□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣魚ⓒ

6/25

Footprint in Victim Cache [Ye et al. TACO 2017]

Victim Footprint (VFP) Definition

$$VFP(h,x) = fp(x_h + x) - h$$
, where $fp(x_h) = h$

- fp: footprint in single-level cache
- h: upper level cache size

Theorem (VFP Theorem 3.1)

The VFP defined above is the only solution that satisfies the Victim Cache Requirement.

Theoretical Significance

- Uniqueness: VFP is the only solution satisfying VCR
- Composability: VFPs of individual programs can be combined to model shared victim cache

Ding & Zhu (Rochester) Data Access Complexity MEMSYS 2025 7

Locality Terminology

Definition (Data Reuse)

Two consecutive accesses to the same data item

Reuse Measures

- Reuse Interval (RI): Time between consecutive accesses
- Reuse Distance (RD): Number of distinct items accessed between reuses

Example

For sequence "abcca":

- Reuse of 'a': RI = 4, RD = 3
- Reuse of 'c': RI = 1, RD = 1

8 / 25

Cache Models

LRU Cache

- Fixed size c
- Evicts Least Recently Used
- Miss when RD > c
- Most common in hardware

Working-Set Cache

- Variable size
- Data stays for time x
- Miss ratio: mr(c) = P(ri > x)
- Theoretical model

Focus

Data movement = **demand caching** (no prefetching).

Locality Monotonicity: The Question

Does a larger problem always have worse locality?

Intuition Says YES More data to process More memory pressure Like time complexity Cache behavior is complex Depends on access patterns Not always monotonic! Example: n-body simulation

Goal: Formalize conditions under which monotonicity holds

LRU Cache Monotonicity

Definition (Problem Size Ordering)

 \mathcal{P}' is larger than \mathcal{P} if:

- **1** Sequence Embedding: Trace of \mathcal{P} embedded in trace of \mathcal{P}'
- Intercept-Free: No additional accesses to same data between reuses

Example (Intercept-Free)

P = (a, b, c, a, d) embedded in P' = (x, a, b, y, c, z, a, d, w)

- Blue shows embedded accesses
- No intercept between the two 'a' accesses
- ✓ Intercept-free

Intercept Example

Example (With Intercept)

$$P = (a, b, c, a, d)$$
 and $P' = (x, a, b, a, c, a, z, d, w)$

- Blue: embedded accesses from P
- Red: intercept access at position 4
- × NOT intercept-free
- The red 'a' disrupts the reuse pattern

Theorem (LRU Monotonicity)

For LRU cache of size $c: mc(\mathcal{P}', c) \geq mc(\mathcal{P}, c)$ if \mathcal{P} has intercept-free embedding in \mathcal{P}'

Proof Sketch.

Every miss in \mathcal{P} (RD > c) remains a miss in \mathcal{P}' (RD' \geq RD)

Alternative: Monotonic RD Injection

Definition (Monotonic RD Injection)

For each RD of value d in \mathcal{P} , there exists an RD in \mathcal{P}' of value $d' \geq d$

Comparison

- Order-independent condition
- Less intuitive than intercept-free embedding
- Maybe difficult to verify

Theorem (LRU Monotonicity via RD)

Monotonic RD injection implies $mc(\mathcal{P}',c) \geq mc(\mathcal{P},c)$ for all $c \geq 0$

Ding & Zhu (Rochester)

Working-Set Cache Monotonicity

Definition (Monotonic RI Injection)

For each RI of value r in \mathcal{P} , there exists an RI in \mathcal{P}' of value $r' \geq r$

Theorem (Working-Set Monotonicity)

Let S be cache hits in P that remain hits in P'.

Then cache consumption $c(\mathcal{P}',\mathcal{S}) \geq c(\mathcal{P},\mathcal{S})$

Cache Consumption

- Measured as time-space product
- Tenancy = time from access to next reuse/eviction
- Monotonic RI ⇒ Monotonic consumption

Naive Matrix Multiplication

Algorithm:

```
for i=1 to n do

for j=1 to n do

for k=1 to n do

C[i,j] \mathrel{+}=

A[i,k]*B[k,j]

end for

end for
```

Table: RI & RD for 3-access (element granularity)

ri	Count	rd	Count
3	$ n^3 - n^2 $	3	$n^3 - n^2$
3 <i>n</i>	$n^3 - n^2$	2n + 1	$n^3 - n^2$
$3n^{2}$	$n^3 - n^2$	$n^{2} + 2n$	$n^3 - n^2$
∞	$3n^2$	∞	$3n^{2}$

Observation

Both RI and RD values and counts are monotone in n

Matrix Multiplication Monotonicity

Corollary

Naive matrix multiplication has monotonic locality for:

- Element granularity caching
- Block granularity caching
- Both LRU and working-set caches

Proof Sketch.

- Element granularity: RD/RI values monotonic in n (from table)
- Block granularity: Similar analysis with spatial reuse
- Monotonic injection exists when increasing n to n+1
- Therefore, miss count increases with problem size

Block Granularity Matrix Multiplication

Table: RI for 4-access matrix multiplication (block size b)

ri	P(ri)	Count
1	$\frac{1}{4}$	n ³
3	$\frac{1}{4} - \frac{1}{4bn}$	$n^3 - \frac{n^2}{b}$
4	$\frac{1}{4} - \frac{1}{4b}$	$n^{3} - \frac{n^{3}}{b}$
4n - 4b + 4	$\frac{1}{4b}-\frac{1}{4bn}$	$n^{3} - \frac{n^{3}}{b}$ $\frac{n^{3}}{b} - \frac{n^{2}}{b}$ $n^{3} - \frac{n^{3}}{b}$
4 <i>n</i>	$\frac{1}{4} - \frac{1}{4b}$	'' h
$4n^2-4nb+4n$	1 1	$\frac{n^3}{b} - \frac{n^2}{b}$
∞	3 4 <i>bn</i>	$\frac{3n^2}{b}$
•	$\frac{1}{4b} - \frac{1}{4bn}$	$\frac{n^3}{b} - \frac{n^2}{b}$ $\frac{3n^2}{b}$

All values and counts are monotone in $n \Rightarrow$ Monotonic RI injection

Ding & Zhu (Rochester)

Worst-Case Locality

Question

What is the worst locality we can expect under optimal caching?

Theorem (Random Access Miss Ratio)

When accessing n blocks randomly with any stack algorithm:

$$mr(c) = \begin{cases} \frac{n-c}{n} & 0 \le c \le n \\ 0 & c > n \end{cases}$$

- Stack algorithms: LRU, MRU, LFU, Random, OPT
- All have the same miss ratio for random access
- Linear decrease with cache size

Cyclic Access Patterns

Trace | a b c d a b c d a b c d

OPT Stack 1 | a b c d a b c d a b c d

2 | a a a d d d c c c b b b a a a c d

OPT Dist | ∞ ∞ ∞ ∞ 2 3 4 2 3 4 2 3

C=2 Hits | H H H

OPT stack for cyclic accesses (n = 4)

Cyclic Pattern: a, b, c, d, a, b, c, d, ...

Theorem (Cyclic Access Locality)

Optimal locality of cyclic accesses is asymptotically the same as random access

Proof Sketch.

OPT distance uniformly distributed in [2, n]

$$mr(c) = \frac{n-c}{n-1} \approx \frac{n-c}{n}$$

Worst-Case Proportionality

Theorem (Main Result: Proportionality)

For any workload accessing n data items, with optimal caching:

$$mr(c) \le \begin{cases} \frac{n-c}{n-1} & 0 \le c \le n \\ 0 & c > n \end{cases}$$

Proof Idea.

- Sort items by access frequency
- Cache top c most frequently accessed blocks
- Each appears at least $\frac{kc}{n}$ times (in k total accesses)
- Guarantees: $mr(c) \le \frac{n-c}{n} \le \frac{n-c}{n-1}$

Proportionality: Implications

Universal Guarantee

- Holds for all programs and inputs
- Requires only optimal cache management
- No program optimization needed
- Bound is reachable

What it means:

- Doubling cache size
- ⇒ At least halves miss ratio

Contributions

1. Monotonicity

- Formalized conditions for locality monotonicity
- LRU: Intercept-free embedding or Monotonic RD injection
- Working-set: Monotonic RI injection
- Proved for naive matrix multiplication (element & block granularity)

2. Proportionality

- Worst-case miss ratio is $\leq \frac{n-c}{n-1}$ for optimal caching
- Universal property (all programs)
- Linear improvement with cache size is guaranteed
- Bound is tight (achieved by cyclic/random access)

Practical Implications

For Algorithm Designers

- Check monotonicity conditions for your algorithm
- Monotonic programs: cannot improve locality by increasing problem size

For Cache Implementers

- Target at least linear performance scaling
- If observed performance is sub-linear, optimization possible
- Proportionality is achievable with frequency-based replacement

Key Message

These are **complexity theorems** — properties that hold across all inputs

23 / 25

Future Directions

• Monotonicity:

- Characterize larger class of monotonic programs
- Automated proofs of monotonicity
- Extension to parallel programs

• Proportionality:

- Practical algorithms achieving proportionality
- Multi-level shared cache

Thank You!

Questions?

Data Access Complexity: Monotonicity and Proportionality

Chen Ding Yifan Zhu University of Rochester

cding@cs.rochester.edu
yifanzhu@rochester.edu

