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Is it the end of Moore’s Law?

“I predict Moore’s Law will never end.  
That way I will only be wrong once!”

Alan Kay: Communications of the ACM 1989



The fundamental problem with Wires (and data movement): 
Moore’s Law undermined by data movement (when smaller is not better)

• Energy Efficiency of copper wire:
– Power = Frequency* Length / cross-section-area

– Wire efficiency does not improve as feature size shrinks

• Energy Efficiency of a Transistor:
– Power = V2 * frequency * Capacitance
– Capacitance ~= Area of Transistor
– Transistor efficiency improves as you shrink it

• Net result is that moving data on wires is starting to cost 
more energy than computing on said data  

• (see also Silicon Photonics)

wire

4

PIPES:  Photonics in the Package for Extreme Scalability
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What’s the problem?  I/O bandwidth & power limits

highest-performance CPU, FPGA, GPU, ASIC

NVIDIA Tesla V100
GPU accelerator

5120 cores
125 teraflops, 300 W, $5K

in-package

NVIDIA DGX-2
Enterprise AI

16 GPUs
2 petaflops, 10 kW, $400K

board-level

IBM Summit
Top supercomputer
36,864 GPUs & CPUs

200 petaflops, 13 MW, $300M

system-level

Images courtesy of 
NVIDIA and IBM
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Attacking the data movement bottleneck across microelectronics applications

Gordon Keeler
DARPA



lengthscales

timescales

thermal 
design

Demand for Computing Supply for Computing

Explosion of Computing Demand: Driving Need for Hyper-exponential 
Improvement in Performance, Energy Efficiency and Integration



• NVIDIA A100:  250W TDP
• NVIDIA H100 SXM has a 

700W TDP
• Next Generation B100 is 

projected to consume 
1400W TDP

• Street price $20k-$30k
– Prices lower @ volume

• And still supply cannot 
keep up with demand

NVIDIAnomics
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AI Energy Consumption On Pace to Surpass Supply

7



8

Sarah Smith & Arman Shehabi LBNL-EETD
2025 Report to Congress on Data Center

https://datacenters.lbl.gov/sites/default/files/EnergyUsageWebinar12062016.pdf

https://datacenters.lbl.gov/sites/default/files/EnergyUsageWebinar12062016.pdf


Cooling (3kw socket, 1MW rack)
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This is HPCs future if we continue business as usual!
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… and scale alone is just power and capital cost…
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Example: Kilometer Scale Climate Modeling
• Landmark 3.5KM Simulation on Frontier 

(exascale) achieved 1.5 simulated years per 
day performance. 

• At that rate, for an ensemble calculation it 
would take ~20 years of dedicated 
computing to answer important policy 
questions necessary to achieve 2055 goals. 

• (and that is just for one policy scenario!!!)
• Even if we wait for HPC performance 

improvements, projected 1km modeling goal 
will be achievable in 2055 at the current rate 
of progress

• This is NOT an acceptable future when there 
are important scientific imperatives that have 
global societal consequences…

1
1

https://climatecomputer.ncsa.illinois.edu/

~25 KM (state of art) ~1.25 KM (cloud resolving)



Algorithm-Driven Codesign of Specialized Architectures for 
Energy-Efficient HPC

NASEM study on post-Exascale 
computing “We must expand (and 
create where necessary) integrated 
teams that identify the key 
algorithmic and data access motifs 
in its applications and begin 
collaborative ab-initio hardware 
development of supporting 
accelerators,... a first principles 
approach that considers alternative 
mathematical models to account 
for the limitations of weak scaling.”

“Business as usual” is failing

This is a call for co-design at a much deeper level than we are currently realizing

ASCR Competitive Portfolios in Computer Science:  Algorithm Driven Codesign

Addressing cost is crucial:  Establish collaborations with industry and the Hyperscale Architects from get-go.



ASCR Competitive Portfolios: Algorithm-Driven Codesign of Specialized 
Architectures for Energy-Efficient HPC

Building on team’s expertise in:
● Computer Architecture including hardware design, and hardware generators (CHISEL and GEMMINI accelerator 

generator), with successful chip tape-outs including compute-in-sensor, mixed-signal and HPC-class prototypes
● Computer Languages and Compiler Systems including ML-assisted code generation and Verified Lifting
● Applied Mathematics including algorithms coupling models suitable for different scales; Adaptive Mesh and Algorithm 

Refinement (AMAR) paradigm, PDEs on structured grids, spectral methods (FFTs), particle methods, and scalable solvers

George 
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Kazutomo Yoshii
ANL

Xiaokun Yang
U. Houston-Clearlake

John Shalf
Thrust lead

Ann Almgren
co-lead

Doru Popovici Sophia Shao
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Specialization: 
Natures way of Extracting More Performance in Resource Limited Environment

1
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Powerful General Purpose Many Lighter Weight
(post-Dennard scarcity)

Many Different Specialized
(Post-Moore Scarcity)

Xeon, Power KNL AMD, Cavium/Marvell, GPU
Apple, Google, Amazon,
Microsoft Azure



High-end simulation in the physical  sciences = 7 numerical methods:

1. Structured Grids 
2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra 
6. Particles
7. Monte Carlo

Phil Colella’s 7 Dwarfs of Scientific Computing

Slide from “Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004
Also in “The Landscape of Parallel Computing Architecture: A view from Berkeley” 2008

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf 

Exploit the mathematical structure of the problem
 design principle for ”analogous” computing

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf


Example of Mixed-Radix MultiDimensional FFT Accelerator
Initial steps towards a basis set of hardware accelerator primitives for science

Accomplishment: Demonstrated general FFT Accelerator tile generator in 
16nm TSMC that outperforms NVIDIA H100 by 50x in raw performance/area 
and 50x in energy efficiency/flop

 –Required only 3 codelet primitives

Goal: Generalize this approach to generators for accelerator hardware 
primitives that cover broad spectrum of algorithms (e.g., FFT, Dense/Sparse 
Linear Algebra, particles and PDEs)

FFT96 Accelerator Die: 16nm TSMC
    Area eff.: 4.18 TF/mm2

    Energy eff.: 4.8 TF/W

NVIDIA H100 in 4nm TSMC (10x 
denser than 16nm)
    Area eff: 0.08 TF/mm2

    Energy eff: 0.0957 TF/W

Mario Vega, Xiaokun Yang, John Shalf, Doru-Thom Popovici:
Towards a Flexible Hardware Implementation for Mixed-Radix Fourier Transforms. HPEC 2023: 1-7



Next Steps – Implement as ASIC (OpenROAD)
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Architecture Specialization for Science
(hardware designed for the algorithms) can’t design effective hardware without math

Materials
Density Functional 

Theory (DFT)
Use O(n) algorithm
Dominated by FFTs

(1/3 of DOE workload)

Smart Sensors
CryoEM detector
1Terabyte / sec

Compute at data 
source (data2info)

Genomics
String matching

Ultra-narrow 
datapath 2-8bit 

(ACTG)

PDEs on Block 
Struct. Grids
Extreme Strong

Scaling for CFL limited 
problems

(bigger is not better)



There are in fact many different kinds of AI models
 with significantly different requirements
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Neil Thompson: Economics of Post-Moore Electronics
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COMPUTER SCIENCE

There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?
Charles E. Leiserson, Neil C. Thompson*, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson,
Daniel Sanchez, Tao B. Schardl

BACKGROUND: Improvements in computing
power can claim a large share of the credit for
many of the things that we take for granted
in our modern lives: cellphones that are more
powerful than room-sized computers from
25 years ago, internet access for nearly half
the world, and drug discoveries enabled by
powerful supercomputers. Society has come
to rely on computers whose performance in-
creases exponentially over time.
Much of the improvement in computer per-

formance comes from decades of miniatur-
ization of computer components, a trend that
was foreseen by the Nobel Prize–winning phys-
icist Richard Feynman in his 1959 address,
“There’s Plenty of Room at the Bottom,” to
the American Physical Society. In 1975, Intel
founder Gordon Moore predicted the regu-
larity of this miniaturization trend, now called
Moore’s law, which, until recently, doubled the
number of transistors on computer chips every
2 years.
Unfortunately, semiconductorminiaturiza-

tion is running out of steam as a viable way
to grow computer performance—there isn’t
much more room at the “Bottom.” If growth

in computing power stalls, practically all in-
dustries will face challenges to their produc-
tivity. Nevertheless, opportunities for growth
in computing performance will still be avail-
able, especially at the “Top” of the computing-
technology stack: software, algorithms, and
hardware architecture.

ADVANCES: Software can be made more effi-
cient by performance engineering: restructur-
ing software to make it run faster. Performance
engineering can remove inefficiencies in pro-
grams, known as software bloat, arising from
traditional software-development strategies
that aim to minimize an application’s devel-
opment time rather than the time it takes to
run. Performance engineering can also tailor
software to the hardware on which it runs,
for example, to take advantage of parallel pro-
cessors and vector units.
Algorithms offer more-efficient ways to solve

problems. Indeed, since the late 1970s, the time
to solve the maximum-flow problem improved
nearly as much from algorithmic advances
as from hardware speedups. But progress on
a given algorithmic problem occurs unevenly

and sporadically and must ultimately face di-
minishing returns. As such, we see the big-
gest benefits coming from algorithms for new
problem domains (e.g., machine learning) and
from developing new theoretical machine
models that better reflect emerging hardware.

Hardwarearchitectures
can be streamlined—for
instance, through proces-
sor simplification, where
a complex processing core
is replaced with a simpler
core that requires fewer

transistors. The freed-up transistor budget can
then be redeployed in otherways—for example,
by increasing the number of processor cores
running in parallel, which can lead to large
efficiency gains for problems that can exploit
parallelism. Another form of streamlining is
domain specialization, where hardware is cus-
tomized for a particular application domain.
This type of specialization jettisons processor
functionality that is not needed for the domain.
It can also allow more customization to the
specific characteristics of the domain, for in-
stance, by decreasing floating-point precision
for machine-learning applications.
In the post-Moore era, performance im-

provements from software, algorithms, and
hardware architecture will increasingly re-
quire concurrent changes across other levels
of the stack. These changes will be easier to im-
plement, from engineering-management and
economic points of view, if they occur within
big system components: reusable softwarewith
typically more than a million lines of code or
hardware of comparable complexity. When a
single organization or company controls a big
component, modularity can be more easily re-
engineered to obtain performance gains. More-
over, costs and benefits can be pooled so that
important but costly changes in one part of
the big component can be justified by benefits
elsewhere in the same component.

OUTLOOK: Asminiaturizationwanes, the silicon-
fabrication improvements at the Bottom will
no longer provide the predictable, broad-based
gains in computer performance that society has
enjoyed for more than 50 years. Software per-
formance engineering, development of algo-
rithms, and hardware streamlining at the
Top can continue to make computer applica-
tions faster in the post-Moore era. Unlike the
historical gains at the Bottom, however, gains
at the Top will be opportunistic, uneven, and
sporadic. Moreover, they will be subject to
diminishing returns as specific computations
become better explored.▪

RESEARCH

Leiserson et al., Science 368, 1079 (2020) 5 June 2020 1 of 1

The list of author affiliations is available in the full article online.
*Corresponding author. Email: neil_t@mit.edu
Cite this article as C. E. Leiserson et al., Science 368,
eaam9744 (2020). DOI: 10.1126/science.aam9744

The Top

The BottomThe BottomThe Bottom
for example, semiconductor technology

Software performance 
engineering

New algorithms Hardware streamlining

Removing software bloat

Tailoring software to 
hardware features

New problem domains

New machine models

Processor simpli!cation

Domain specialization

Software Algorithms Hardware architecture

Technology

Opportunity

Examples

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,
reversing the historical trend.C
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Read the full article
at https://dx.doi.
org/10.1126/
science.aam9744
..................................................

on June 19, 2020
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Papers
1. The Economic Impact of Moore’s Law
2. There’s Plenty of Room at the Top: What will drive computer 

performance after Moore’s Law?
3. The Decline of Computers as a General Purpose Technology
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Figure 19.  Hardware Reinvigoration.  Source: Cliff Young, Google Research [11] 
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Figure 20.  Integration with a Transistor Focus [11] 
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Figure 21.  Integration with a System Focus [11] 
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Domain specific Architectures driven by hyperscalers
     in response to slowing of Moore’s Law (switch to systems focus for future scaling)
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COMPUTER SCIENCE

There’s plenty of room at the Top: What will drive
computer performance after Moore’s law?
Charles E. Leiserson, Neil C. Thompson*, Joel S. Emer, Bradley C. Kuszmaul, Butler W. Lampson,
Daniel Sanchez, Tao B. Schardl

BACKGROUND: Improvements in computing
power can claim a large share of the credit for
many of the things that we take for granted
in our modern lives: cellphones that are more
powerful than room-sized computers from
25 years ago, internet access for nearly half
the world, and drug discoveries enabled by
powerful supercomputers. Society has come
to rely on computers whose performance in-
creases exponentially over time.
Much of the improvement in computer per-

formance comes from decades of miniatur-
ization of computer components, a trend that
was foreseen by the Nobel Prize–winning phys-
icist Richard Feynman in his 1959 address,
“There’s Plenty of Room at the Bottom,” to
the American Physical Society. In 1975, Intel
founder Gordon Moore predicted the regu-
larity of this miniaturization trend, now called
Moore’s law, which, until recently, doubled the
number of transistors on computer chips every
2 years.
Unfortunately, semiconductorminiaturiza-

tion is running out of steam as a viable way
to grow computer performance—there isn’t
much more room at the “Bottom.” If growth

in computing power stalls, practically all in-
dustries will face challenges to their produc-
tivity. Nevertheless, opportunities for growth
in computing performance will still be avail-
able, especially at the “Top” of the computing-
technology stack: software, algorithms, and
hardware architecture.

ADVANCES: Software can be made more effi-
cient by performance engineering: restructur-
ing software to make it run faster. Performance
engineering can remove inefficiencies in pro-
grams, known as software bloat, arising from
traditional software-development strategies
that aim to minimize an application’s devel-
opment time rather than the time it takes to
run. Performance engineering can also tailor
software to the hardware on which it runs,
for example, to take advantage of parallel pro-
cessors and vector units.
Algorithms offer more-efficient ways to solve

problems. Indeed, since the late 1970s, the time
to solve the maximum-flow problem improved
nearly as much from algorithmic advances
as from hardware speedups. But progress on
a given algorithmic problem occurs unevenly

and sporadically and must ultimately face di-
minishing returns. As such, we see the big-
gest benefits coming from algorithms for new
problem domains (e.g., machine learning) and
from developing new theoretical machine
models that better reflect emerging hardware.

Hardwarearchitectures
can be streamlined—for
instance, through proces-
sor simplification, where
a complex processing core
is replaced with a simpler
core that requires fewer

transistors. The freed-up transistor budget can
then be redeployed in otherways—for example,
by increasing the number of processor cores
running in parallel, which can lead to large
efficiency gains for problems that can exploit
parallelism. Another form of streamlining is
domain specialization, where hardware is cus-
tomized for a particular application domain.
This type of specialization jettisons processor
functionality that is not needed for the domain.
It can also allow more customization to the
specific characteristics of the domain, for in-
stance, by decreasing floating-point precision
for machine-learning applications.
In the post-Moore era, performance im-

provements from software, algorithms, and
hardware architecture will increasingly re-
quire concurrent changes across other levels
of the stack. These changes will be easier to im-
plement, from engineering-management and
economic points of view, if they occur within
big system components: reusable softwarewith
typically more than a million lines of code or
hardware of comparable complexity. When a
single organization or company controls a big
component, modularity can be more easily re-
engineered to obtain performance gains. More-
over, costs and benefits can be pooled so that
important but costly changes in one part of
the big component can be justified by benefits
elsewhere in the same component.

OUTLOOK: Asminiaturizationwanes, the silicon-
fabrication improvements at the Bottom will
no longer provide the predictable, broad-based
gains in computer performance that society has
enjoyed for more than 50 years. Software per-
formance engineering, development of algo-
rithms, and hardware streamlining at the
Top can continue to make computer applica-
tions faster in the post-Moore era. Unlike the
historical gains at the Bottom, however, gains
at the Top will be opportunistic, uneven, and
sporadic. Moreover, they will be subject to
diminishing returns as specific computations
become better explored.▪
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The Top

The BottomThe BottomThe Bottom
for example, semiconductor technology

Software performance 
engineering

New algorithms Hardware streamlining

Removing software bloat

Tailoring software to 
hardware features

New problem domains

New machine models

Processor simpli!cation

Domain specialization

Software Algorithms Hardware architecture

Technology

Opportunity

Examples

Performance gains after Moore’s law ends. In the post-Moore era, improvements in computing power will
increasingly come from technologies at the “Top” of the computing stack, not from those at the “Bottom”,
reversing the historical trend.C
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Figure 19.  Hardware Reinvigoration.  Source: Cliff Young, Google Research [11] 
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Figure 20.  Integration with a Transistor Focus [11] 
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Figure 21.  Integration with a System Focus [11] 
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Why Advanced Packaging & Chiplets?
 Because Package Performance is Pin Limited

2
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The Bandwidth Gap

Source: Poulton, NVidea
Source: J. Poulton, Nvidia

High SERDES rates 
run counter to end of 
Dennard Scaling
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PIPES:  Photonics in the Package for Extreme Scalability
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What’s the problem?  I/O bandwidth & power limits

highest-performance CPU, FPGA, GPU, ASIC

NVIDIA Tesla V100
GPU accelerator

5120 cores
125 teraflops, 300 W, $5K

in-package

NVIDIA DGX-2
Enterprise AI

16 GPUs
2 petaflops, 10 kW, $400K

board-level

IBM Summit
Top supercomputer
36,864 GPUs & CPUs

200 petaflops, 13 MW, $300M

system-level

Images courtesy of 
NVIDIA and IBM
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Attacking the data movement bottleneck across microelectronics applications

Gordon Keeler
DARPA PIPES



What is a Chiplet?
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Attachment technologies

z Solder micobumps
~ Today typically 40 µm pitch 
~ 25 µm pitch demonstrated
~ Potential for 5 µm pitch

z Copper-copper
~ Copper-copper compression 

| @ high temperature (> 400 C)
~ Hybrid bonding

| @ low temperature (Ziptronix DBI)
~ Typical 2 – 5 µm pitch
~ Potential for sub-1 µm pitch

| Enabled by sub-1 µm alignment tools

IBM

Ziptronix

Solder Microbumps
or Copper micropillars



Chiplets have many well known advantages

Yield and cost 
efficiency

Overcome the 
memory wall 

Heterogeneous 
integration

Scalability & 
Modularity/Reuse

HBM is 3D 
integration

CPU + GPU AMD. Two 
different 

products.
Same chiplets

Lau. et al. Chiplet design and 
heterogeneous integration 
packaging 



How do chiplets enable domain specialization?
 Lower cost barriers to co-integrating specialization 

2
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From DARPA CHIPS

See the multi-agency chiplets workshop at https://sites.google.com/lbl.gov/chiplets-workshop-2023/home

https://sites.google.com/lbl.gov/chiplets-workshop-2023/home
https://sites.google.com/lbl.gov/chiplets-workshop-2023/home
https://sites.google.com/lbl.gov/chiplets-workshop-2023/home
https://sites.google.com/lbl.gov/chiplets-workshop-2023/home
https://sites.google.com/lbl.gov/chiplets-workshop-2023/home


Heterogenous Integration Driving Exascale HPC

2
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AMD Advanced Packaging for OLCF 
Frontier

Intel Ponte Veccio for ALCF Aurora



Technology Insertion into Mainstream Platforms
 AMD, Intel, Arm offer integration path for 3rd party accelerator “chiplets”

http://chiplets.lbl.gov/  

http://chiplets.lbl.gov/


MoSAIC: Modular System for Accelerator Integration and Communication
Cross-USG Heterogeneous Integration Fabric

Tile System on Chip

Insert
Your 

Accelerator
Here

UDP UDP

UDP

UDP

CAM

TSQR

FFT

SODA

Lean and Mean
Operates at 250MHz (1/4 real-time)
Driverless inter-accelerator interaction
PGAS + MsgQs for communication
C++20 software stack



2024 JEDEC and OCP Standards for Chiplet Design with 3DIC Packaging Workshop

More Efficient Chiplet Development and Integration Path
 Platform for open development with path into commercial platform

2
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Chiplet

Common Open 
Chiplet Eval Board 

for Bring-up

Commercial product 
integration

Interop
Bring up PCB

dev

Software

Community Developed Open Platform

Modular 
Package

New
Dev

test 
src

Reused
Gold Dev

Vector CPU Chiplet 
(13 cores)

NOC to HBM Mem 
Ctl. Chiplet

HBM HBM
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Accelerator

Vector CPU Chiplet 
(13 cores)

Vector CPU Chiplet 
(13 cores)

NOC to HBM Mem 
Ctl. Chiplet

NOC to HBM Mem 
Ctl. Chiplet

NOC to HBM Mem 
Ctl. Chiplet

Prototype on Modular
Architecture for function and 

performance integration



The Road to an Open Chiplet Marketplace

Today 2024

Open Chiplet 
Marketplace

Viable Multi-Vendor Business 
Model
PHY, Protocol and Transport
Mechanical, thermal & power
Pre/post-silicon test & debug
Software standards
Silicon qualification, reliability 
and manufacturing

?
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Proprietary 
Chiplet Platform

Single vendor controlled chiplet 
and packaging stack

Semi-Custom
Multi-Vendor  

Chiplet Platform

PHY, Transport and Protocol 
standards required for 
interoperability

Initial Driver for Re-usable Chiplets

From Jeff DiFilippi at ARM
OCP Global Summit 2023

It’s a big vision, but we are not there yet….
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Figure 5.  Six application spaces undergirded by AI, VR and AR.  Source: ASE 
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performance and cost of ownership.  Source: ITRS Assembly & Packaging Chapter.��
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Figure 6.  Heterogeneous Integration and System in Package (SiP). Source: ASE  
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HPC and Mega-datacenters is 2nd chapter



2024 JEDEC and OCP Standards for Chiplet Design with 3DIC Packaging Workshop

http://chiplets.lbl.gov



George M. 
(LBNL)

OCP Modularity for HPC & AI Workstream needs your input!

Patricia G. 
(LBNL)

luisa.gonzalez@ocproject.net
georgios.michelogiannakis@ocproject.net

tony.gutierrez@ocproject.net
anu@microchip.com

How to participate: 
● Subscribe to the Project Mailing List
● Add the Project Meeting Calendar
● Join the Conversation

Anu R.
(Microchip Inc.)

mailto:luisa.gonzalez@ocproject.net
mailto:georgios.michelogiannakis@ocproject.net
mailto:tony.gutierrez@ocproject.net


Dynamic Reconfiguration (aka resource Disaggregation)

3
5

Ultra-Performance co-packaged optics/networking for resource 
disaggregation



Diverse Node Configurations for Diverse Workload Resource Requirements

CPU

TOR

GPU TORCPU

GPU

TOR

CPU
NVR
AMNVR
AMNVR
AMNVR
AM

CPU

GPU

TOR

CPU
HBM
HBM
HBM
HBM

TORTOR

Training
• 8 connections: GPU 
• 8 links to HBM 

(weights)
• 8 links: to NVRAM
• 1 links: to CPU 

(control)

Inference
• 16 links to TOR 

(streaming data)
• 8 links HBM (weights)
• 1 link: CPU

Data Mining
• 6-links: HBM
• 15 links: NVRAM 

(capacity)
• 4 links: CPU 

(branchy code)

Graph Analytics
• 16 links HBM
• 8 links TOR
• 1 Link CPU

GPUTOR CPUNVRAM HBM PINE Photonics with Keren Bergman



Need for Memory Disaggregation

Overestimate: maxrss x 
ranks_per_node
Assumes memory balance across 
MPI ranks.

About 15% of NERSC workload 
uses more than 75% of the 
available memory per node.

And ~25% uses more than 50% 
of available memory.

But 75% of Haswell job hours 
(60% of KNL) use < 25% memory

Brian Austin: NERSC Workload Analysis



Disaggregated Node/Rack Architecture

3
8Most solutions current disaggregation solutions use Interconnect bandwidth 

(1 – 10 GB/s) 
But this is significantly inferior to RAM bandwidth (100 GB/s – 1 TB/s) 

Current server

Current rack

Disaggregated rack

Pool and compose



An AI Chiplets Example in 6 Easy Steps

3
9

Memory Disaggregation within the Package

Luisa Patricia Gonzalez Guererro (LBNL)



Recipe for Hardware Specialization enabled by chiplets modularity in 6 
steps

CNNs

DeepSpeech 2

Transformers

Ingredients: 
- 4 Chiplets 
- 1 Interposer

Three optimal Systems in Package 
(SiP)  for AI

Example: AI

Chiplets Marketplace ;)



Step 2: Scalable Interposer 2D grid with NxN Chiplets 

- Network-In-Package (NiP)
- Packet switched
- Light weight 
- Minimum transmission latency 

(1CC)
- No Cache Coherency

- Message passing for parallel 
computing

- Hardware Message Queues

Dataflow is regular and predictable



Step 3: Let’s do some math and define our chiplets parameters

Chiplet 4 mm x 4mm Sub 20nm @ 1GHz 
Sub 10nm @ 1GHz 
Sub   5nm @ 2GHz

1 Systolic Array 64 x 64 PEs 128 x 128 PEs
2 Scratchpad 1MB 9MB
3 Accumulator 64 acc 128 acc

IO Die 
(host adaptor)



Step 4: Architecture for an AI SiP

- Scratchpad chiplets
- Left: Input/Output Buffer
- Top: Trained parameters

- KxK systolic arrays chiplets
- Accumulator chiplets : last 

row
- IO Chiplet: From and to host … … …

…

…

…

…

…

…

…
… … …



Step 5: Profiling AI algorithms
- Optimal Size of systolic array

- Optimal Scratchpad capacity (MB)

…

…



Step 5: Profiling AI algorithms

Most CNNs
Squared systolic 
array 256x256

- No DRAM
- DRAM

Deep Speech
 Long systolic array 

512x32
-DRAM

Transformer: 
- Large systolic 

arrays 
512x512

- Embeddings
- DRAM  

- Optimal Size of systolic Array
- Optimal Scratchpad capacity (MB)

…

…Two new chiplets: 
- DRAM IO
- Embeddings



Step 5: Profiling AI algorithms
- Optimal Size of systolic Array

- Optimal Scratchpad capacity (MB)

…

…

Most CNNs
Squared systolic 
array 256x256

- No DRAM
- DRAM

Deep Speech
 Long systolic array 

512x32
-DRAM

Transformer: 
- Large systolic 

arrays 
512x512

- Embeddings
- DRAM  

Two new chiplets: 
- DRAM IO
- Embeddings



Step 6: Three different SiPs for three dataflows

Sub 20nm SiP Sub 10nm/5nm SiP
CNN Deep 

Speech
Trans. CNN Deep 

Speech
Trans.

Syst. Array PEs 256x256 512x64 512x512 256x256 512x128 512x512
Syst. Array Chiplets Num. 16 8 64 4 8 16
Scratchpad Chiplets Num. (3D) 16 27 20 10 27 12
Accumulator Chiplets Num. 4 1 8 2 1 4
Embeddings Chiplets Num. 0 0 8 0 0 4
BW [TB/s] per Chiplet 1 1 1 2/4 2/4 2/4
Data lanes per Chiplet 8192 8192 8192 16384 8192 16384
Chiplet Grid 6x6 6x6 10x10 4x4 6x6 6x6
Interposer Size* [mm x mm] 38x38 38x38 64x64 26x26 38x38 38x38



Evaluation: Better Latency and Better Energy consumption

Normalized Latency Normalized Energy Consumption

~100x lower latency than H100 baseline ~10x lower energy consumption than H100 baseline



Overspecialization: Fear Not! 

4 Chiplets + 1 interposer = 4 highly 
specialized SiPs for AI

+100x less latency than baseline
+10x better energy consumption than 

baseline

Final thoughts and next steps 
- Chiplet ≄Application
- Chiplet = Kernel, i.e. (GEMM)
- HPC applications:

- Density Functional Theory
- Molecular Dynamics
- Climate modeling
- Processing In Cell
- NEGFs
- SpVM



Thank you!         
 lg4er@lbl.gov

4 Chiplets + 1 interposer = 4 highly 
specialized SiPs for AI

100x less latency than baseline
10x better energy consumption than baseline

And a lot of that was about memory 
specialization and memory fabrics



CoPackaged Optics and Photonic Disaggregation

5
1

Lets take this to the net level!



Impedance Matching to Packaging Technology

52

4© 2017 Paul D. Franzon

Attachment technologies

z Solder micobumps
~ Today typically 40 µm pitch 
~ 25 µm pitch demonstrated
~ Potential for 5 µm pitch

z Copper-copper
~ Copper-copper compression 

| @ high temperature (> 400 C)
~ Hybrid bonding

| @ low temperature (Ziptronix DBI)
~ Typical 2 – 5 µm pitch
~ Potential for sub-1 µm pitch

| Enabled by sub-1 µm alignment tools

IBM

Ziptronix

- 17.5 dBm
Sensitivity of 

Receiver @ 10Gb/s

15.0dB
2.3dB

6.2dB
2.3dB-2.5dBm

(0.56mW)

clk

dataReceiverclk
data

clk
datadata

clk
clk gen

0.56 
pJ/bit

0.2 
pJ/bit

0.75 pJ/bit

0.2 pJ/bit

0.4 
pJ/bit

0.1 pJ/bit

2.3dB

1.9dB

Total: 2.2 pJ/bit

WPE: 10%

In-package integration

Solder Microbumps
& Copper Pillars@~10Gbps

Wide and Slow!

DWDM Using Silicon Photonics

Ring Resonators @ ~10-25 Gb/sec per chan
Many channels to get bandwidth density

Wide and Slow!

Comb Laser Sources

Single laser to efficiently 
generate 100s of frequencies

Wide and Slow!



Photonic MCM (Multi-Chip Module)

53

Comb Laser Source with 
DWDM Silicon Photonics

Wide-and Slow for high speed links 

ASIC Circuits

Through-Silicon 
Via

Photonic 
Interposer

ASIC
Chip

CMOS Photonic Control Logic

Modulator Optical waveguide Photodetector Fiber coupler
Photonic SiP

clk

da
ta

TIA

clk

da
ta

TIA

clk clk clk

data

R

C

clk

da
ta

TIA

clk gen

Silicon waveguide Silicon waveguide

Scales to 100s of ls

Soliton Comb

Normal GVD Comb



Photonic MCM (Multi-Chip Module)

Compute MCM

HBM MCM NVRAM MCM

NVM

NVM

NVM

NVM

!"

!"

#"

#"

Packet Switching 
MCM

!"

!"

#"

#"

To other nodes

CPU/GPU

HBM MCM

CPU GPU

RAM NVM

Optical switch 54

High-Density fiber coupling array 
with 24 fibers = 6-12 Tb/s bi-
directional = 0.75 – 1.5 TB/s

ASIC Circuits

Through-Silicon 
Via

Photonic 
Interposer

ASIC
Chip

CMOS Photonic Control Logic

Modulator Optical waveguide Photodetector Fiber coupler
Photonic SiP

Fiber carrying 1-8 Tb/s @ 0.1pj/bit 

Fiber coupler 
pitch: 10s of um
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CPU

TOR
GPU TORCPU

GPU

TOR

CPU
NVR
AMNVR
AMNVR
AMNVR
AM

CPU GPU

TOR

CPU
HBM
HBM
HBM
HBM

TORTOR

Training
• 8 connections: Peer GPU 
• 8 links to HBM (weights)
• 8 links: to NVRAM
• 1 links: to CPU (control)

Inference
• 16 links to TOR 

(streaming data)
• 8 links HBM (weights)
• 1 link: CPU

Data Mining
• 6-links: HBM
• 15 links: NVRAM (capacity)
• 4 links: CPU (branchy code)

Graph Analytics
• 16 links HBM
• 8 links TOR
• 1 Link CPU

GPU

TOR

CPU

NVRA
M

HBM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Training
Inference
Data Mining
Graph

MEMMEM
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CMP CMP

Switch Switch

!"#$!"#% !"#C !"#'

()"% ()"C

G+(% G+(C

)) )) )) ))

) )

!"#$!"#%

!"#C !"#'

E)"% E)"C

G+E% G+EC

)I))I) )I))I)

MEMMEM

MEM

MEM

MEM

MEM

MEM

MEM

GPU3GPU1 GPU2 GPU4

CMP1 CMP2 NIC1 NIC2MEMMEM

MEMMEM GPU GPU GPU GPUMEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM
CMP CMP
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Configure for Training
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Latency Sensitivity Study: Focus on Single-Hop Networks
 Need to minimize network diameter due to latency sensitivity

PARSEC 3 on real hardware: 

● Sapphire Rapids HBM nodes
● Dual Intel Xeon Max 9462 CPUs 
● Flat mode 
● SNC4 clustering
● The execution core is constant
● We vary memory NUMA domain

Workload sensitivity to latency:

● Most show minimal effect
● Few (canneal, streamcluster) suffer 

significant performance degradation 
with latency increase

Dots are measurements.
Dashed lines are curve fitting degree 2 polynomials.



Low-Diameter/Single-Hop Interconnects (Dragonfly or All2All) 
 Started in HPC, but seeing traction in hyperscale and OCP 

5
7

Google Aquila
2022

Cray Dragonfly – Aries/YARC2 
2016

C O M P U T E      |     S T O R E      |     A N A L Y Z E

Cray XC Rank1 Network 

21 

o Chassis with 16 compute blades 
o 128 Sockets 
o Inter-Aries communication over 

backplane 
o Per-Packet adaptive Routing 



Key Value Proposition for AWGR Lambda Shuffle

• Electrical All-2-All for single-hop networks
– O(N2) cables
– O(N) connectors/endpoint

• Photonics lambda shuffle (unique to photonics)
– O(N) cables 
– O(k) connectors/endpoint

C O M P U T E      |     S T O R E      |     A N A L Y Z E

Cray XC Rank1 Network 

21 

o Chassis with 16 compute blades 
o 128 Sockets 
o Inter-Aries communication over 

backplane 
o Per-Packet adaptive Routing 

Optical connectors are expensive and take space
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Photonic Lambda Shuffle
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Optica/OSA Industry Incubator 2012
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F0λn
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F1λ1
F1λ2 . . .
F1λn

F2λ0
F2λ1
F2λ2 . . .
F2λn

Fmλ0
Fmλ1
Fmλ2 . . .
Fmλn

Monolithic AWGR (stamped in plastic) or 
   Wave Selective Ring Resonator Array (silicon lithography)

F0λ0
F1λ1
F2λ2 . . .
Fmλn

F0λ1
F1λ2
F2λ3 . . .
Fmλ0

F0λ2
F1λ3
F2λ4 . . .
Fmλ1

F0λn
F1λ0
F2λ1 . . .
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Some other stuff necessary to complete the picture
HBM4: an HMC-like 

Serial Interface to HBM 
Example Samsung Custom HBM4
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Fiber Attach
Opportunity with expensive electric connectors

Fiber (cheap)Connector (Expensive)

Connector (Expensive) Copper Wire (cheap)

NVLink Connector

This slide is obsolete as of NVIDIA Hopper



2025

Memory Pool

All-to-all switching

Comb driven Optical fabric solution 

Systems solutions are always more powerful than any individual component 
 Comb laser level innovation unlocks value only at Fabric System Level
 All solutions depend upon co-packaged optics at the endpoints

Example

Optical IO Optical IO

Xscape ‘s CombX Laser 

Optical Fabric System  

Unlocks new 
fabric system 
implementations 
for the customer 
where the end 
value is captured 



System Throughput per Dollar Spent on Memory
 Photonic disaggregation vs. conventional fixed node

Rack-scale disaggregation with LBNL/Julich 
Fair Memory scheduling Policy

Assume $4.9 per GB of memory capacity

Baseline: No disaggregation. 512 GB/node

Disaggregation offers 3.5x improvement in 
system throughput per $  

Beyond a certain memory capacity, 
negligible benefit in throughput but higher 
CapEx for memory



Anatomy of a “Value” Metric

Good Stuff

Bad Stuff



Anatomy of a “Value” Metric

Performance

Measured Watt CPU

TOR
GPU TORCPU

GPU

TOR

CPU
NVR
AMNVR
AMNVR
AMNVR
AM

CPU GPU

TOR

CPU
HBM
HBM
HBM
HBM

TORTOR

Training
• 8 connections: Peer GPU 
• 8 links to HBM (weights)
• 8 links: to NVRAM
• 1 links: to CPU (control)

Inference
• 16 links to TOR 

(streaming data)
• 8 links HBM (weights)
• 1 link: CPU

Data Mining
• 6-links: HBM
• 15 links: NVRAM (capacity)
• 4 links: CPU (branchy code)

Graph Analytics
• 16 links HBM
• 8 links TOR
• 1 Link CPU

GPU

TOR

CPU

NVRA
M

HBM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Training
Inference
Data Mining
Graph
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Switch Switch

Configure for Training

Configure for Inference

Increase performance with Disaggregation
And Bandwidth Steering!

Deliver bandwidth to where it is needed
By taking it from where it isn’t

30% of datacenter power goes to network

So max savings by creating infinitely efficient 
optical interconnect is 30%! 

Exploit the unique properties of photonics to improve both numerator and denominator!



Some final shots and open questions for you to ponder
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Question: If data movement is where all the energy is going?
• Why do we still teach students that the order of complexity of 

algorithms as O(flops)?

• Can’t we teach order of complexity for data movement?
– This has been discussed in SIAM meetings for a couple of decades
– Even started a PADAL workshop series with Thomas and Didem on this question

• What would a solution look like?

6
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Compute in Memory? (the elusiveness of NonVon Architecture?

• Everyone talks about Compute In Memory as if it is easy.
• The very first concept Von Neumann had for a computer 

had no boundary between compute in memory
– He got over it
– Why do we blame the poor guy for finding a solution to what is 

clearly a very difficult problem!
• Compute in memory is often proposed to solve this Von 

Neumann Bottleneck
– Yet we have a commercially available compute in memory 

platform
– Do you feel all of the problems have been solved?
– Is it easy now?

• Also, the fundamentals of our memory is broken
– DRAM is densest, but neither cell cycle time nor density has not 

improved at historical rates since hitting 10nm.

6
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Offload model is an unproductive way to use hetero-acceleration
(redesign for static dataflow and deep flow-through pipelines?)

DRAM

GEMM

iFFT1D FFT1D

Point wise

DRAM

GEMM

iFFT3D

FFT3D

Point 
wise



Modeling the Baseline Computation
 Limitations of the Offload Model for Accelerators
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1st Fourier Stage 2nd Fourier Stage 3rd  Fourier Sta ge Pointwise First Con traction Second Contra ction

Bi
llio

ns Prediction: Execution Time in CPU Cycles

Data Movement Computation

Assumptions:
A. Hardware

- CPU with 8 cores 
- CPU frequency is 3.9 GHz
- DRAM bandwidth 22 GB/s

A. Problem Size
- Sphere diameter 64
- FFT size 128
- Number of bands 256
- Number of atoms 256

Prediction: 15.4 billion cycles
Actual execution: 17.1 billion cycles
  Accuracy - 90%
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GEMM

iFFT3D

FFT3D

Point 
wise



Peer Accelerator Model (merged Kernels)
 Convert Problem to Compute Bound
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Baseline Merge 1 Stage Merge 2 Stages Transpose and  Merge
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ns Execution Time in CPU Cycles

Data Movement Computation
Assumptions:
A. Hardware

- CPU with 8 cores 
- CPU frequency is 3.9 GHz
- DRAM bandwidth 22 GB/s

A. Problem Size
- Sphere diameter 64
- FFT size 128
- Number of bands 256
- Number of atoms 256

Merging different stages
The Transpose and Merge version requires a 
lot of on chip memory

Computation becomes dominant
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GEMM

iFFT1D FFT1D

Point 
wise



Offload model is an unproductive way to exploit hetero-accel
(For p-models, this also breaks encapsulation in subroutines as an abstraction)

DRAM

GEMM

iFFT1D FFT1D

Point wise

DRAM

GEMM

iFFT3D

FFT3D

Point 
wise

This is an NP-hard graph embedding problem



Conclusions

• Future of energy efficient HPC and AI lies in specialization & Systems
– Modularity through advanced packaging
– Codesign that spans Algorithms, Software, and Hardware

• Systems Performance (not just device performance) is the future
– Components are bottom of the value chain
– Systems enabled by the unique properties of photonic devices are the top of the 

value chain
– Memory fabrics are the essential glue that enables us to delver such systems

• Requires a modular approach to deliver systems 
– Chiplets with baked-in memory fabrics are an opportunity for scalable modularity
– OCP Workstreams to negotiate standards to promote that modularity

- 
7
3 
-



PINE: Photonic Integrated Networked Energy Efficient Datacenters
Addressing the datacenter energy challenge! 

1) Energy-bandwidth 
optimized optical links

2) Embedded silicon 
photonics into OC-MCMs

3) Bandwidth steering for 
Custom Node Connectivity
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1. INNOVATION AND IMPACT
1.1. PINE Full System Solution 
The Photonic Integrated Networked Energy efficient datacenter (PINE) architecture unleashes 
the truly transformational impact of photonics to create a new paradigm for future ultra-energy 
efficient datacenters and HPC systems. The PINE system builds on three innovative pillars: (1) a 
re-designed datacenter architecture based on the deep disaggregation of compute, network and 
memory/storage resources organized around a unified photonic interconnect with bandwidth 
steering capabilities, (2) embedded high bandwidth density flexible photonic connectivity realized 
in a unique Multi-Chip Modules (MCMs) interposer platform, and (3) a new generation of optical 
links specifically optimized for energy efficiency [1,2,3]. 

Figure 1: PINE system architecture 

The PINE architectural design (Fig. 1) disaggregates key elements of the traditional datacenter or 
HPC compute nodes and reorganizes them around a reconfigurable network fabric, conceived to 
specifically address the stress placed on the system by real-time extreme communication-intensive 
applications. Embedded photonic switching within the interconnection network steers bandwidth 
on demand among diverse resources. The deep disaggregation is realized through ultra-high-
density assembly of energy efficient photonic links with GPUs, CPUs, and memory elements in an 
MCM interposer platform around a unified and reconfigurable photonic network fabric. The MCM 
interconnects build on PINE ultra-low power photonic link technologies with efficient comb laser 
sources to dramatically reduce the energy consumption and increase bandwidth densities system-
wide. With flexible interconnectivity PINE can assign datacenter/HPC resources to workloads with 
exquisite temporal and size accuracies so that only the required amount of computation power, 
memory capacity, and interconnectivity bandwidth are made available over the needed time 
period. This efficient usage of resources reduces the vast amounts of wasted energy consumption 
of current datacenters, and simultaneously accelerates time to completion of HPC applications. 
Datacenter and HPC workloads show a large diversity in their resource demands: Training 
algorithms for deep machine learning place stress on compute and interconnect elements, in-
memory databases place stress on integrated non-volatile storage bandwidth, and data-intensive 

1 Tb/second per fiber
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OCP Modularity for HPC & AI Workstream needs your input!
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