
PEPERONI: Pre-Estimating the Performance of Near-Memory
Integration

Oliver Lenke
Technical University of Munich

o.lenke@tum.de

Richard Petri
Technical University of Munich

Thomas Wild
Technical University of Munich

Andreas Herkersdorf
Technical University of Munich

ABSTRACT
Near-memory integration strives to tackle the challenge of low data
locality and power consumption originating from cross- chip data
transfers, meanwhile referred to as locality wall. In order to keep
costly engineering efforts bounded when transforming an existing
non-near-memory architecture into a near-memory instance, reli-
able performance estimation during early design stages is needed.
We propose PEPERONI, an agile performance estimation model
to predict the runtime of representative benchmarks under near-
memory acceleration on an MPSoC prototype. By relying solely
on measurements of an existing baseline architecture, the method
provides reliable estimations on the performance of near-memory
processing units before their expensive implementation. The model
is based on a quantitative description of memory boundedness
and is independent of algorithmic knowledge, what facilitates its
applicability to various applications.

CCS CONCEPTS
•Computer systems organization→Distributed architectures;
• Hardware → Emerging tools and methodologies.

KEYWORDS
near-memory computing, memory boundedness, performance-esti-
mation, design space exploration, tile-based MPSoC

1 INTRODUCTION
Over the last decades, the increasing demand of compute perfor-
mance could be trailed by simple power, frequency and threshold
scaling methods in combination with Dennard scaling and numer-
ous microarchitectural improvements. Since these methods have

meanwhile reached a saturation effect [14], multi- and many-core
solutions have been established, often implemented in tile-based
architectures, in order to further support the continuous need of
increased compute performance [20].

Modernmany-core architectures come, however, with a potential
lack of data-to-task locality and an increased need of data move-
ment. Even the continuous improvement of cache architectures,
which were the main hardware measure to speed up memory ac-
cesses, cannot follow this trend any longer [13].

The orthogonal approach of near- or even in-memory computing
can be a meaningful solution to bridge the increasing gap between
processing node and memory. Offloading dedicated tasks to specific
compute units that are located near or even inside the memory
modules often implies low-latency memory accesses and poten-
tial power savings due to much lower traffic on the interconnect
network [4].

Due to several technological improvements, such as the inven-
tion of through-silicon-vias (TSV) [11] on the one hand, and the
increasing memory wall on the other hand, the research on near-
memory processing got a lot of momentum within the last decade.

However, the development effort for near-memory computing
solutions adds additional design challenges, as the design of near
memory components has to be well aligned to the intended work-
load as well as to the overall system architecture.

In order to invest costly development effort wisely, an easy but
robust design space exploration (DSE) within early development
stages is crucial. Our work proposes a method to estimate the per-
formance gain of near-memory processing units up-front of the
actual implementation. The approach analyzes and quantifies the
memory boundedness of the system under a given workload in
absence of any near-memory computing first. Based on that, we
estimate the speedup potential in case a given subtask would be of-
floaded to a near-memory processing unit. Near-memory cores and
hardware accelerators offer different performance characteristics
and are therefore considered individually. Finally the performance
estimates are evaluated in an FPGA based system running all 12
benchmarks of the IMSuite [5]. In detail, we

(1) propose the PEPERONI model, a novel method to quantify
memory-boundedness on a tile-based System-on-Chip

(2) compare our analysis to the Roofline model [21]
(3) use our model to estimate performance gains due to near-

memory integration
(4) distinguish between software-programmable near-memory

cores and dedicated hardware accelerators
(5) verify our estimations with FPGA-based measurements.

myzinsky
2021







O. Lenke, R. Petri, T. Wild and A. Herkersdorf

in parallel would be a good example. To weight this more precisely,
we propose a quantification method which determines compute-
and memory boundedness in a range between 0 % and 100 %.

In order to analyze this, the system can be specified by its maxi-
mum peak values, similar to the Roofline model. Again, we apply
the model to each tile individually.

Maximum compute performance : CPmax,t ile in [Ops/s] (1)

Maximum memory bandwidth : BWmax,t ile in [Byte/s] (2)
In addition to the theoretical performance maxima, we measure the
real behavior of the system averaged over the complete execution
time. We use the same measurements as for the Roofline model
leading to the following parameters:

Average compute performance : CPavд,t ile in [Ops/s] (3)

Average memory bandwidth : BWavд,t ile in [Byte/s] (4)
Note that CPmax,t ile and BWmax,t ile denote the maximum peak
values, whereas CPavд,t ile and BWavд,t ile express the real oper-
ating point which is strictly below the maximum and has been
determined during run-time. We consider both BWavд,t ile and
BWmax,t ile after the last-level cache within each compute-tile.
However, in other scenarios an observation on the bandwidth before
the cachemight bemeaningful as well, especially if no near-memory
integration is considered, but e.g. cache optimizations.

The common understanding of memory boundedness says that
the execution time is primarily limited by the available memory
bandwidth. This implies often that the bandwidth is heavily utilized
in the given scenario. Similarly, a compute bound system would be
mostly limited by a heavily exploited compute performance.

In order to quantify this, we calculate compute and memory
boundedness as follows:

CBt ile =
CPavд,t ile

CPmax,t ile
; MBt ile =

BWavд,t ile

BWmax,t ile
(5)

The fraction of used compute performance and memory bandwith
leads to a good estimation how close the system is operated with
respect to the corresponding limits. In addition to this, we define
relative compute and memory boundedness, a metric quantifying
whether memory or compute limitations are more restricting.

CBr el,t ile =
CBt ile

CBt ile +MBt ile
;MBr el,t ile =

MBt ile
CBt ile +MBt ile

(6)
The metrics CBr el,t ile and MBr el,t ile add together to 100 % in
any scenario. If one would compare these values to the Roofline
model, each operating point with MBr el,t ile > 50 % would be
classified as Memory bound by the Roofline model, i.e. the vertical
extrapolation would hit the diagonal roof first. Thus, our model
does not contradict the Roofline model.

Thismethod can be seen as an additional approach to the Roofline
model in order to quantify how much a system is bound by its com-
pute performance and its memory bandwidth. This much more
granular and quantitative description of compute and memory
boundedness can now be used to estimate the speedup of near
memory computing before going through an expensive design cy-
cle. Chapter 5 demonstrates such a novel estimation for a near
memory core as well as a dedicated hardware accelerator.

5 SPEEDUP ESTIMATION
Near-Memory Cores. The previously described analysis of the

hardware architecture and its utilization can be used to quantify
the attainable speedup when offloading the TOI to a near-memory
processing unit. This estimation relies solely on measurements of
the baseline architecture, i.e. before the near-memory integration
has started.

We apply that Speedup estimation individually to each tile of
our architecture. In this section, it is assumed to offload the TOI to
a software programmable core, whereas in the following section a
dedicated hardware accelerator is considered. Note that we consider
only near-memory cores with the same microarchitecture as the
host processor in this work. In our understanding, near-memory
cores are, other than in-memory-cores, still on-chip and not inte-
grated into the off-chip DRAM die. Thus, they run on the same
speed as the other processors. The major advantage of such a near-
memory core (NMC) is its typically much higher memory bandwith
compared to an ordinary system core.

Maximum memory bandwidth NMC : BWnmcore in [Byte/s] (7)

The increase in memory bandwith can be described formally with

BWnmcore > BWmax,t ile (8)

In other words, we can assume the near-memory core to perform
memory accesses faster. The Speedup factor of performing fixed-
length memory accesses (i.e. one cacheline) can be appraised by

Smem =
BWnmcore
BWmax,t ile

(9)

Note that in our definition, the speedup is defined relative to a base
value of 1, i.e. a speedup of 1 would imply no speedup. However,
the whole TOI is certainly not accelerated by Smem , especially if
the system is only slightly memory bound.

In order to estimate the acceleration of the total application, we
divide the total runtime into two disjunct parts, the TOI and its
complement. This can be expressed formally by:

tapp = tapp · ftoi + tapp · (1 − ftoi ) = ttoi + tcomp (10)

Hereby we consider ftoi as the fraction of processing time that
is spent to execute the TOI. We can further divide the TOI into a
memory bound part and a compute bound one:

ttoi = ttoi ·MBr el,toi + ttoi ·CBr el,toi (11)

Depending on the memory boundedness of the given task, it might
benefit more or less from the increase in memory bandwidth. As-
suming that the characteristics of the TOI are comparable on all
compute tiles, we use averageCBr el,toi andMBr el,toi over all tiles.

Offloading the TOI to the previously described near-memory
core will certainly have a negligible influence on the execution-
time of the complement tcomp . Also the compute bound fraction
of the TOI will not be influenced severely, whereas the memory
bound part might be accelerated by Smem . Thus, our prediction
of the application runtime under near-memory core acceleration
calculates as follows:

t ′app,nmc = tcomp + ttoi ·CBr el,toi +
ttoi ·MBr el,toi

Smem
(12)





O. Lenke, R. Petri, T. Wild and A. Herkersdorf

execution time with a root-mean-square-error of 0.07 for the near-
memory core and 0.11 for the hardware accelerator, respectively.
Predicting near-memory hardware accelerators is more difficult,
since two independent aspects - the hardware implementation and
the near-memory integration - are estimated simultaneously.

The estimation of the 4-core variant comes with a slightly in-
creased error, since several uncertainties - such as the parallel and
sequential portion of the benchmark and whether the TOI resides
in the sequential part or not - have to be faced. Despite of these
uncertainties, PEPERONI leads to a root-mean-square-error of 0.17
and 0.19 for the near-memory core and the accelerator, respectively.

Although the accuracy of our estimations is reliable, a moderate
prediction error is present at least in some cases. Especially for the
BF, DST, DR and DS benchmarks, PEPERONI under-estimates the
performance of the near-memory accelerator. This can be explained
with an additional speedup due to secondary effects, i.e. the accel-
eration of the TOI enables the system to enter the parallel part of
the application faster and to use the resources in a more balanced
way. Considering that PEPERONI does not require any algorith-
mic knowledge, these results give a good quantitative overview
on the potential speedup, if a certain task would be offloaded to
near-memory computing units.

7 CONCLUSION
We presented PEPERONI, a model to estimate the speedup potential
of near-memory integration. It is based on a run-time analysis of an
existing baseline architecture, i.e. before integrating near-memory
computing units. This model is used to approximate the memory
boundedness of the system quantitatively. Based on that, we esti-
mate the total application runtime under near-memory acceleration
and distinguish thereby between software-programmable cores and
hardware accelerators. The performance estimation was performed
on 12 different benchmarks in two platform configurations with a
root-mean square-error of 0.07 and 0.17 for a near-memory core and
0.11 and 0.19 for near-memory hardware accelerators, respectively.

All in all, we envision the PEPERONI method to ease the decision
whether near-memory processing brings a satisfying performance
improvement. Adapting the model to various other architectural
modifications is considered as future work.

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)-Project Number 146371743-
TRR 89: Invasive Computing. We thank Sven Rheindt, Akshay Sri-
vatsa andAndreas Fried for the valuable discussions andmeaningful
inputs as well as the reviewers for their helpful feedback.

REFERENCES
[1] M. Shoaib Bin Altaf and . A. Wood. 2017. LogCA: A High-Level Performance

Model for Hardware Accelerators. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28,
2017. ACM, 375–388. https://doi.org/10.1145/3079856.3080216

[2] V. Caparrós Cabezas and M. Püschel. 2014. Extending the roofline model: Bot-
tleneck analysis with microarchitectural constraints. In 2014 IEEE International
Symposium on Workload Characterization, IISWC 2014, Raleigh, NC, USA, October
26-28, 2014. IEEE Computer Society, 222–231. https://doi.org/10.1109/IISWC.
2014.6983061

[3] B. da Silva, A. Braeken, E. H. D’Hollander, and A. Touhafi. 2013. Performance
Modeling for FPGAs: Extending the Roofline Model with High-Level Synthesis

Tools. Int. J. Reconfigurable Comput. 2013 (2013), 428078:1–428078:10. https:
//doi.org/10.1155/2013/428078

[4] A. Farmahini Farahani, J. Ho Ahn, K. Morrow, and N. Sung Kim. 2015. NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM devices
and standard memory modules. In 21st IEEE International Symposium on High
Performance Computer Architecture, HPCA 2015, Burlingame, CA, USA, February
7-11, 2015. IEEE Computer Society, 283–295. https://doi.org/10.1109/HPCA.2015.
7056040

[5] S. Gupta and V. K. Nandivada. 2015. IMSuite: A benchmark suite for simulating
distributed algorithms. J. Parallel Distributed Comput. 75 (2015), 1–19. https:
//doi.org/10.1016/j.jpdc.2014.10.010

[6] A. Hutcheson and V. Natoli. 2011. Memory Bound vs . Compute Bound : A
Quantitative Study of Cache and Memory Bandwidth in High Performance
Applications.

[7] A. Ilic, F. Pratas, and L. Sousa. 2014. Cache-aware Roofline model: Upgrading
the loft. IEEE Comput. Archit. Lett. 13, 1 (2014), 21–24. https://doi.org/10.1109/L-
CA.2013.6

[8] M. Mohr, S. Buchwald, A. Zwinkau, C. Erhardt, B. Oechslein, J. Schedel, and D.
Lohmann. 2015. Cutting out the middleman: OS-level support for x10 activities.
In Proceedings of the ACM SIGPLAN Workshop on X10, Portland, OR, USA, June 15
- 17, 2015, Olivier Tardieu and José Nelson Amaral (Eds.). ACM, 13–18. https:
//doi.org/10.1145/2771774.2771775

[9] M. Mohr and C. Tradowsky. 2017. Pegasus: Efficient data transfers for PGAS
languages on non-cache-coherent many-cores. (2017), 1781–1786. https://doi.
org/10.23919/DATE.2017.7927281

[10] D. Molka, R. Schöne, D. Hackenberg, and W. E. Nagel. 2017. Detecting Memory-
Boundedness with Hardware Performance Counters. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering, ICPE 2017,
L’Aquila, Italy, April 22-26, 2017, Walter Binder, Vittorio Cortellessa, Anne Kozi-
olek, Evgenia Smirni, and Meikel Poess (Eds.). ACM, 27–38. https://doi.org/10.
1145/3030207.3030223

[11] M. Motoyoshi. 2009. Through-Silicon Via (TSV). Proc. IEEE 97, 1 (2009), 43–48.
https://doi.org/10.1109/JPROC.2008.2007462

[12] G. Ofenbeck, R. Steinmann, V. Caparrós Cabezas, D. G. Spampinato, and M.
Püschel. 2014. Applying the roofline model. In 2014 IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS 2014, Monterey, CA, USA,
March 23-25, 2014. IEEE Computer Society, 76–85. https://doi.org/10.1109/ISPASS.
2014.6844463

[13] P. Kogge. 2017. Memory Intensive Computing, the 3rdWall, and the Need for
Innovation in Architecture. Univ. of Notre Dame. https://memsys.io/wp-content/
uploads/2017/12/The_Wall.pdf

[14] J. Parkhurst, J. A. Darringer, and B. Grundmann. 2006. From single core to
multi-core: preparing for a new exponential. In 2006 International Conference
on Computer-Aided Design, ICCAD 2006, San Jose, CA, USA, November 5-9, 2006,
Soha Hassoun (Ed.). ACM, 67–72. https://doi.org/10.1145/1233501.1233516

[15] A. D. Pimentel. 2017. Exploring Exploration: A Tutorial Introduction to Embedded
Systems Design Space Exploration. IEEE Des. Test 34, 1 (2017), 77–90. https:
//doi.org/10.1109/MDAT.2016.2626445

[16] B. Reagen, Y. S. Shao, G.-Y. Wei, and D. M. Brooks. 2013. Quantifying accel-
eration: Power/performance trade-offs of application kernels in hardware. In
International Symposium on Low Power Electronics and Design (ISLPED), Beijing,
China, September 4-6, 2013, Pai H. Chou, Ru Huang, Yuan Xie, and Tanay Karnik
(Eds.). IEEE, 395–400. https://doi.org/10.1109/ISLPED.2013.6629329

[17] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Sabirov, T. Twardzik, T. Wild, and A.
Herkersdorf. 2020. X-CEL: A Method to Estimate Near-Memory Acceleration
Potential in Tile-BasedMPSoCs. InArchitecture of Computing Systems - ARCS 2020
- 33rd International Conference, Aachen, Germany, May 25-28, 2020, Proceedings
(Lecture Notes in Computer Science, Vol. 12155), André Brinkmann, Wolfgang
Karl, Stefan Lankes, Sven Tomforde, Thilo Pionteck, and Carsten Trinitis (Eds.).
Springer, 109–123. https://doi.org/10.1007/978-3-030-52794-5_9

[18] S. Rheindt, A. Fried, O. Lenke, L. Nolte, T. Wild, and A. Herkersdorf. 2019.
NEMESYS: near-memory graph copy enhanced system-software. In Proceedings
of the International Symposium on Memory Systems, MEMSYS 2019, Washington,
DC, USA, September 30 - October 03, 2019. ACM, 3–18. https://doi.org/10.1145/
3357526.3357545

[19] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk, O. Mutlu,
and H. Corporaal. 2019. NAPEL: Near-Memory Computing Application Per-
formance Prediction via Ensemble Learning. In Proceedings of the 56th Annual
Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06,
2019. ACM, 27. https://doi.org/10.1145/3316781.3317867

[20] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal. 2007. On-Chip Interconnection
Architecture of the Tile Processor. IEEE Micro 27, 5 (2007), 15–31. https://doi.
org/10.1109/MM.2007.89

[21] S. Williams, A. Waterman, and D. A. Patterson. 2009. Roofline: an insightful
visual performance model for multicore architectures. Commun. ACM 52, 4
(2009), 65–76. https://doi.org/10.1145/1498765.1498785




	Leere Seite



