
Secure IVSHMEM: End-to-End Shared-Memory Protocol with
Hypervisor-CA Handshake and In-Kernel Access Control

Hyunwoo Kim, Jaeseong Lee, Sunpyo Hong, Changmin Han
Intel, Seoul, South Korea

MemSys '25 - International Symposium on Memory Systems

October 7–8, 2025, Washington, VA, USA



Problem & Motivation

• Modern automotive and embedded systems use virtualization for flexibility and isolation.

• IVSHMEM enables high-speed zero-copy communication between VMs, but offers no security 
controls.

• Security is critical: Eavesdropping or tampering in mixed-criticality environments (e.g., RTOS with 
Android VMs) can have severe consequences.

MemSys '25 Secure IVSHMEM 2



Background: IVSHMEM and Security Concerns

• IVSHMEM: Inter-VM Shared Memory protocol, 
implemented as a PCI device, mapping regions into each 
VM.

• Delivers superior performance compared to TCP/virtio 
for inter-VM comms.

• Lacks any inherent access control: All VMs with 
IVSHMEM device can access all regions.

MemSys '25 Secure IVSHMEM 3



Threat Model

Assets:

Adversary:

Security Goals:

• Shared-memory contents (e.g., control commands, sensor data)

• VM Identities (certificates, keys)

• Malicious or compromised VM/process

• Can attempt to map IVSHMEM and access others' data

• Confidentiality, Integrity, Mutual Authentication

MemSys '25 Secure IVSHMEM 4



Solution Overview

Secure IVSHMEM combines 3 techniques:

1. – Per service/channel allocation in the shared memory region

2. – Prevent unauthorized access at the OS level through system call hooks

3. – Mutual authentication with hypervisor as certificate authority

Channel separation

Kernel module enforcement

Hypervisor-mediated handshake

MemSys '25 Secure IVSHMEM 5



Design Details: Channel Separation & Access Control

• Channel separation: Each service pair gets a distinct buffer in shared memory; host controls 
allocation.

• Strict kernel enforcement: System call hooks block unauthorized access before handshake 
completes.

MemSys '25 Secure IVSHMEM 6



Design Details: Hypervisor-mediated Handshake

MemSys '25 Secure IVSHMEM 6

● Handshake: Mutual authentication, 
certificates/no-replay, host allocates secure 
channel only on success.

● Hypervisor act as trusted CA, Certificates and 
private keys are provisioned to each VM by 
the hypervisor.



Implementation

MemSys '25 Secure IVSHMEM 7

● Kernel module: Dynamically hooks IVSHMEM driver syscalls (open, mmap, etc.) to enforce 
per-channel/ID access.

● User-space: OpenSSL-based handshake; hosts provision certificates and exchange signed 
handshake messages.

● Library: BSD socket–like C API for easy adoption (ivshmem_connect, ivshmem_send, …).

● Channel mapping: Zero-copy ring buffers with doorbell interrupts for performance optimization.



Performance Results

• Handshake latency: <100μs (one-time)

• Runtime overhead: <5% latency, negligible bandwidth loss compared to vanilla IVSHMEM

• Security validation: 100% blocking of unauthorized access scenarios

MemSys '25 Secure IVSHMEM 8



Conclusion & Future Work

• Secure IVSHMEM provides high-speed, secure shared memory for virtualized systems.

• Achieves mutual authentication and fine-grained access control with minimal overhead.

• Well suited for safety/life-critical domains (automotive, embedded, etc.)

• Full transparency for legacy applications

• Key management enhancements

Future Work

MemSys '25 Secure IVSHMEM 9


