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ABSTRACT

Near-memory integration strives to tackle the challenge of low data
locality and power consumption originating from cross- chip data
transfers, meanwhile referred to as locality wall. In order to keep
costly engineering efforts bounded when transforming an existing
non-near-memory architecture into a near-memory instance, reli-
able performance estimation during early design stages is needed.
We propose PEPERONI, an agile performance estimation model
to predict the runtime of representative benchmarks under near-
memory acceleration on an MPSoC prototype. By relying solely
on measurements of an existing baseline architecture, the method
provides reliable estimations on the performance of near-memory
processing units before their expensive implementation. The model
is based on a quantitative description of memory boundedness
and is independent of algorithmic knowledge, what facilitates its
applicability to various applications.
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1 INTRODUCTION

Over the last decades, the increasing demand of compute perfor-
mance could be trailed by simple power, frequency and threshold
scaling methods in combination with Dennard scaling and numer-
ous microarchitectural improvements. Since these methods have
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meanwhile reached a saturation effect [14], multi- and many-core
solutions have been established, often implemented in tile-based
architectures, in order to further support the continuous need of
increased compute performance [20].

Modern many-core architectures come, however, with a potential
lack of data-to-task locality and an increased need of data move-
ment. Even the continuous improvement of cache architectures,
which were the main hardware measure to speed up memory ac-
cesses, cannot follow this trend any longer [13].

The orthogonal approach of near- or even in-memory computing
can be a meaningful solution to bridge the increasing gap between
processing node and memory. Offloading dedicated tasks to specific
compute units that are located near or even inside the memory
modules often implies low-latency memory accesses and poten-
tial power savings due to much lower traffic on the interconnect
network [4].

Due to several technological improvements, such as the inven-
tion of through-silicon-vias (TSV) [11] on the one hand, and the
increasing memory wall on the other hand, the research on near-
memory processing got a lot of momentum within the last decade.

However, the development effort for near-memory computing
solutions adds additional design challenges, as the design of near
memory components has to be well aligned to the intended work-
load as well as to the overall system architecture.

In order to invest costly development effort wisely, an easy but
robust design space exploration (DSE) within early development
stages is crucial. Our work proposes a method to estimate the per-
formance gain of near-memory processing units up-front of the
actual implementation. The approach analyzes and quantifies the
memory boundedness of the system under a given workload in
absence of any near-memory computing first. Based on that, we
estimate the speedup potential in case a given subtask would be of-
floaded to a near-memory processing unit. Near-memory cores and
hardware accelerators offer different performance characteristics
and are therefore considered individually. Finally the performance
estimates are evaluated in an FPGA based system running all 12
benchmarks of the IMSuite [5]. In detail, we

(1) propose the PEPERONI model, a novel method to quantify
memory-boundedness on a tile-based System-on-Chip

(2) compare our analysis to the Roofline model [21]

(3) use our model to estimate performance gains due to near-
memory integration

(4) distinguish between software-programmable near-memory
cores and dedicated hardware accelerators

(5) verify our estimations with FPGA-based measurements.
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Figure 1: Schematic overview of the architecture: Left: 2x2 architecture with 3 compute-tiles and one memory-tile. Center:
Internal structure of a compute-tile, including five Leon3-cores (one reserved for the operating system), a shared L2 cache
and the network-adapter. Right: Internal structure of a memory-tile with off-chip DRAM module and optional near-memory

cores or hardware accelerator, respectively

The rest of the paper is structured as follows. We summarize
related approaches in Section 2 and give an overview on our system
architecture in Section 3. In Section 4, we explore the system’s
behavior and it’s boundedness, before we use these insights to
calculate a speedup prediction in Section 5. In Section 6, we evaluate
our estimation approach before we conclude in Section 7.

2 RELATED WORK

As the design and integration of near-memory computing is often a
complex engineering task, several methods to estimate the potential
gain before the actual implementation have already been explored.
Besides several simulation-based techniques, also a few analyti-
cal models have been presented. Pimentel et al. [15] give a good
overview on different design objectives. Specifically, conflicting
targets as power vs. performance vs. cost are of high interest.
Beyond design characteristics, also different workload charac-
teristics need to be analyzed. Reagen et al. [16] describe such an
approach where existing C-Code of typical applications is used in
high level synthesis of an accelerator. The results described there
are reliable and come with low additional modeling effort. Differ-
ent pareto-optimal design options were generated which helps to
pre-select a potential solution before investing in actual design
work. However, this approach neglects the influence of the system
architecture, like the memory bandwith and latency, overheads for
communication or offloading or coherency mechanisms between
cores and accelerators. To determine reliable numbers for perfor-
mance and power, it is furthermore desired to consider the overall
architecture as a whole. Atlaf et al. [1] propose a performance
model for hardware accelerators. They also consider the workload
of the processor and the latency of data traffic. However, it focused
only on standard accelerators while real near memory computing
was not specifically considered. Also modeling the overall system
utilization was neglected in this approach. Singh et al. [19], pro-
pose a novel approach based on machine learning techniques. It
allows to simulate only a few algorithms and extrapolates further
scenarios with reliable accuracy. This approach called NAPEL is
able to predict performance and power numbers for near memory

accelerated algorithms up to 220 times faster than conventional
simulation based prediction methods.

Another analytical speedup prediction method was proposed by
Rheindt et al. [17]. They derived a performance estimation from the
proportional execution time of the desired workload. However, their
approach still disregards architectural performance parameters
such as the available memory bandwidth.

In contrast to previous works, our approach is an analytical work
which incorporates the system characteristics and the current work-
load simultaneously and differs between near-memory hardware
accelerators and programmable cores as well.

3 ARCHITECTURE

Our speedup estimation method is exemplarily demonstrated on an
FPGA prototype architecture. We consider a tile-based architecture
with 4 tiles, where a global off-chip DRAM is attached to one of
the 4 tiles. A Network-on-Chip with four VCs connects each tile
with its neighbouring tiles. Architectures like this can be seen as
successors of traditional multi-core systems [20].

The bottom-right tile is connected to 1GB global memory. It is
referred to as memory-tile, whereas all other tiles are identified as
compute-tiles. Figure 1 shows an abstract view of the system as well
as the internal structure of both a compute and a memory tile.

All tiles are equipped with five LEON3 cores, where one of these
is reserved for the operating system in each tile. The cores feature
private, write-through L1 caches with a size of 16kB for instructions
and data each. Snooping-based cache coherence is ensured by an
intra-tile AHB bus. It connects all CPUs with their shared L2 Cache
and the network adapter. In the memory-tile, the CPUs are not used
by default. Instead, all computations are distributed between the
3 compute-tiles only. In case the near-memory core is considered,
one single CPU in the memory tile is enabled to act as near memory
core. Near-memory hardware accelerators are considered to be
implemented in the memory-tile and connected to the intra-tile
AHB bus. We run our design in two configurations, either with one
or with four active cores per compute-tile.
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For evaluation, we run all 12 parallel benchmarks of the IM-
Suite [5], consisting of distributed parallel kernels, on our platform.
We thereby execute and verify each benchmark sequentially.

Our prototype system uses an X10 runtime system following the
PGAS programming paradigm what implies that each compute tile
has it’s private partition in the global memory. The runtime system
schedules lightweight threads, so called i-lets, on remote tiles [8].
The use of object-oriented programming languages like X10 implies
the necessity of transferring pointered data structures during inter-
tile communication routines. To execute a so-called at_statement,
all relevant data is combined to a graph and stored to the memory
partition on the sender’s side. Next, the receiving CPU is signalled
to read the graph once and copy it to its own memory partition.
After the copy operation has finished, the receiving CPU starts
to process the received function. However, the graphcopy itself
requires a sophisticated algorithm in order to adjust all pointers
within the graph appropriately during the transfer. It is performed
by a processor using a state-of-the-art software approach [9].

Offloading this graphcopy operation to near-memory process-
ing unit is considered in this work. This can be either a dedicated
accelerator or a near-memory core with an equivalent microarchi-
tecture to all other cores in the system. We thus term the graphcopy
operation as the task-of-interest (TOI) in the following sections.

The hardware accelerator traverses an arbitrary graph and cre-
ates a copy of it in the receiver’s memory partition. Thereby, all
pointers between objects are adjusted appropriately so that no
references back to the original graph exist. It uses an additional
clone-map, i.e. a previously allocated chunk of memory, to store the
mapping of each object to it’s copy. It’s resource utilization is simi-
lar to one Leon3 Core. Details of the hardware accelerator can can
be found in [18]. We do not claim the design and implementation
of the hardware accelerator as a contribution in this work.

The prototype architecture is synthesized onto a Xilinx Virtex-7
FPGA which runs at 50 MHz. The memory controller and the DDR
itself run at 100 MHz.

4 QUANTIFYING MEMORY BOUNDEDNESS

In order to accurately quantify the performance gain due to near-
memory integration, a careful architecture analysis of the existing
system in advance can provide meaningful insights. The question,
whether and how much the system is memory bound, will highly
affect the potential performance improvements, i.e. a highly mem-
ory bound scenario will profit more from near-memory integration
than a compute bound one. Similar to [10] and [6], we determine
memory boundedness by analyzing the run-time behavior of the
application. This section describes the PEPERONI model, which
leads to a quantitative assessment of memory boundedness and
compares it with the well-known Roofline model.

Roofline Model. The classic Roofline model [21] visualizes the
operational intensity (in Ops/Byte) on the horizontal axis and the
compute performance (in Ops/s) on the vertical axis. The Roofline
model displays the nominal peak values in two lines, also referred
to as roofs. The horizontal line shows the nominal compute perfor-
mance, while the diagonal roof results from the maximum memory
bandwidth. The operational intensity of a benchmark determines
a value on the horizontal axis. A system is called memory bound
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Figure 2: Tile-individual Roofline Model of the DR Bench-
mark. Red: Performance boundaries of a compute-tile.
Black: Average Operating points on all 3 compute tiles. Blue:
Average Operating points during the TOI only. : Av-
erage Operating points of the TOI's complement.

when the vertical extension of that point crosses the diagonal line,
otherwise it’s called compute bound.

In contrast to the original proposal, many authors extended
the Roofline model by an operating point based on both the real
operational intensity in Ops/Byte and the real compute performance
in Ops/s ([2], 3], [7], [12]).

In Figure 2, we applied this extension of the Roofline model to
our prototype architecture. We illustrate the characteristics of each
tile individually while running the system with four application
cores per tile. The figure shows exemplarily one of the 12 IMSuite
benchmarks performing the Dijkstra Routing algorithm (DR).

Moreover, we performed a subtask measurement covering solely
the TOI in order to compare the performance of the TOI with the
overall performance on all thee compute-tiles individually. We plot
3 different sets of operating points, one for the total benchmarks
(black), one for the TOI only (blue) and one for the remaining
fraction of the benchmark, i.e. the complement of the TOI (orange).
The plot illustrates the operating points of all three compute-tiles
in one diagram. All tiles are designed equally and thus refer to the
same roofs, only the operating points differ slightly between the
three compute-tiles.

The model serves well for a qualitative comparison of the TOI
and the complete application. Whereas the TOI is clearly memory
bound, its complement is compute bound on two of three tiles. This
boundedness analysis confirmed that improving memory accessibil-
ity for the TOI, e.g. by near memory acceleration, will foreseeably
allow the TOI complement and, thus, the entire application to scale
further in compute performance than without TOI acceleration.

PEPERONI Model. Even with the introduction of TOI the answer
from the Roofline model between compute or memory bound is - jus-
tified with its simplicity - still a binary decision. However, although
evidently many systems can be considered as highly memory- or
compute bound, also scenarios limited roughly equally by compute
performance and memory bandwith are conceivable. A system per-
forming compute- and memory-limited phases alternately or even



in parallel would be a good example. To weight this more precisely,
we propose a quantification method which determines compute-
and memory boundedness in a range between 0 % and 100 %.

In order to analyze this, the system can be specified by its maxi-
mum peak values, similar to the Roofline model. Again, we apply
the model to each tile individually.

Maximum compute performance : CP,, 4y ti1e in [Ops/s] (1)

Maximum memory bandwidth : BW,, 4 ti1e in [Byte/s]  (2)

In addition to the theoretical performance maxima, we measure the
real behavior of the system averaged over the complete execution
time. We use the same measurements as for the Roofline model
leading to the following parameters:

Average compute performance : CPyy g, si1e in [Ops/s]  (3)

Average memory bandwidth : BW, 4 11 in [Byte/s]  (4)

Note that CPy, 4y ti1e and BWp, 4« +i1e denote the maximum peak
values, whereas CPyyg, tije @and BWy g, 1i1e €xpress the real oper-
ating point which is strictly below the maximum and has been
determined during run-time. We consider both BW,,4 41, and
BWpax, tile after the last-level cache within each compute-tile.
However, in other scenarios an observation on the bandwidth before
the cache might be meaningful as well, especially if no near-memory
integration is considered, but e.g. cache optimizations.

The common understanding of memory boundedness says that
the execution time is primarily limited by the available memory
bandwidth. This implies often that the bandwidth is heavily utilized
in the given scenario. Similarly, a compute bound system would be
mostly limited by a heavily exploited compute performance.

In order to quantify this, we calculate compute and memory
boundedness as follows:

. MB _ BWavg,tiIe (5)
’ tile = BWmax,tile

CP avg,tile
CBrite = cp ————
max,tile
The fraction of used compute performance and memory bandwith
leads to a good estimation how close the system is operated with
respect to the corresponding limits. In addition to this, we define
relative compute and memory boundedness, a metric quantifying
whether memory or compute limitations are more restricting.
CBiite MB4 e
CBtile + MByije CBiile + MByije
(6)
The metrics CB,,j ;ije and MB,,j ;ij. add together to 100 % in
any scenario. If one would compare these values to the Roofline
model, each operating point with MB,.j ;i;e > 50 % would be
classified as Memory bound by the Roofline model, i.e. the vertical
extrapolation would hit the diagonal roof first. Thus, our model
does not contradict the Roofline model.

This method can be seen as an additional approach to the Roofline
model in order to quantify how much a system is bound by its com-
pute performance and its memory bandwidth. This much more
granular and quantitative description of compute and memory
boundedness can now be used to estimate the speedup of near
memory computing before going through an expensive design cy-
cle. Chapter 5 demonstrates such a novel estimation for a near
memory core as well as a dedicated hardware accelerator.

CBrel,tile = §MBrel,tile =
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5 SPEEDUP ESTIMATION

Near-Memory Cores. The previously described analysis of the
hardware architecture and its utilization can be used to quantify
the attainable speedup when offloading the TOI to a near-memory
processing unit. This estimation relies solely on measurements of
the baseline architecture, i.e. before the near-memory integration
has started.

We apply that Speedup estimation individually to each tile of
our architecture. In this section, it is assumed to offload the TOI to
a software programmable core, whereas in the following section a
dedicated hardware accelerator is considered. Note that we consider
only near-memory cores with the same microarchitecture as the
host processor in this work. In our understanding, near-memory
cores are, other than in-memory-cores, still on-chip and not inte-
grated into the off-chip DRAM die. Thus, they run on the same
speed as the other processors. The major advantage of such a near-
memory core (NMC) is its typically much higher memory bandwith
compared to an ordinary system core.

Maximum memory bandwidth NMC : BWy,pcore in [Byte/s] (7)
The increase in memory bandwith can be described formally with
BWhmecore > BWmax,tile (8)

In other words, we can assume the near-memory core to perform
memory accesses faster. The Speedup factor of performing fixed-
length memory accesses (i.e. one cacheline) can be appraised by

Smem — Bi}\’]vnmcore (9)
max,tile
Note that in our definition, the speedup is defined relative to a base
value of 1, i.e. a speedup of 1 would imply no speedup. However,
the whole TOI is certainly not accelerated by Spyem, especially if
the system is only slightly memory bound.
In order to estimate the acceleration of the total application, we
divide the total runtime into two disjunct parts, the TOI and its
complement. This can be expressed formally by:

tapp = tapp * froi +tapp - (1= froi) = troi +tcomp  (10)

Hereby we consider f;,; as the fraction of processing time that
is spent to execute the TOI. We can further divide the TOI into a
memory bound part and a compute bound one:

ttoi = troi 'MBrel,toi + troi 'CBrel,toi (11)

Depending on the memory boundedness of the given task, it might
benefit more or less from the increase in memory bandwidth. As-
suming that the characteristics of the TOI are comparable on all
compute tiles, we use average CB,.¢j 1o; and MB,.j ;,; over all tiles.

Offloading the TOI to the previously described near-memory
core will certainly have a negligible influence on the execution-
time of the complement t;omp. Also the compute bound fraction
of the TOI will not be influenced severely, whereas the memory
bound part might be accelerated by Sy,em. Thus, our prediction
of the application runtime under near-memory core acceleration
calculates as follows:

Ltoi - MBrel,toi
tclzpp,nmc = tcomp + troi - CBrel,t0i + S (12)
mem
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Figure 3: Execution time of the IMSuite benchmarks without near-memory acceleration (t;;j¢ pase), and with near-memory
core (ttije,nmcore) OF near-memory hardware accelerator (t;;¢ nmq) enabled. The horizontal lines illustrate the PEPERONI
estimation based on t;}, pgse- All values are normalized to t;;¢ pase-

Near-Memory Hardware Accelerators. In contrast to a near-me-
mory programmable core, dedicated hardware accelerators offer
additional improvements due to their task-specific hardware imple-
mentation, what implies a higher nominal compute-performance
for specific algorithms than a CPU. This comes from a possibly
extraordinary high level of parallelism within hardware circuits.

Also the memory access pattern of hardware accelerators can
be different. While CPUs typically load or store full cachelines,
a memory access of the hardware accelerator is not necessarily
bound to that fixed length in the general case. The transfer time
per memory access of arbitrary length can be calculated by

ttransfer =tarb + k- tword (13)

while k denotes the number of transmitted words within one access.
However, determining the specific memory access pattern is rather
challenging in early design stages of the accelerator. In case the
designer has detailed knowledge on the access pattern yet, this
information should be used evidently. Otherwise, it is proposed to
appraise it by the CPU access pattern allowing for possible inaccu-
racies. In order to not loose generality, we use this simplification in
our evaluation as well. With that, the total time of memory transfers
can be appraised by summing up all single memory accesses:

ttransfer,i (14)

n
tmem =

i=1

Depending on the implementation of the hardware accelerator, the
memory transfer time highly dominates its total operating time. We
thus consider only the memory transfer time in order to estimate the
runtime of the near-memory hardware accelerator. Our estimation
for the total application runtime under near-memory hardware

acceleration calculates then as follows:

tz,zpp,nma =tcomp +tmem (15)

This assumes that all arithmetic operations within the near-memory
accelerator are masked by simultaneous memory accesses and thus
not extend the execution time. While this would be impossible in
conventional CPUs, it is a meaningful approximation for hardware
accelerators, even if they perform non-trivial algorithms.

6 EVALUATION

In order to verify the accuracy of our PEPERONI speedup estima-
tion method described in Section 5, all 12 benchmarks out of the
IMSuite [5] have been executed on the system prototype in differ-
ent variants. The execution without any near-memory acceleration
serves as baseline. Compared to that, an existing near-memory core
with the same parameters as the host processor, and a graphcopy-
specific hardware accelerator, have been employed to perform the
graphcopy operation. The actual behavior under near-memory
acceleration is thereby compared to the estimated performance.
During the baseline execution, all relevant performance metrics
have been measured: The CPU time, the number of operations and
the memory Byte. They have been determined once only within the
TOI and once during the Region of interest of the benchmark. We
always consider the mean value of five identical runs in order to
get rid of statistical deviations. Based on this, all metrics discussed
in Section 4 and Section 5 can be calculated.

Figure 3 compares the measured execution time of the total
benchmarks with and without near-memory processing and com-
pares them with the PEPERONI estimations. All values are normal-
ized to the baseline variant. In the 1-core variant, we predict the total



execution time with a root-mean-square-error of 0.07 for the near-
memory core and 0.11 for the hardware accelerator, respectively.
Predicting near-memory hardware accelerators is more difficult,
since two independent aspects - the hardware implementation and
the near-memory integration - are estimated simultaneously.

The estimation of the 4-core variant comes with a slightly in-
creased error, since several uncertainties - such as the parallel and
sequential portion of the benchmark and whether the TOI resides
in the sequential part or not - have to be faced. Despite of these
uncertainties, PEPERONI leads to a root-mean-square-error of 0.17
and 0.19 for the near-memory core and the accelerator, respectively.

Although the accuracy of our estimations is reliable, a moderate
prediction error is present at least in some cases. Especially for the
BF, DST, DR and DS benchmarks, PEPERONI under-estimates the
performance of the near-memory accelerator. This can be explained
with an additional speedup due to secondary effects, i.e. the accel-
eration of the TOI enables the system to enter the parallel part of
the application faster and to use the resources in a more balanced
way. Considering that PEPERONI does not require any algorith-
mic knowledge, these results give a good quantitative overview
on the potential speedup, if a certain task would be offloaded to
near-memory computing units.

7 CONCLUSION

We presented PEPERONI, a model to estimate the speedup potential
of near-memory integration. It is based on a run-time analysis of an
existing baseline architecture, i.e. before integrating near-memory
computing units. This model is used to approximate the memory
boundedness of the system quantitatively. Based on that, we esti-
mate the total application runtime under near-memory acceleration
and distinguish thereby between software-programmable cores and
hardware accelerators. The performance estimation was performed
on 12 different benchmarks in two platform configurations with a
root-mean square-error of 0.07 and 0.17 for a near-memory core and
0.11 and 0.19 for near-memory hardware accelerators, respectively.

All in all, we envision the PEPERONI method to ease the decision
whether near-memory processing brings a satisfying performance
improvement. Adapting the model to various other architectural
modifications is considered as future work.
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