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Is it the end of Moore’s Law?

“I predict Moore’s Law will never end.
That way | will only be wrong once!”

Alan Kay: Communications of the ACM 1989




The fundamental problem with Wires (and data movement):

Moore’s Law undermined by data movement (when smaller is not better)

Energy Efficiency of copper wire: e 1B Compute Energy
— Power = Frequency * Length / cross-section-area D o3 - On-die

g 0.6 - Interconnect Energy
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— Wire efficiency does not improve as feature size shrinks °
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Energy Efficiency of a Transistor:
— Power = V? * frequency * Capacitance
— Capacitance ~= Area of Transistor
— Transistor efficiency improves as you shrink it

DARPA

B
MOS Transistor total power per package

Net result is that moving data on wires is starting to cost
more energy than computing on said data

(see also Silicon Photonics)
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Explosion of Computing Demand: Driving Need for Hyper-exponential

Improvement in Performance, Energy Efficiency and Integration

Demand for Computing

Supply for Computing
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Chip introduction
@ Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power*, w dates, selected
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NVIDIAnomics

NVIDIA A100: 250W TDP

e NVIDIA H100 SXM has a
700W TDP

e Next Generation B100 is
projected to consume
1400W TDP
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.- i Street price $20k-S30k
NVldla Economlcs: Make $5'$7 — Prices lower @ volume

for Every $1 Spent on GPUs And still supply cannot
By Agam Shah keep up with demand
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ENERGY EFFICIENCY - UNSUSTAINABLE

Al Training Energy footprint on par with entire ind ustrial nations

MetaAlcluster == Ireland
53-561 TWH”

Performance Per Walt: A Critical Metric in the Age of Al
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Al Energy Consumption On Pace to Surpass Supply
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Impact of Al Operational Assumptions on Total Server Estimates

https://datacenters.lbl.gov/sites/default/files/EnergyUsage\Webinar12062016.pdf
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2025 Report to Conaress on Data Center



https://datacenters.lbl.gov/sites/default/files/EnergyUsageWebinar12062016.pdf

Cooling (3kw socket, 1MW rack)

ZutaCore delivers liquid cooling for waterless Al factories.

82% lower energy
consumption versus air.
Increases compute density
>250kW per rack.

Cools 2800+ watts for Al
silicon.

Enables new levels of PUE,

WUE, sustainability and
energy recapture.

Bzuracone




This is HPCs future if we continue business as usual!
... and scale alone is just power and capital cost...

AVERAGE PERFORMANCE IMPROVEMENT PER 11 YEARS FOR SUM OF
TOPS500 LIST SYSTEMS

1000x / 11yrs




HORIZONTAL GRID SPACING [KM]

Example: Kilometer Scale Climate Modeling
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Landmark 3.5KM Simulation on Frontier
(exascale) achieved 1.5 simulated years per
day performance.

At that rate, for an ensemble calculation it
would take ~20 years of dedicated
computing to answer important policy
questions necessary to achieve 2055 goals.

(and that is just for one policy scenario!!!)

Even if we wait for HPC performance
improvements, projected 1km modeling goal
will be achievable in 2055 at the current rate
of progress

This is NOT an acceptable future when there
are important scientific imperatives that have

global societal consequences...

https://climatecomputer.ncsa.illinois.edu/



Algorithm-Driven Codesign of Specialized Architectures for

Energy-Efficient HPC

AVERAGE PERFORMANCE IMPROVEMENT PER 11 NASEM study on post-Exascale
YEARS FOR SUM OF TOPS500 LIST SYSTEMS Comput|ng “We must expand (and

Business as usual”is failing create where necessary) integrated

teams that identify the key
algorithmic and data access motifs
in its applications and begin
collaborative ab-initio hardware
development of supporting
accelerators,... a first principles
approach that considers alternative
mathematical models to account
for the limitations of weak scaling.”

This is a call for co-design at a much deeper level than we are currently realizing

Addressing cost is crucial: Establish collaborations with industry and the Hyperscale Architects from get-go.




ASCR Competitive Portfolios: Algorithm-Driven Codesign of Specialized
Architectures for Energy-Efficient HPC

George Doru Popovici Luisa Patricia Gonzalez Kazutomo Yoshii Sophia Shao Xiaokun Yang
Michelogiannakis ANL UC Berkeley  U. Houston-Clearlake /

NE: B

\Anzoﬁ_\:;%ren Daniel Martin " Anw Myers Wéiqun Zhang ’ \ Damian Rousonmj ng\}nB;feL;;\g
Building on team’s expertise in:
® Computer Architecture including hardware design, and hardware generators (CHISEL and GEMMINI accelerator
generator), with successful chip tape-outs including compute-in-sensor, mixed-signal and HPC-class prototypes
® Computer Languages and Compiler Systems including ML-assisted code generation and Verified Lifting
® Applied Mathematics including algorithms coupling models suitable for different scales; Adaptive Mesh and Algorithm
Refinement (AMAR) paradigm, PDEs on structured grids, spectral methods (FFTs), particle methods, and scalable solvers




Specialization:

Natures way of Extracting More Performance in Resource Limited Environment
Many Different Specialized

Powerful General Purpose Many Lighter Weight
(post-Dennard scarcity) (Post-Moore Scarcity)
Probing Filter feeding '

Grain eating Coniferous-seed eating

4 /’ /’ ‘\W' ﬂ
Nectar feeding Fruit eating
ferial fishing Pursuit fishing ﬂ ﬂ}

e Chiseli Di "
p .-s._ 4 iseling Ip netting
: » AP
Scavenging Raptorial Swface skimming Scything

‘ ’ Apple, Google, Amazon,
Xeon, Power KNL AMD, Cavium/Marvell, GPU Microsoft Azure




L34 ppil Colella’s 7 Dwarfs of Scientific Com

Exploit the mathematical structure of the problem

No ok~

r

design principle for "analogous” computing

Structured Grids
Unstructured Grids

High-end simulation in the physical sciences = 7 numerical meth
Fast Fourier Transform
Dense Linear Algebra

{ Model and

/ \ V \
G r .l‘ |
Sparse Linear Algebra & doonaite s

/' Programming
Pa rtiCleS : (Questions 5 and 6) __ﬂ_‘

Evaluation
Monte Carlo Applications (Question 7) Architecture and HW
(Questions 1 and 2) (Questions 3 and 4)

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004

Office of Also in “The Landscape of Parallel Computing Architecture: A view from Berkeley” 2008

=——d Science http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
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Example of Mixed-Radix MultiDimensional FFT Accelerator

Initial steps towards a basis set of hardware accelerator primitives for science

Generated Verilog

Parameters

Streaming Width \ e;atbb “
Template Floating Point Precision o
PermUte design dut (.a(a), .b(b), .c(c), y(¥));
perma e
Permute w;:;;
DFT, > e Generator é 2s0
Permute Only 3 Codelets oo
C o, J cHISEL :

J

FFT96 Accelerator Die: 16nm TSMC . ) )
. > Accomplishment: Demonstrated general FFT Accelerator tile generator in
Area eff.: 4.18 TF/mm ,
16nm TSMC that outperforms NVIDIA H100 by 50x in raw performance/area

E ff.: 4.8 TF/W
nerey € / and 50x in energy efficiency/flop
NVIDIA H100 in 4nm TSMC (10x —Required only 3 codelet primitives
denser than 16nm) Goal: Generalize this approach to generators for accelerator hardware
Area eff: 0.08 TF/mm? primitives that cover broad spectrum of algorithms (e.g., FFT, Dense/Sparse
Energy eff: 0.0957 TF/W Linear Algebra, particles and PDEs)

Mario Vega, Xiaokun Yang, John Shalf, Doru-Thom Popovici:

Towards a Flexible Hardware Implementation for Mixed-Radix Fourier Transforms. HPEC 2023: 1-7



Next Steps — Implement as ASIC (OpenROAD)
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Chip:
Node:

Area:

Fmax:

FFT9_fpuv3
freepdk45
47232160.000um*2
390.346MHz



Architecture Specialization for Science

(hardware designed for the algorithms) can’t design effective hardware without math

Materials Smart Sensors

Density Functional CryoEM detector
Theory (DFT) 1Terabyte / sec

Use O(n) algorithm
Dominated by FFTs
(1/3 of DOE workload)

Compute at data
source (dataZ2info)

Genomics

String matching

Ultra-narrow
datapath 2-8bit
(ACTG)

PDEs on Block
Struct. Grids

Extreme Strong

Scaling for CFL limited
problems

(bigger is not better)




There are in fact many different kinds of Al models

with significantly different requirements

Computer Vision
Models

Machine Learning
Models

Deep Learning

NLP Models wadale

Hybrid Models Generative Models




Neil Thompson: Economics of Post-Moore Electronics

http://neil-t.com, MIT CSAIL, MIT Sloan School
The Top

Technology 01010011 01100011
01101001 01100101 @

01101110 01100011

Transistor Scaling

' Q Better Performance/ Cost

01100101 00000000 Investment
Software Algorithms Hardware architecture
Opportunity Software performance New algorithms Hardware streamlining
engineering Market growth
Examples Removing software bloat New problem domains Processor simplification
Tailoring software to New machine models Domain specialization Transistor Focus
hardware features Technology, divice &circuit
innovations,
system integration
T
The Bottom imestment e ametanalt
Papers for example, semiconductor technology

1.  The Economic Impact of Moore’s Law

2. There’s Plenty of Room at the Top: What will drive computer
performance after Moore’s Law?

3. The Decline of Computers as a General Purpose Technology System Focus

Market growth

MIT
INITIATIVE ON TH:
DIGITAL ECONOM

BERKELEY LAB
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Domain specific Architectures driven by hyperscalers

in response to slowing of Moore’s Law (switch to systems focus for future scaling)

Dharmesh Jani, Facebook —
ODSA W orkshop, Reglonal Summlt Amsterdam Sep. 2019

Robotic PA
Autonomot
Vehicles

)
=
=
)
©
=

~\ Graphics Computation
< HPC Computation
~ Standard Computation

Transistor Scaling

' @ Better Performance/ Cost

Market growth J

Transistor Focus

Investment

Technology, divice &circuit

innovations,
system integration

Increased functionality,

Investment
and/or lower cost

System Focus




Why Advanced Packaging & Chiplets?
Because Package Performance is Pin Limited

Gordon Keeler
DARPA PIPES

total power per package
4')’(

o
® e L o,co.o&" o
o AL

Rent’s Rule:
Number of pins = K x Gates? (IBM, 1960)
K =0.82, a = 0.45 for early Microprocessors

10° =------H-.'

High SERDES rates
I N run counter to end of
1978 1986 1994 2000 2008 Dennard Scallnq

Year

Source: J. Poulton, Nvidi?@



What is a Chiplet?

Through-Silicon Vias (TSVs), pBumps
]

B e BSSEHE o covaler  DRAM

G P U metalization layer dice 3 SO{pm

0000000000000
Solder Microbumps Package substrate
or Copper micropillars

data links / HBM stack @ 500MHz
Monolithic Die MCM 2.5D

BERKELEY LAB



Chiplets have many well known advantages

Yield and cost Overcome the Heterogeneous Scalability &
efficiency memory wall integration Modularity/Reuse

NVIDIA Grace Hopper Superchip

®Bad die  Reticle
P

’“\ HBM is 3D

o - S | integration

HBM Die

[ 20 (€] e Die

77% Yield 40% Yield
17 Good Dies 2 Good Die

*T I 6 &
e CPU + GPU AMD. Two
Lau. et al. Chiplet design and different
heterogeneous integration
packaging products.

Same chiplets




How do chiplets enable domain specialization?

Lower cost barriers to co-integrating specialization From DARPA CHIPS

Access to Commercial IP
> Memory Big Data Movement

Reusable function blocks

- QR decomposition § 3 SerDes . Image processing
= Waveforms 1 =  Machine Learming

e FFT < High-speed chiplet networks

See the multi-agency chiplets workshop at https://sites.google.com/Ibl.gov/chiplets-workshop-2023/home
CHIPS modularity targets the enabling of a wide range of custom solutions
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Heterogenous Integration Driving Exascale HPC

A PACKAGING BREAKTHROUGH
FOR HIGH-PERFORMANCE COMPUTING
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Building the Foundation for Exascale Computing
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Technology Insertion into Mainstream Platforms

AMD, Intel, Arm offer integration path for 3rd party accelerator “chiplets”

Modular AMD Chips to Embrace Custom 3rd
Party Chiplets

m By Francisco Pires last updated June 20, 2022

Supercharging learnings - and earnings - from the console space.

o e Q @ o O ® Comments (2)

When you purchase through links on our site, we may earn an affiliate commission. Here's how it
works.

To 'Meteor Lake' and Beyond: How
Intel Plans a New Era of 'Chiplet'-
Based CPUs

At the Hot Chips 2022 conference, Intel teased its upcoming 'Meteor Lake' and ‘Arrow Lake'
processor families, which will use multiple tiny tiles fused together in an attempt to break free of
the limits of monolithic chip design. Here's why little tiles are a big deal.

@ By Michael Justin Allen Sexton August 24, 2022 f X @& -

October 19, 2023

It is safe to say that ARM isn't a scrappy startup that was once the pride of the
UK. The US-based IPO made the chip designer a big-game chip player, and
the new capital is kickstarting some major initiatives to find more customers
for its products. A new effort called Total Design aims at making it easier for
companies looking to design chips in-house, an idea gaining ground with the
Al boom and chip shortages.



http://chiplets.lbl.gov/

MoSAIC: Modular System for Accelerator Integration and Communication

Cross-USG Heterogeneous T..cegraw
Tile System on Chip
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Lean and Mean

Operates at 250MHz (1/4 real-time)
Driverless inter-accelerator interaction
PGAS + MsgQs for communication
C++20 software stack




More Efficient Chiplet Development and Integration Path

Platform for open development with path into commercial platform

NOC to HBM Mem NOC to HBM Mem
Ctl. Chiplet Ctl. Chiplet AMDZ1  RYZEN

Community Developed Open Platform
Vector CPU Chiplet  Vector CPU Chiplet

(13 cores) (13 cores)

PCle I/O
chiplet

o

Accelerator  [RSRREBARHEE Commercial product
integration

TOFU Chiplet

Common Open

Chiplet Eval Board Interop NOCto HBM M NOCto HBM M
for Bring-up B””Qdi‘\’/PCB Ctl. Chiplet Ctl. Chiplet

Prototype on Modular
Architecture for function and
performance integration

lplet Design with 3DIC Packaging Workshop
4



The Road to an Open Chiplet Marketplace

It’s a big vision, but we are not there yet....

Open Chiplet
Marketplace

Initial Driver for Re-usable Chiplets L
_________________________ -- Viable Multi-Vendor Business

Model
- PHY, Protocol and Transport
Mechanical, thermal & power
- Pre/post-silicon test & debug
- Software standards

Silicon qualification, reliability

I I
1 I
: 1
: Semi-Custom :
I i
1 I
1 1
1 1
1 I
1 1
1 1
i 0 : and manufacturing
i |
I i
: I
I i
: I
i i

Multi-Vendor
Chiplet Platform

Proprietary
Chiplet Platform
-~ Single vendor controlled chiplet =~ — s===scmecce e
and packaging stack

PHY, Transport and Protocol
standards required for
interoperability

From Jeff DiFilippi at ARM
OCP Global Summit 2023

a rm Products Markets

Barriers to Industry Adoption

TECHNOLOGY TOPICS

Today Chlplets

adesset,

r



Industry: Heterogeneous Integration Roadmap

Data to the Autonomous
Mobile Cloud Vehicles
Everywhere 2

HETE ROGENEOUS Data Centers ‘
INTEG RATIO N ROAD MAP All future applications will be further transformed through the power of Al, VR, and AR.

2019 Edition

http://eps.ieee.org/hir

HPC and Mega-datacenters is 2"d chapter

Die + Heterogeneous

A~ IEEE /%% [ELECTRON IEEE j
&5 Bciane* i @D Photonic

SOCIETY ¥ SocIETY® Society




--—*:. = Chiplets at LBL Home Register Demos Meeting Venue|

http://chiplets.lbl.gov
LBNL/OCP Open Chiplet Economy

Experience Center

G- n = T ~ Hosted by Lawrence Berkeley National Laboratory (LBNL)

Co-organized by the Open Compute Project (OCP)

Date: June 24, 2024
|..temse“ ’ﬁ (‘ :

Time: 12:00pm to 5:00pm

Location: Berkeley National Lab, Wang Hall Bldg. 59, Room
59-3101

JEDEC




OCP Modularity for HPC & Al Workstream needs your input!

How to participate:
o Subscribe to the Project Mailing List

o Add the Project Meeting Calendar
e Join the Conversation

Patricia G. George M. Anu R.
(LBNL) (LBNL) (Microchip Inc.)

luisa.gonzalez@ocproject.net

georgios.michelogiannakis@ocproject.net

tony.qutierrez@ocproject.net

anu@microchip.com



mailto:luisa.gonzalez@ocproject.net
mailto:georgios.michelogiannakis@ocproject.net
mailto:tony.gutierrez@ocproject.net

Dynamic Reconfiguration (aka resource Disaggregation)

Ultra-Performance co-packaged optics/networking for resource
disaggregation




Diverse Node Configurations for Diverse Workload Resource Requirements

Data Mining
6-links: HBM
15 links: NVRAM
(capacity)

4 links: CPU
(branchy code)

Inference Graph Analytics
16 links to TOR « 16 links HBM
: CPU
(streaming data) e 8links TOR
* 8 links HBM (weights) « 1 Link CPU
« 1 link: CPU

HBM - PINE Photonics with Keren Bergman



Need for Memory Disaggregation

Memory pressure at NERSC, 2018

Cumulative fraction of node hours (%)

100

75

50

25

= = Edison 2014 == Edison == Cori-Haswell Cori-KNL

About 15% of NERSC workload
uses more than 75% of the
, available memory per node.

And ~25% uses more than 50%
of available memory.

But 75% of Haswell job hours
(60% of KNL) use < 25% memory

25 50 75

Fraction of Node Memory Used (%)

Brian Austin: NERSC Workload Analysis

100

Overestimate: maxrss x




Disaggregated Node/Rack Architecture

Current server Disagagregated rack
’ cru ) cru) eru/cry/
CcCry cpa/ cpa/ GP(// GPU/

MI kMI %;]

e fore/ e fore/

AP A

-4 crufore/

i

Most solutions current disaggregauon soiuuons use Interconnect bandwidth
(1 — 10 GB/s)

—-— 4 am m - - [ 1] am - - - m mom = - - mam 4 A - - -_ A




An Al Chiplets Example in 6 Easy Steps

Memory Disaggregation within the Package

Luisa Patricia Gonzalez Guererro (LBNL)




Recipe for Hardware Specialization enabled by chiplets modularity in 6

steps

Ingredients:
4 Chiplets
1 Interposer CNNs
Transformers
Chiplets Marketplace ;)
e Wl DeepSpeech 2
; 3 1

Three optimal Systems in Package
(SiP) for Al




Step 2: Scalable Interposer 2D grid with NxN Chiplets

- Network-In-Package (NiP)

- Packet switched

- Light weight

- Minimum transmission latency
(1CC)

No Cache Coherency

- Message passing for parallel

computing
Hardware Message Queues

D2D D2D D2D

Q|Chiplet[A Q|Chiplet[A AQ|Chiplet[a

:S] 00 [é’:&‘] 01 ‘:3] ON [é
(D2D) D2D ‘ (D2D)

@}@ D2D lozo@
- Chiplet o2 Chiplet e Chiplet Q
al 10 o™ 11 Al 1IN [A
D2D D2D D2D

D2D D2D D2DInip
= Chiplet (Ql‘ Q Chiplet a2 Chiplet Q
al NO |o al N1 |o]"""|la)] NN (o

D2D D2D D2D

:

(D2D)

Dataflow is regular and predictable




Step 3: Let’s do some math and define our chiplets parameters

(D2D)
refreee)
R

[Control] NiP ]
(D2D)

D2D

1O Die
(host adaptor)

Chiplet 4 mm x 4mm

Sub 20nm @ 1GHz

Sub 10nm @ 1GHz
Sub 5nm @ 2GHz

1 |[Systolic Array 64 x 64 PEs 128 x 128 PEs
2 |Scratchpad 1MB oMB
3 |Accumulator 64 acc 128 acc




Step 4: Architecture for an Al SiP

Scratchpad chiplets

D2D)
il
| N
) mEEn
D)

- & oD
- Left: Input/Output Buffer Al F Al (| ol e
putjoutp ... EEEEl @R ... @R
- Top: Trained parameters _ [convol] (NP
- KxK systolic arrays chiplets Lo;fi " e T
) ; . = ©2D)
Accumulator chiplets : last Il oo I ccc
row g BBl s =
- 10 Chiplet: From and to host )
(D2D)
[a) m [a)
g &
(D20}




Step 5: Profiling Al algorithms

Optimal Size of systolic array
- Optimal Scratchpad capacity (MB)

Alexnet AlphaGoZero Deep Speech 2

1250 500 | 2500 °°
3 3 |
- 385 - 164200 3 15001140562
2 500 139 2 200 63912 > ’
5 e 74 46 51 |8 00| 29194 29975 39580 £ 1000 s
© @© © ]
~ 0 ~ 0 | O —® | - 50 l\\ 177736 131919

50 100 500 1000 0 250 500 750 1000 0 | ————9
0 500 1000 1500 2000
Size of array Size of array Size of array

Faster RCNN Resnet50 Sentimental Seq CNN
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Step 5: Profiling Al algorithms

Optimal Size of systolic Array
Optimal Scratchpad capacity (MB)

Alexnet | AlnhaGoZern | Deep Speech 2
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Step 5: Profiling Al algorithms

Optimal Size of systolic Array
Optimal Scratchpad capacity (MB)

Alexnet | AlnhaGoZern | Deep Speech 2
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€ 760 Squared systolic F|
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Step 6: Three different SiPs for three dataflows

Sub 20nm SiP Sub 10nm/5nm SiP
CNN Deep Trans. CNN Deep Trans.
Speech Speech

Syst. Array PEs 256x256 [512x64 |512x512 |256x256|512x128 512x512
Syst. Array Chiplets Num. 16 8 64 4 8 16
Scratchpad Chiplets Num. (3D) |16 27 20 10 27 12
Accumulator Chiplets Num. 4 1 8 2 1 4
Embeddings Chiplets Num. 0 0 8 0 0 4
BW [TB/s] per Chiplet 1 1 1 2/4 2/4 2/4
Data lanes per Chiplet 8192 8192 8192 16384 |8192 16384
Chiplet Grid 6x6 6Xx6 10x10 4x4 6x6 6x6
Interposer Size* [mm x mm)] 38x38 38x38 64x64 26x26 |38x38 38x38




Evaluation: Better Latency and Better Energy consumption

Normalized Latency

101 E | | | El

Bg;((e)line B
0 sub20nm

107 ¢ sub10nm E
C sub5nm

101

102 E

103 E

104

DeepSpeech2 FasterRCNN Transformer

~100x lower latency than H100 baseline

Normalized Energy Consumption
101 3 T I I

1071 &

DeepSpeech2 FasterRCNN Transformer

~10x lower energy consumption than H100 baseline




Overspecialization: Fear Not!

‘

=
| canm E] e

4 Chiplets + 1 interposer = 4 highly
specialized SiPs for Al

+100x less latency than baseline
+10x better energy consumption than
baseline

Final thoughts and next steps

Chiplet 2% Application

Chiplet = Kernel, i.e. (GEMM)
HPC applications:

- Density Functional Theory
Molecular Dynamics
Climate modeling
Processing In Cell
NEGFs
SpVM




Thank you!

rDZﬁD (D2D)
.@ EQ [e L m E%] — Embeddings
S8 S : Pliccohomilari
(Control)( nie ]

Specialized Al Card for
DeepSpeech2

4 Chiplets + 1 interposer = 4 highly

ll
specialized SiPs for Al “

"" Specialized Al Card for CNNs

HU

wp U” ”‘ ’

»u '

100x less latency than baseline i M H
10x better energy consumption than baseline *W M

, Specialized Al Card for
‘ Transformers

And a lot of that was about memory
specialization and memory fabrics




CoPackaged Optics and Photonic Disaggregation

Lets take this to the net level!




179 13.9 &V X2eq 50 um

GPU

Through-Silicon Vias (TSVs), uBur
DRAM T
dice ﬁﬂlw

e . I—‘—‘—l
Silicon inte rposer 1024 data links / HBM stack @ 500MHz

Package substrate

In-package integration

Solder Microbumps
& Copper Pillars@~10Gbps

Wide and Slow!
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DWDM Using Silicon Photonics

Ring Resonators @ ~10-25 Gb/sec per chan
Many channels to get bandwidth density

Wide and Slow!
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Comb Laser Sources

Single laser to efficiently
generate 100s of frequencies

Wide and Slow!




Photonic MCM (Multi-Chip Module)

Comb Laser Source with
DWDM Silicon Photonics
Wide-and Slow for high speed links

Through R:on Qasp g Q‘T’I"PFF*‘“"

...............

Silicon interposer 1024 data links / HBM stack @ 500MHz

Package substrate




Photonic MCM (Multi-Chip Module)

Fiber carrying 1-8 Tb/s @ 0.1pj/bit CPU | | GPU
:‘) j RAM | | NVM
CPU/GPU 1 | Packet Switching

4 Fiber coupler
pitch: 10s of um

High-Density fiber coupling array
with 24 fibers = 6-12 Tb/s bi-
directional = 0.75-1.5TB/s __ Photo|

g Qmwm
IEEETETEN EESEESRSIE v controller:::::

{\ e |
G P U metalization layer i“"—‘-; S = = T - ‘T»E:—Em
= il hip.

q s o DS e

To other nodes

NVRAM MCM

EEDRE P
VI /

| —

aps . =1 |
Silicon interposer 1024 data links / HBM stack @ 500MHz

Package substrate




Inference Data Mining Graph Analytics
*+ 16 links to TOR *  6-links: HBM * 16 links HBM
(streaming data) * 15 links: NVRAM (capacity) + 8links TOR
* 8 links HBM (weights) * 4 links: CPU (branchy code 1 Link CPU

+ 1link: CPU

Configure for Inference

r



Latency Sensitivity Study: Focus on Single-Hop Networks

Need to minimize network diameter due to latency sensitivity

Dots are measurements.

PARSEC 3 on real hardware: Dashed lines are curve fitting degree 2 polynomials.
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°1 %+ blackschol
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significant performance degradation %1 IR BRIV e < i PN
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Low-Diameter/Single-Hop Interconnects (Dragonfly or All2All)

Started in HPC, but seeing traction in hyperscale and OCP

Cray Dragonfly — Aries/YARC2
2016

- -
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Google Aquila
2022

Aquila SDN
controller on external
control servers

~TiNchip

Inband controlisession / 1x100G Ethemet to DCN ﬁ:gfﬁw
Aquila Control plane with TiN CPU / | GNet
Aquila Ethernet links to (optical)
Dataplane datacenter spine
' s =
GNet cell fabric with A ) ~. - 24x25G
Ethernet at the boundary i % ::: intra-pod
GNet
st (copper)

N 2 16x PCle Gen3 to up to 2 hosts

TiN l:)npsgrranged ina
Dragonfly topology
(12{TiNs in a pod; 48 pods)

. )
® 1. Solicitation request cell (deterministic) ‘ | | ][]f[]| ‘ @
@ 2. Solicitation grant cell (adaptively routed) I 2]
3. Data cells adaptively routed, reassembled, PCle to host machines ®
reordered at destination (if required)
@
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®
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Key Value Proposition for AWGR Lambda Shuffle

* Electrical All-2-All for single-hop networks - .
— O(N?) cables — &
— O(N) connectors/endpoint

* Photonics lambda shuffle (unique to photonics)
— O(N) cables
— O(k) connectors/endpoint

& Optical connectors are expensive and take space

EEEEEEEEEEEEE
AAAAAAAAAAAAAAAAAA



Photonic Lambda Shuffle

Foho
Foly
FoA,

F07\n

F1Ao
Fl}\l
FiA,
I:1}\n

FZAO
FoAy
FZAZ

Fiho
FoAy
I:m7\n-1

Optica/OSA Industry Incubator 2012



Monolithic AWGR (stamped in plastic) or
Wave Selective Ring Resonator Array (silicon lithography)

rol\o '
E\ Wave Selective
1M Spatial/Wavelength-Selective Switch

FZ)\Z =g o "o o o
C e =755 — "o o "0

Fos

AWGR Folo
FOAI

FO)\Z
I:OAn

FoAs
FiA,
FoAs

I:1A0
I:1A1
I:1A2
FA,

FZAO
FZAI

Fulo |
FO}\Z

Optica/OSA Industry Incubator 2012



Some other stuff necessary to complete the picture

HBM4: an HMC-like Fiber Attach
Se ria I In ter fa ce to HBM Opportunity with expensive electric connectors
Example Samsung Custom HBM4 Connector (Expensive) Fiber (cheap)

Connector (Expensive) Copper Wire (cheap)

1% NVLink Connectori )

61 This slide is obsolete as of NVIDIA Hopper

EEEEEEEEEEE



. Example Systems solutions are always more powerful than any individual component
Comb laser level innovation unlocks value only at Fabric System Level
All solutions depend upon co-packaged optics at the endpoints

Comb driven Optical fabric solution

Optical 10 Optical 10

o ,
g E S - ‘ Memory Pool g aPU E

XSCAPE'S TECHNOLOGY

Unlocks new
fabric system = oru S
g implementations
: _,|||“|"|||..,<' for the customer
where the end g Gpug
value is captured

CAN DO 128 A
FROM ONE DEVICE

o E— »
Xscape ‘s CombX Laser All-to-all switching

Optical Fabric System

SCAPE PHOTONICS




System Throughput per Dollar Spent on Memory

Photonic disaggregation vs. conventional fixed node

Rack-scale disaggregation with LBNL/Julich

Fair Memory scheduling Policy Le® le=6

[ Baseline I Disaggregated [ Baseline [ Disaggregated
1 2.5 —

w
u

Assume $4.9 per GB of memory capacity

W
o

2.0 i

Baseline: No disaggregation. 512 GB/node

N
u

N
o

Disaggregation offers 3.5x improvement in
system throughput per $

b
wn

=
(=}

Throughput per Memory Cost (jobs/100s/$)
o
w

Throughput per Memory Cost (jobs/100s/$)
(=)
w

Beyond a certain memory capacity,

negligible benefit in throughput but higher 0.0- 0 8 16 24 32 40 48 0.0- 0 ‘i é 1.2 1I6 2‘0 2I4
CapEx for memory Memory Pool Capacity (TB/rack) Memory Pool Capacity (TB/rack)

(a) Perlmutter trace. (b) JUWELS trace.




Anatomy of a “Value” Metric

Good Stuff

Bad Stuff




Anatomy of a “Value” Metric

Increase performance with Disaggregation
And Bandwidth Steering!

Deliver bandwidth to where it is needeg
By taking it from where it isn’t

Inference Data Mining Graph Analytics
- 16links o TOR + links: HBM 16 links HBM
(streaming data) + 15 links: NVRAM (capacity) «  8links TOR
D ata ce nter « 8links HBM (weights) « 4links: CPU (branchy code + 1Link CPU
+ 1link: CPU '
-
Access switches 503kW-h =

75.6kW-h(15%)

Aggregation switches )
1.74kW-h (10%)

\‘ 30% of datacenter power goes to network

Servers
355kW-h (70%)

So max savings by creating infinitely efficient
optical interconnect is 30%!

r



Some final shots and open questions for you to ponder




Question: If data movement is where all the energy is going?

 Why do we still teach students that the order of complexity of
algorithms as O(flops)?

* Can’t we teach order of complexity for data movement?
— This has been discussed in SIAM meetings for a couple of decades
— Even started a PADAL workshop series with Thomas and Didem on this question

11 Compute Energy

)
m .
. . -? e 0-8 7 On'dle
* What would a solution look like? E e Interconnect Energy
S o04- v
©
E 0.2
0

90 65 45 32 22 14 10 7

Technology (nm)



Compute in Memory? (the elusiveness of NonVon Architecture?

* Everyone talks about Compute In Memory as if it is easy.

* The very first concept Von Neumann had for a computer
had no boundary between compute in memory
— Hegotoverit
— Why do we blame the poor guy for finding a solution to what is
clearly a very difficult problem!
* Compute in memory is often proposed to solve this Von
Neumann Bottleneck

— Yet we have a commercially available compute in memory
platform
— Do vyou feel all of the problems have been solved?

— lIsit easy now?
* Also, the fundamentals of our memory is broken
— DRAM is densest, but neither cell cycle time nor density has not CEREBRAS WSE-S LARGEST GPU

46,225mm? Silicon 826mm? Silicon

improved at historical rates since hitting 10nm. Ao e 20 miion sransretors




Offload model is an unproductive way to use hetero-acceleration

(redesign for static dataflow and deep flow-through pipelines?)

Von Neumann CPU Dataflow (FPGA, GraphCore etc.
[1e 0 N LI SN 110 N EY R O
o | “"\‘,1_\ ‘."‘___‘ . \‘Q__> \!h IQ . ‘
{4 pof ’} = 1\} 0(’( Yo x ‘ .(’. ) .4: x o x )
o’ A\ \_/ S B S ”' "/ v

S

‘ [¢]
. Point wise
iFFT3D i

\ [

GEMM

pe i}



Billions

2.5

N

1.5

—

0.

(@]

Modeling the Baseline Computation

Limitations of the Offload Model for Accelerators

Prediction: Execution Time in CPU Cycles

m Data Movement

1st Fourier Stage

2nd Fourier Stage

Computation

3rd Fourier Stage

Pointwise

First Contraction

Second Contractign

Point
wise
GEMM

DRAM

Assumptions:

A. Hardware
- CPU with 8 cores
- CPU frequency is 3.9 GHz
- DRAM bandwidth 22 GB/s

iFFT3D

A. Problem Size
- Sphere diameter 64
- FFT size 128
- Number of bands 256
-  Number of atoms 256

Prediction: 15.4 billion cycles
Actual execution: 17.1 billion cycles
Accuracy - 90%




Billions

Peer Accelerator Model (merged Kernels)

20

18

16

14

12

10

Point
wise
iFFT1D

} FFT1D

Convert Problem to Compute Bound

GEMM

Execution Time in CPU Cycles

m Data Movement Computation
Assumptions:

A. Hardware
- CPU with 8 cores
- CPU frequency is 3.9 GHz
- DRAM bandwidth 22 GB/s

A. Problem Size
- Sphere diameter 64
- FFT size 128
- Number of bands 256
- Number of atoms 256

Computation becomes dominant

Merging different stages

The Transpose and Merge version requires a

lot of on chip memory

Baseline Merge 1 Stage




Offload model is an unproductive way to exploit hetero-accel

(For p-models, this also breaks encapsulation in subroutines as an abstraction)

Von Neumann CPU Dataflow (FPGA, GraphCore etc.

Pu— — p—
P | 2
. |

13 g
. Point wise
iFFT3D i

pe i}

This is an NP-hard graph embedding problem



Conclusions

* Future of energy efficient HPC and Al lies in specialization & Systems
— Modularity through advanced packaging
— Codesign that spans Algorithms, Software, and Hardware

* Systems Performance (not just device performance) is the future
— Components are bottom of the value chain

— Systems enabled by the unique properties of photonic devices are the top of the
value chain
— Memory fabrics are the essential glue that enables us to delver such systems

* Requires a modular approach to deliver systems
— Chiplets with baked-in memory fabrics are an opportunity for scalable modularity
— OCP Workstreams to negotiate standards to promote that modularity




PINE: Photonic Integrated Networked Energy Efficient Datacenters

Addressing the datacenter energy challenge!

1) Energy-bandwidth 2) Embedded silicon 3) Bandwidth steering for
optimized optical links photonics into OC-MCMs Custom Node Connectivity

[ Optically Interconnectivity for Deep Disaggregation
MCM can be reconfigured to accelerate different applications

Packet
Switching MCM

To other godes

NVRAM MCM

1 Th/second per fiber
Bergman

ENLITENED

Ghobadi

Bowers Liu Gaeta Lipson Patel Dennison  Gray Shalf
: 8%
‘ %) = Qb e .
\i. I)\i° - Q QUINTESSENT ﬁ"::.g cisco . Mii

CHANGING WHAT'S POSSIBLE



OCP Modularity for HPC & Al Workstream needs your input!

How to participate:
o Subscribe to the Project Mailing List

o Add the Project Meeting Calendar
e Join the Conversation

Patricia G. George M. Anu R.
(LBNL) (LBNL) (Microchip)

luisa.gonzalez@ocproject.net

georgios.michelogiannakis@ocproject.net

tony.qutierrez@ocproject.net

anu@microchip.com
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