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ABSTRACT
Traditional caching is transparent to software but cannot uti-
lize program information directly. With Moore’s Law ending
and general-purpose processor speed plateauing, there is in-
creasing importance and interest in specialization including
the interaction between the software and the cache.
This paper presents Compiler Lease of cAche Memory

(CLAM) which augments the interface between software
and hardware and lets a compiler control cache management.
The new software control enables optimization beyond what
is possible in traditional memory system designs. CLAM
has been implemented on a CycloneV-GT FPGA card with
a RISC-V processor and the new hardware cache, and the
evaluation has shown performance improvements over ex-
isting techniques in all of the 7 programs tested from the
Polybench suite.

1 INTRODUCTION
Memory technology is increasing in complexity, with the
adoption of new material such as Intel Optane and new orga-
nization and interconnect such as high bandwidth memory
(HBM).

Owing to its inherent costs in latency and energy, data
movement has become the main target for memory opti-
mization. The primary mitigation is caching. Its popularity
comes from its autonomy — caching is automatic, which
simplifies memory programming. In the best case, a program
obtains good performance with no programming effort. In
the common case, the caching policy provides robust per-
formance, i.e. through the use of Least Recently Used (LRU)
replacement policy and its variants.
Being automatic, however, caching does not allow direct

program control. Hence in the worst case, the cache is blind,
and the program impotent.

Recently, a new design called the lease cache (Section 2.1)
makes direct program control possible. Theoretically, pro-
gram control enables optimal cache management not possi-
ble with automatic caching. However, to realize this potential,
program control must solve the following four problems to
be practical:
• On the software side, programming should (1) be au-
tomatic and (2) do no worse than automatic caching.
• On the memory side, the cache management should
handle (3) a fixed-size space and should be (4) as effi-
cient as automatic caching.

This paper presents Compiler Lease of cAche Memory
(CLAM). It uses a compiler to assign a lease for each ref-
erence in a program. When the access pattern is known at
compile time, it assigns different leases to favor the data that
has the most reuse. When the access pattern is unknown,
it assigns the same lease to each access. The dynamic lease
values provide an opportunity to visualize cache manage-
ment. This paper uses Cache Tenancy Spectrum to view cache
management down to each cache block and covering the
entire length of execution.

The main contributions of the paper are:
• Lease programming by a compiler, including CARL,
which optimizes for a variable size cache (Section 2.2),
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and PRL, which optimizes for a fixed size cache (Sec-
tion 2.4).
• Dual leases (Section 2.3) and uniform leases by FUL
(Section 2.5). The former supports the optimization in
both CARL and PRL, and the latter provides perfor-
mance safety when optimization is infeasible.
• Lease management by hardware, including the actual
design and implementation on a CycloneV-GT FPGA
with a RISC-V processor and the lease cache in hard-
ware. (Section 3)
• Experiments validating the performance optimization
and safety (Section 4) and visualizing the dynamics of
cache management (Section 5).

Lease caching is a new cache control paradigm, designed
to replace automatic policies like LRU. It is possible to im-
plement a lease cache at any level of the traditional memory
hierarchy. Our goal is to explore the potential benefits over
LRU at the policy level, rather than to analyze the differ-
ent properties of a lease cache implementation in L1 vs. L3
cache, or in a fully associative vs. set associative cache. Such
questions are outside the scope of this paper and may be the
subject of future work. Our hardware implementation most
closely matches a fully associative L1 lease cache implemen-
tation.

The paper focuses on loop-based scientific kernels in soft-
ware and FPGA implementation in hardware. While a similar
approach may be used for general-purpose applications and
platforms, both programming and system design will be
more complex and are beyond the scope of this paper.

2 CLAM ALGORITHMS
2.1 Background: Variable-size Lease Cache
Recently, Li et al. [17] proposed a new type of cache called
the lease cache, where a program specifies a length of time
called the lease at each data access. A lease from a program
instructs the cache to store the data block in the cache for
the duration of the lease. Cache management is prescriptive
and in this fashion analogous to memory allocation — a
lease is the prescribed lifetime of a data block in the cache.
Lease cache enables a program to allocate the cache space
by controlling the lease.

If the access is a miss, a new data block is loaded into the
cache and given the lease. If the access is a hit, the lease of
the data block is renewed. In either case, a lease is given at
every data access. The lease is measured by the number of
accesses rather than the physical time. A lease of 1000 means
that the lease cache keeps the data block until 1000 accesses
later. The lease is renewed if the data block is accessed before
the end of the lease; otherwise, the block is evicted from the
cache. At each access, the lease specifies the maximal lifetime
of the data block in cache in the absence of a reuse.

It helps to draw an analogywith an automatic water faucet.
When a faucet detects a user’s hand, it discharges water for
a period of time. This time can be viewed as a lease. If a
hand is detected again, the lease is renewed. If not, the lease
eventually expires and the water valve is closed. If a lease is
too short, water stops while a user is still washing, but if it is
too long, it wastes water. By controlling the lease, a program
controls the cache allocation.
The lease cache developed by Li et al. [17] has two prob-

lems preventing a practical use. First, it assigns the distinct
lease for each data (page), which is impractical at program
level. Second, the size of the cache can temporarily grow or
shrink, which is not suitable for a real hardware cache.

2.2 The CARL Algorithm
Compiler Assigned Reference Leasing (CARL) is a static so-
lution to variable lease assignment, meaning it assigns one
lease per memory reference, as opposed to dynamic solutions
which assign one lease per memory access. A reference is
an expression in code which refers to data. Consider the
following five-point stencil program:

1 for(i=1;i<1023;i++)

2 for(j=1;j<1023;j++)

3 b[i][j]=a[i][j]+a[i][j-1]+

4 a[i][j+1]+a[i-1][j]+a[i+1][j];

There are six memory references in this example, and
each reference invokes multiple memory accesses; one per
iteration of the inner loop. Note that each reference is not
limited to a singe piece of memory; a reference in a loop
touches memory on multiple data blocks.1 We call the set
of all accesses invoked by a particular reference its reference
access group.
We consider the reuse intervals (RI) of memory accesses.

The reuse interval of an access is defined as the length of
time before that memory is reused. By traversing a memory
trace, we may generate the histogram of all reuse intervals
for a given reference access group. Table 1 shows the set of
RI histograms for the five-point stencil program. Notice that
reference 𝑎[𝑖] [ 𝑗] has multiple RIs. Most of the time, the data
in 𝑎[𝑖] [ 𝑗] will be reused in the next iteration of the inner
loop for an RI of 7. However, for the last iteration of the inner
loop where 𝑗 = 1022, the data is not reused until another full
iteration of the outer loop is complete, for an RI of 6135.
CARL assigns a lease to each reference. This means that

each time a memory access is cached, it receives the lease of
the reference by which it was invoked. All accesses within a
single reference access group receive the same lease. Each
lease has an associated profit and cost. Profit is defined as the
number of cache hits granted by a lease assignment. Unit
1For the sake of simplicity, suppose that cache block granularity is equal to
the size of one array element in this example.
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a[i][j] a[i][j+1] a[i][j-1] a[i+1][j]

RI Count RI Count RI Count RI Count

7 1,043,462 4 1,043,462 6,128 1,043,462 6,124 1,043,462
6,135 1,021 - - - - 6,128 1,021

Table 1: Reuse interval (RI) histograms for four of the references of the five-point stencil program. Each row
represents a different reuse interval that is observed for each reference. References with no reuses (b[i][j] and
a[i-1][j]) are omitted.

cost is defined as the occupancy of one cache block for one
unit of logical time.
The cost and profit of a lease 𝑙 ∈ N can be determined

using the RI histogram for that reference. Suppose for sim-
plicity that RI histograms are represented as dense vectors,
whose index refers to the reuse interval and whose value
refers to number of accesses with that RI. The profit is simply
the number of accesses in the histogram whose RI is less
than or equal to 𝑙 , so for a given lease 𝑙 and RI vector 𝐻 with
maximum index 𝑅𝐼𝑚𝑎𝑥 , the profit is given by:

Profit(𝑙, 𝐻 ) =
𝑙∑

𝑖=0
𝐻 [𝑖] (1)

For the cost, there are two terms to consider. Each access
whose reuse interval 𝑟𝑖 ∈ N is less than 𝑙 will occupy cache
for 𝑟𝑖 units of time before it is refreshed, and each access
whose 𝑟𝑖 is greater than 𝑙 will occupy cache for 𝑙 units of
time. Thus the total cost is the sum of these two values over
the full histogram. The cost is given by:

Cost(𝑙, 𝐻 ) =
𝑙−1∑
𝑖=0

𝑖 ∗ 𝐻 [𝑖] +
𝑅𝐼𝑚𝑎𝑥∑
𝑖=𝑙

𝑙 ∗ 𝐻 [𝑖] (2)

Note that under this definition, cost is not directly pro-
portional to lease length. In the five point stencil program,
reference 𝑎[𝑖] [ 𝑗] has two candidate leases, 7 and 6135. The
cost of the short lease is about seven million allocation units,
and the cost of the long lease is about fourteen million units.
Using equations 1 and 2, we may define the change in

profit per unit cost (PPUC) when increasing a lease from 𝑙 to
𝑙 ′ as:

△PPUC(𝑙, 𝑙 ′, 𝐻 ) = Profit(𝑙 ′, 𝐻 ) − Profit(𝑙, 𝐻 )
Cost(𝑙 ′, 𝐻 ) − Cost(𝑙, 𝐻 ) (3)

The details of CARL are presented in algorithm 1. CARL
assigns leases in a greedy manner. It first initializes a lease
of zero for each reference, in line 2. Then, CARL iteratively
increases the leases to higher values in their RI histogram. At

each step it selects the reference-lease pair which maximizes
PPUC, as seen in line 5.
The CARL algorithm continues increasing leases with

maximal PPUC until one of the following conditions has
been met:
(1) All references have been assigned the maximum pos-

sible lease from their reuse interval histogram, as seen
in line 7.

(2) The total cost of the lease assignments has reached
some target value, the condition in line 4.

It is helpful to think of the target cost as the overall allo-
cation budget. The budget is selected such that the average
cache occupancy for the duration of program execution is
equal to some target value. For example, given a cache size
of 128 blocks and a trace length of 1,000,000 memory events,
the target cost will be 128,000,000 allocation units, since this
will result in an average cache size of 128. The target cache
size is an input of the CARL algorithm, and thus it must be
known at compile time.
Because generating and storing a full memory trace re-

quires a prohibitively large amount of data, we instead use
sampled memory traces as detailed in section 3.2. We assume
this sampled trace is representative, so the only change to
the algorithm is to scale the cost function up by the sampling
rate.

2.3 Dual-lease Assignment
CARL produces leases which are optimal assuming that each
reference is allowed only one lease for the duration of pro-
gram execution. This is a coarse lease assignment strategy.
We introduce dual-leases, which allow for more fine grained
control of reference leases.
In the case where a new lease assignment would cause

the allocation budget to be exceeded in CARL, a dual lease is
assigned. A dual lease is a pair of leases for a reference, one
short and one long, and a probability value 𝑝 . Each memory
access invoked by that reference is assigned its long lease
with probability 𝑝 , and its short lease with probability 1 − 𝑝 .

2020-09-15 17:36. Page 3 of 1–16.
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Algorithm 1: CARL main loop.
Input :The number of references 𝑅 and reuse

interval histograms 𝐻1...𝑅 [1 . . . 𝑅𝐼max]
Input :Allocation budget 𝐵
Output :Reference leases 𝐿[1 . . . 𝑅]

1 Function Main():
2 𝐿[1...𝑅] ← 0;
3 𝑡𝑜𝑡𝑎𝑙𝐴𝑙𝑙𝑜𝑐 ← 0;
4 while 𝑡𝑜𝑡𝑎𝑙𝐴𝑙𝑙𝑜𝑐 < 𝐵 do
5 (𝑟𝑒 𝑓 , 𝑙𝑛𝑒𝑤) ←

argmax
𝑟 ∈1...𝑅, 𝑙 ∈𝐿 [𝑟 ] ...𝑅𝐼𝑚𝑎𝑥

{△𝑃𝑃𝑈𝐶 (𝐿[𝑟 ], 𝑙, 𝐻𝑟 )} ;

6 𝑙𝑜𝑙𝑑 ← 𝐿[𝑟𝑒 𝑓 ];
7 if 𝑙𝑛𝑒𝑤 = 𝑙𝑜𝑙𝑑 then
8 /* No more lease to assign */

9 𝑏𝑟𝑒𝑎𝑘 ;
10 else
11 𝐿[𝑟𝑒 𝑓 ] = 𝑙𝑛𝑒𝑤 ;
12 𝑡𝑜𝑡𝑎𝑙𝐴𝑙𝑙𝑜𝑐 + =

𝐶𝑜𝑠𝑡 (𝑙𝑛𝑒𝑤, 𝐻𝑟𝑒 𝑓 ) −𝐶𝑜𝑠𝑡 (𝑙𝑜𝑙𝑑 , 𝐻𝑟𝑒 𝑓 );
13 end if
14 end while
15 End

A dual lease percent is assigned as follows: Suppose a
reference has a lease 𝑙 last assigned by CARL, and the cost of
increasing its lease to 𝑙 ′ exceeds the remaining budget. This
reference will be given a dual lease (𝑙 ′, 𝑙, 𝑝) where 𝑝 is given
by:

𝑝 =
remaining budget

Cost(𝑙 ′, 𝐻 ) − Cost(𝑙, 𝐻 ) (4)

For example, if there is a remaining budget of 100,000
allocation units and the cost of increasing a lease is 200,000
units, it is assigned the long lease with a 50% probability. At
this point, the allocation budget has been exactly met, and
so CARL terminates.

2.4 Phased Reference Leasing
CARL is designed to perform optimally on a variable-sized
cache. The target allocation cost is a global average value,
so there is no guarantee that cache occupancy is evenly
distributed throughout program execution. It is possible to
have some time periods where cache is over-allocated, and
other times where it is under-allocated. This is acceptable
with a variable-sized cache, since more cache space can be
allocated in oversaturated time periods. In a fixed-size cache,
over-allocated time periods lead to the eviction of active
leases, which can harm performance.

In order to mitigate overallocation, we introduce Phased
Reference Leasing (PRL). PRL is an extension of CARL which
seeks to reduce overallocation of cache by partitioning the
trace into equal length phases, and keeping track of an al-
location budget for each phase. The allocation budget for
each phase is equal to the global allocation budget for the
program divided by the number of phases.
The details of PRL are presented in algorithm 2. Leases

are assigned in the same order as CARL, based on the global
maximum profit-per-unit-cost, as shown in line 5. However,
separate RI histograms and allocation budgets are tracked
for each phase in line 19. Whenever a lease is increased, the
allocation cost in each phase is increased based on the RI
histogram for the reference in that particular phase, as shown
in line 20. Leases are continually increased until the budget
for a single phase has been met using a dual lease, as seen in
lines 11 - 13. This differs from CARL’s dual-lease assignment
in Eq. 4. CARL terminates after assigning a dual lease, since
its budget is met. However, in PRL it is possible to continue
increasing leases after the assignment of a dual-lease, since
the budget has only been met for one phase. PRL will only
accept a lease increase if the cost of the assignment is zero
in the saturated phase. Because of this, PRL has only one
condition for termination; once all maximal leases have been
checked in line 7.

2.5 Uniform Leases
Not all programs are amenable to optimization. A compiler
may not know the RI distribution of a reference, either be-
cause it is too difficult to analyze, or because it depends on the
input and may change with execution. For such references,
a compiler assigns a default lease. We call this a Fixed-size
Uniform Lease (FUL). FUL can be assigned by the compiler
without any knowledge about program access patterns.

Essentially, FUL provides a working-set cache. The default
lease corresponds to the working-set parameter defined by
Denning [9] (more on this in Sections 4 and 6). The FUL cache
is not a single policy. Every lease and lease-based eviction
method represents a caching policy. Through the default
lease, FUL provides tens of thousands of caching policies for
a program to choose from.

The FUL cache is performance safe in that the program con-
trol can alwaysmatch the performance of the fully-associative
LRU cache for any application. FUL is a special lease assign-
ment condition of lease cache and can be implemented in
the same hardware as CARL or PRL, making it a robust al-
ternative to variable lease assignment.

2This value is only considered among phases where the cost of the assign-
ment is present, so the denominator is always nonzero.
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Algorithm 2: PRL main loop.
Input :The number of references 𝑅
Input :Number of phases 𝑃
Input :Global reuse interval histograms

𝐻1...𝑅 [1 . . . 𝑅𝐼max]
Input :Per-Phase RI histograms

𝐻1...𝑃,1...𝑅 [1 . . . 𝑅𝐼max]
Input :Global Allocation Budget 𝐵
Output :Reference leases 𝐿[1 . . . 𝑅]

1 Function Main():
2 𝐿[1...𝑅] ← 0;
3 𝑎𝑙𝑙𝑜𝑐 [1 . . . 𝑃] ← 0;
4 while True do
5 (𝑟𝑒 𝑓 , 𝑙𝑛𝑒𝑤) ←

argmax
𝑟 ∈1..𝑅, 𝑙 ∈𝐿 [𝑟 ] ...𝑅𝐼𝑚𝑎𝑥

{△𝑃𝑃𝑈𝐶 (𝐿[𝑟 ], 𝑙, 𝐻𝑟 )} ;

6 𝑙𝑜𝑙𝑑 ← 𝐿[𝑟𝑒 𝑓 ];
7 if 𝑙𝑜𝑙𝑑 = 𝑙𝑛𝑒𝑤 then
8 𝑏𝑟𝑒𝑎𝑘 ;
9 else
10 /* Equation 4 */

11 𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 ←
min
𝑝∈1...𝑃

{
𝐵
𝑃
−𝑎𝑙𝑙𝑜𝑐 [𝑝 ]

𝐶𝑜𝑠𝑡 (𝑙𝑛𝑒𝑤 ,𝐻𝑝,𝑟𝑒 𝑓 )−𝐶𝑜𝑠𝑡 (𝑙𝑜𝑙𝑑 ,𝐻𝑝,𝑟𝑒 𝑓 )
2} ;

12 𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 ←𝑚𝑖𝑛{𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜, 1};
13 if 0 < 𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 < 1 then
14 𝐿[𝑟𝑒 𝑓 ] ← (𝑙𝑛𝑒𝑤, 𝑙𝑜𝑙𝑑 , 𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜)
15 end if
16 if 𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 = 1 then
17 𝐿[𝑟𝑒 𝑓 ] = 𝑙𝑛𝑒𝑤 ;
18 end if
19 for 𝑝 in 1 . . . 𝑃 do
20 △𝑐𝑜𝑠𝑡 = (𝐶𝑜𝑠𝑡 (𝑙𝑛𝑒𝑤, 𝐻𝑝,𝑟𝑒 𝑓 ) −

𝐶𝑜𝑠𝑡 (𝑙𝑜𝑙𝑑 , 𝐻𝑝,𝑟𝑒 𝑓 )) ∗ 𝑑𝑢𝑎𝑙_𝑟𝑎𝑡𝑖𝑜 ;
21 𝑎𝑙𝑙𝑜𝑐 [𝑝]+ = △𝑐𝑜𝑠𝑡 ;
22 end for
23 end if
24 end while
25 End

3 LEASE CACHE HARDWARE
IMPLEMENTATION

Hardware is able to support CLAM from compilation to im-
plementation. In this section we present two solutions: a
hardware based reuse interval sampler and a supporting
lease cache architecture. The objective of the sampler is to
profile a program and provide CLAMwith the RI distribution
necessary to generate leases. This allows CLAM to operate in-
dependent of instruction set architectures (ISAs). The cache

hardware architecture is designed to support lease manage-
ment for all CLAM eviction possibilities:

• Zero vacancy: no cache line has an expired lease.
• Single vacancy: exactly one cache line has expired.
• Multiple vacancies: more than one cache line has ex-
pired.

For a single vacancy the eviction selection is obvious. The
zero vacancy case requires an auxiliary policy as there is
no line eligible for eviction according to CLAM. Multiple
vacancies are handled by prioritizing the eviction of low in-
dex cache lines. The proposed cache architecture handles all
eviction cases, stochastically assigns dual leases to accesses,
and monitors cache utilization/vacancy.

3.1 Lease Cache Architecture
Lease Assignment. Lease policy hardware is implemented

in parallel with existing cache infrastructure (Figure 1). To
support this, the request bus to the cache is augmented with
the address of the reference invoking the access. Both target
and reference addresses are propagated through translation
tables - yielding cache location and lease policy information
to the controller concurrently. The collection of tables that
drive lease policy logic is the lease lookup table (LLT). The
LLT contains four 128 entry tables, enough to sufficiently
store a complete lease set for an appropriately sized program
(Table 2). At every access the LLT resolves to the following
signals:

(1) Lease Valid [1 bit] - flag indicating a lookup table hit.
(2) Primary Lease [n bit] - lease associated with the higher

probability assignment.
(3) Secondary Lease [n bit]- lease associated with the

lower probability assignment (for non-dual leases this
is zero).

(4) Lease Probability [9 bit] - the probability of the pri-
mary lease being used in assignment (for non-dual
leases this is 100%). Probability bit width is the digi-
tized resolution of CARL’s dual lease assignment.

The primary and secondary leases aremultiplexed by prob-
ability evaluation. An LFSR generates a random number that
is compared against the probability bus of the LLT. If the
random value is greater than that of the LLT the secondary
lease is multiplexed through, otherwise the primary lease
passes. A secondary multiplexer then drives the final assign-
ment. If the access results in an LLT hit the current lease
assignment is validated and passes. However, if the reference
is not found in the table a default lease assignment, stored
as a software configurable register, is instead multiplexed. In
this way lease selection is not transparent to the policy con-
troller and strictly abides by CARL/PRL. References without
an associated lease assignment are assumed to have no near
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Figure 1: Lease cache policy specific hardware architecture for a cache of n blocks and lease register size ofm bits.
Note that NOR gate array is used in an input reduction configuration.

future re-reference and provide little benefit to cache per-
formance regardless of cache utilization. We elect to assign
a default lease of one to these references so that after their
immediate use they are eligible for eviction.

Line Vacancy. Each cache line has an associated lease reg-
ister with two control ports and a multi-bit output bus. The
output bus of each register drives a NOR reduction opera-
tor, essentially a comparator with zero, which produces an
expired bit per lease register. A priority encoder examines
all expired bits and identifies the first occurrence (lowest
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address) of an expired lease. A pointer to this address is
produced and bused to the cache controller to be used for
eviction. The pointer is validated by a reduction OR (inequal-
ity with zero comparison), of all expired bits. If at eviction the
pointer is invalid (no lease is expired) replacement follows
the auxiliary policy, random replacement.

Lease Policy Application. At every cache access all non-
expired lease registers are decremented. If the access resolves
as a cache hit (not LLT hit) the lease register at the trans-
lated address is load enabled, regardless of lease assignment.
The miss policy, however, depends on whether the item is
cacheable. If the lease assignment of the missed access is
non-zero then the item is allocated into cache, either to an
expired line or by auxiliary policy. A lease assignment of zero
to an access miss elicits a zero-lease cache bypass wherein the
access is serviced but not cached. This prevents early eviction
of non-expired items and preserves the cache partitioning
that CARL/PRL intend in their assignments. Partitioning is
intended to minimize the misses to cache and so the cost
of making additional data transfers due to these uncached
items is less than if elected to cache them at increased misses.

3.2 Reuse Interval Sampling
Again consider the five point stencil; from its inspection
there are 6 memory references. The resulting reuse interval
distribution of the program is straightforward as given in
Table 1. When assembled and linked however, additional
references are present in the form of stack manipulations
and similar operations. The manner in which the binary is
compiled has a direct impact on how the leases are to be
practically applied. This is not limited to compiler nuance.
Take for example the RISC-V ISA [25] which defines 32 gen-
eral purpose registers. When compiled for the embedded
variant of the ISA only 16 registers are used. This results
in increased memory references to manage data that would
otherwise be managed in the register file. The clairvoyance
breadth of the compiler required is a practical issue when
considering CLAM as a cache solution.
The hybrid solution to this issue is a frontend hardware

integrated with CLAM as the backend. The hardware gener-
ates the reuse interval distribution for the compiler, which
then generates leases based on it. In this way CLAM requires
no ISA/compile knowledge and can be applied to any sys-
tem, given that this reuse interval sampler hardware can be
integrated.

The sampler is essentially a communication snooper. It is
integrated within the request bus between the core and next
level memory, which in this case is the internal cache. The
sampler monitors the memory accesses between the core
and memory, periodically sampling bus transactions, and
generates the resulting reuse intervals. The sampling period

is an application heuristic - the objective is to gather reuse
intervals for all memory references within a program. How-
ever, this is not a necessary condition. References without
collected reuse intervals are assumed sparse and contribute
minimally to program execution. This latter subset of refer-
ences are instead associated with a default lease.

A 64 entry hardware lookup table caches two access fields
- the target address (search field) and address of the refer-
ence invoking the access. An additional counter is associated
with each entry of the table to record the running reuse in-
terval of the reference (incremented at every access). The
table is populated at variable intervals using a nine bit linear
feedback shift register (LFSR). The LFSR generates a pseudo-
random sequence that populates a sampling counter which
decrements at every access. When expired the table is pop-
ulated with the current access fields, and the next number
in the sequence is registered into the counter. Using a nine
bit LFSR results in an average sampling rate of 1 sample per
256 accesses.
A block reuse is indicated by an access target address

matching an entry of the table. When this occurs the entry
of the table that resulted in the match is evicted and its
fields are stored into a separate buffer, along with the access
trace, as the reuse interval of the memory reference. This
is a pragmatic feature to reduce the number of active table
entries that have already been associated with an RI. Eviction
also forcibly occurs if all entries of the table are active when
the sampling counter elapses. To allocate the new sample
the oldest entry of the table is evicted. This entry, as it is not
evicted due to a reuse, is written to the buffer with a negative
RI to flag it as a non-reuse for CLAM.
Reuse interval sampler parameter selection is heuristic

and depends on the program being examined. Furthermore,
there is a direct relationship between population and eviction
rates. Increased sampling frequency results in more active
table entries, bringing the table to full capacity more quickly.
The rate at which the table becomes bottlenecked limits the
magnitude of reuse intervals that can be recorded by the
table (capacity evictions become more frequent - removing
entries with the largest active running intervals).

4 EVALUATION
We evaluate lease cache performance to foremost determine
its benefit over alternative cache replacement policies. Vari-
ations in PRL phases are further trialed to examine how
cache allocation is affected. The cache configurations are im-
plemented on an FPGA running the same RISC-V core. We
use seven benchmarks from the PolyBench suite to evaluate
performance.
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4.1 Implementation and Testing Setup
System Specification. The cache hardware variants are im-

plemented on a CycloneV-GT FPGA [2]. The split, single
level, fully associative cache memory consists of an 8KB in-
struction cache and an 8KB data cache. A block or cache
line consists of 64 bytes (16 words). Transactions from cache
to external memory (512MB of DDR3) are performed on
four byte buses. Cache hits are serviceable same cycle, while
misses have a 20-40 cycle latency depending on whether a
write-back is necessary. Electing to design the cache in a
single stage limits the base speed to 20 MHz on the FPGA,
however, is easily scalable with additional pipeline stages.
The base cache hardware is not designed with any functional
optimizations other than a write-out buffer.

Software Support and Testing. A six stage pipeline RISC-V
[25] core, with support for 32IM extensions, is used for bench-
marking. The core is designed for a baremetal execution envi-
ronment; however, limited I/O functionality is implemented
using a hosted proxy for testing purposes. Through this we
control the sampling system, test system, load binaries (by di-
rect memory accesses), and collect run-time data. Programs
are compiled to executable and linkable formats using the
RISC-V GNU toolchain for embedded variants. Leases and
lease cache configurations are allocated in static partitions
of the binaries, which are mapped to hardware addresses
known by the cache. These blocks are requested and popu-
lated into the LLT as a program preprocess.

Compiler Implementation. The CLAM compiler has two
parts: analysis and code generation. The first collects the
RI histograms, and the second inserts reference leases. The
code generator inserts a table in a data segment of the binary
code. The table enumerates a list of load/store instruction
addresses, and the lease or the dual leases for each instruction.
In the case of a dual lease, the information includes two leases
and a percentage number.
We have implemented source-level compiler analysis in

LLVM based on Static Parallel Sampling (SPS) [7]. It analyzes
and assigns leases for array references (as in the example
program in Section 2.2). However, source-level analysis can-
not determine the corresponding load and store instructions
in the binary code, nor can it determine the machine code
address. Therefore, we adopted an alternative solution and
used profiling by running the program twice. In the first
program execution, FPGA sampling provides the analysis, as
described in Section 3.2. The code generator then computes
and inserts reference leases based on the sampled traces. In
the second execution, the generated code is tested for per-
formance. The code generator implements all the algorithms
described in Section 2, including CARL, PRL and FUL.

Performance Metrics. Cache performance metrics are only
recorded when executing the benchmark kernel. For this pa-
per we utilize, most significantly, access misses and vacancy
statistics. Total accesses are not impacted by lease policy, so
absolute miss counts accurately show improvement in cache
performance. The system is cycle accurate so wall-clock time
is not considered; however, LLT population equates to an
overhead of roughly 16 block transfers (1KB of required LLT
data / 64B per block) - a negligible cost. The memory over-
head of lease cache is the product of the lease register size
and number of cache lines (cost to store leases) plus the LLT
cost. The LLT cost depends on the table field sizes (which
are program dependent); however, assuming a uniform field
size the cost can be approximated as twice the product of
the number of entries and the field size.
Cache utilization shows the quality of the lease-based

assignments. Under-assignment of leases results in an under-
utilized cache (high quantities of expired lines), while over-
assignment leads to over-utilization (no expired lines). Va-
cancy ratios are used to describe the achieved cache utiliza-
tion of a particular lease policy. We define the following
metrics for cache vacancy:
(1) No Vacancy Ratio - the ratio of auxiliary policy evic-

tions (where no cache line is expired) to total evictions
(by lease expiration and auxiliary policy).

(2) Multiple Vacancy Ratio - the ratio of expired evictions
to total evictions when there are at least two expired
cache lines.

The no vacancy ratio captures the degree of over-utilization.
The higher the ratio, the greater the number of auxiliary (ran-
dom) policy replacements due to non-expired leases. This
suggests that the reference lease assignments are too large
and prevent optimal cache management. The multiple va-
cancy ratio is a measure of under-allocation. A large ratio
(≈ 1) indicates that the cache is saturated with expired lines.
Alone the metrics identify degrees of poor cache perfor-
mance; however, when used together describe ideal perfor-
mance. Ideal utilization is one where at any access miss there
is exactly one expired cache line. The equivalent metrics for
this is a no vacancy ratio of 0 (there is always at least one
expired line) and a multiple vacancy ratio of 0 (there is never
more than 1 expired line).

Caching Policies. For benchmarking we try variable lease
sets produced by both CARL and PRL. PRL is further run
at varying phase counts. The best FUL cache performance
for each benchmark is also achieved through experimental
parameter sweep. We compare these policies against least
recently used (LRU), pseudo least recently used (PLRU, us-
ing a single status bit in each cache line) [20], and static
re-reference interval prediction (SRRIP) [15]. LRU is the tra-
ditional reference policy, PLRU is a practical employed cache
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solution, while SRRIP (2 bit scheme - empirically determined
to be best for the elected program array) has the advantage
over LRU of being able to mitigate thrashing.

Benchmarks. We use PolyBench/C 4.2.1, which contains 30
numerical kernels [19].We use PolyBench for several reasons.
First, its kernels are extracted from linear algebra, image
processing, physics simulation, dynamic programming, and
statistics. Second, the benchmark suite is relatively new and
easier to port through the FPGA tool chain to allow testing
on a real system. We selected 7 programs that have a version
that has only integer operations. Polybench is part of a larger
collection [4] which we may expanded into in future work.

Table 2: Test programs and baseline performance

Benchmark
Input
Size (N)

Memory
References

Memory
Accesses

LRU Miss
Count

Atax 120 60 491454 924
Doitgen 25 59 8885194 941

Floyd-Warshall 180 35 116868071 364160
2mm 60 86 6213792 19447
3mm 60 115 10892247 34990
Mvt 120 54 491302 15331

Nussinov 180 98 20051779 335369

The input size is shown in Table 2. We chose the input
size to have a typical miss ratio for the 8KB data cache. The
miss ratio ranges from 0.01% to 3.1%, as shown in Table 2. All
programs use data stored in arrays. Each element in an array
is 4 bytes. A cache block is 64 bytes and contains 16 array
elements. The chosen LLT size of 128 entries allows the lease
cache to statically load all references for any of the target
applications. For applications where the reference set size
exceeds the LLT capacity dynamic LLT content control can
be used to reduce the number of active LLT entries; however,
for this work this is not considered.

4.2 Overall Comparison
Figure 2 shows the results for all seven tests. For each pro-
gram, it shows miss ratios as bars normalized to the LRU
miss ratio. The first bar represents LRU, and so it is always 1.

The second bar in each group is PLRU,which approximates
LRU using a single bit in each cache line. PLRU increases
the miss ratio in most tests, but is within 5% margin of LRU
performance. The third bar is SRRIP. It shows a mixed effect,
reducing the miss ratio in one program (thrash mitigation)
but increasing it in two other programs. The effect is negli-
gible in the four remaining programs - being equivalent to
PLRU.
The best uniform lease result is shown by the fourth bar.

The performance of FUL varies depending on the uniform
lease that is selected. We show the best performance across

all tested lease values for each program. The complete results
are included in the appendix of the paper. At its best, FUL has
the same performance as LRU for the first three programs,
reduces the miss ratio slightly in the next two, and yields
large reductions in the last two.

The last two bars show the two algorithms of CLAM. Both
have changed the miss ratio of all tests compared to LRU.
This shows that for scientific kernels for a fixed size cache,
PRL consistently out-performed CARL. We discuss them in
detail in the next section.

4.3 PRL vs. CARL
The best performing technique overall is PRL. As described
in Section 2.4, PRL first divides a program execution into
phases and ensures no excessive allocation in any phase. It
may help to consider an analogy between cache allocation
and governmental spending. The budget demand may vary.
CARL is analogous to balancing the budget at the end of the
year but having no spending limit until the end. PRL, how-
ever, ensures there be no deficit at the end of each quarter.

Figure 2 shows that CARL reduces themiss ratio relative to
LRU in all but 2mm, for which it causes a significant increase.
PRL, however, is able to reduce the miss ratio in all tests.
Furthermore, PRL improvement is greater than the best FUL
improvement in all tests except for nussinov.

Figure 3 compares CARL and PRL in more detail. Four of
the seven benchmark programs are shown. Atax, Doitgen,
and Floyd-Warshall are not displayed because their leases
assigned by CARL are identical to those assigned by PRL.
CARL is the same as a single-phase PRL. Each other PRL vari-
ant is labeled with the number of phases it uses. To continue
the analogy with governmental spending, more phases in
PRL is analogous to dividing a fiscal year into more periods
with the spending cap at the end of each period.

As discussed in Section 4.1, two performance metrics, the
cache no vacancy ratio and the multiple vacancy ratio, mea-
sure the degree of over- and under-allocation. These two
ratios are measured and shown in Figure 3 for CARL and all
PRL variants.
CARL over-allocates the cache with its leases, shown by

its no vacancy ratios as high as 64%. PRL is able to eliminate
over allocation, shown by the near 0% no vacancy ratios it
has achieved in every test. Intuitively, the more phases in
PRL, the more conservative it is. This is the case for three
programs shown in the figure. When PRL uses 2 to 20 phases,
the vacancy ratio decreases from 9.5% to 0% in 2mm, 23.3% to
0.2% in 3mm, and 60.8% to 39% in nussinov. In mvt, however,
the no vacancy ratio initially increases from 21.9% with two
phases to 5.5% with five phases, but it drops to 7.6% and then
34.6% with 10 and 20 phases respectively.

2020-09-15 17:36. Page 9 of 1–16.
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Figure 2: Normalized miss ratios of caching policies

Comparing the leases of mvt of PRL-10 and PRL-20, we
see that when dividing it into more phases, reference leases
either stay the same or become smaller. For the dual-lease
assignment, the percentage of accesses with the longer lease
is also reduced in PRL-20. In other words, PRL-20 allocates
cache strictly less than PRL-10, so the cache has more vacan-
cies. The opposite result shown by the vacancy ratio is an
artifact of how it is measured.
Recall that the lease cache supports zero-lease cache by-

pass, as described in Section 3.1. At a miss, the cache is
polled to see if there is a vacancy. At a bypass, the cache is
not involved. PRL-20 assigns more zero leases than PRL-10,
e.g. the greater percentage in the dual-lease reference that
was assigned the shorter lease which was zero. Many of the
vacancy counts in PRL-10 became bypasses and were not
counted in PRL-20. As a result, the vacancy ratio dropped.
The only other benchmark with zero lease assignments was
nussinov, in which they are significantly less frequent than
in mvt.

5 VISUALIZING CACHE DYNAMICS
With the implementation of CLAM and associated data col-
lection in hardware, we have the ability to visualize the state
of the cache. This section defines and uses two types of
graphs as follows.

The first type of graph shows the aggregate cache vacancy.
At each moment, the aggregate vacancy is the number of

cache blocks with an expired lease. We then draw the aggre-
gate vacancy as a time series across the entire execution.

The second type of graph shows the current lease in each
cache block. At each moment, the entire cache space of 𝑐
blocks is shown as a column of 𝑐 cells, colored individually
to show the current remaining lease in that block. From the
starting time at the left boundary to the ending time at the
right boundary, we plot the execution as a matrix of colored
cells. We call it a cache tenancy spectrum.

We have implemented the FPGA to output the aggregate
vacancy and the remaining lease values every 𝑘 accesses
during an execution. Figure 4 shows the results for 3mm.
The program has the most distinct phase behavior, and it is
the only program where both PLRU and SRRIP performed
worse than LRU.

The aggregate cache vacancy and the cache tenancy spec-
trum are shown for CARL in the top row and PRL in the
bottom row. Comparing the vacancy graphs on the left, we
see a division of three parts in both graphs. CARL and PRL
differ mainly in the first phase, which includes the first 2.46
million accesses out of the 10.85 million total accesses. In this
period, the aggregate vacancy is zero for CARL but between
1 and 20 for PRL. In other words, CARL over allocates the
cache in this period, but PRL does not.
The difference is shown by the two spectra graphs on

the right. Three colors are used: one for leases greater than
255, under 255, and after expiration. In the first phase under
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Figure 3: Comparing CARL and PRL for the four tests. Each PRL variant is labeled with the phase count. The num-
bers at each bar show the no vacancy ratio (above) and the multiple vacancy ratio (below the bar top). CARL over-
allocates the cache with its leases, shown by its no vacancy ratios as high as 64%. PRL eliminates over-allocation
in the first three tests, shown by their near 0% no vacancy ratios.

CARL, most cache blocks are assigned long leases, and there
is no vacancy. Under PRL, however, many leases are shorter,
and there is some vacancy at most times.

Visualization helps to examine and analyze the effect of a
caching policy. This example shows that the two new types of
plots are useful in identifying the length of time and intensity
of over allocation of cache by CARL.

6 RELATEDWORK
Lease Cache. The term cache leaseswas initially used in dis-

tributed file caching [13]. Such uses continue today in most
Web caches, e.g. Memcached [12], and recently in TLB [3].
A lease specifies the lifetime of data in cache to reduce the
cost of maintaining consistency. In 2019, Li et al. defined
the lease cache [17]. Similar to prior work, a data block is
evicted when the lease expires. However, it differs in that the
lease is re-assigned each time the data block is accessed. The
implementation is more difficult, because it must manage
the lease at every access. As far as we know, this paper is the
first hardware design and implementation of the lease cache.
Li et al. gave the algorithm called Optimal Steady-state

Lease (OSL) [17]. The basic CARL algorithm in Section 2.2
is a direct copy of OSL. While OSL assigns a lease for each
data page, CARL assigns it for each reference. This paper,
however, extends OSL in significant ways. First, the number

of references can be many orders of magnitude less than the
number of pages. Reference leases are practical for hardware
caches, while per page leases are not. Second, a reference
may access an arbitrary amount of data, which requires dual
leases. Third and most importantly, while OSL and CARL
optimize for a variable-size cache, PRL provides a novel ex-
tension to avoid over-allocation in a fixed-size cache.

Software Managed On-chip Memories. The management
of on-chip memories has been a long standing interest in
compiler research. Alam and Horspool [1] surveyed the
literature up to 2015. Among these, Udayakumaran et al.
[21] showed that the performance of their compiler solu-
tion (called the Data-Program Relationship Graph or DPRG)
enables dynamic memory allocation and as a result could
significantly outperform optimal static allocation. Li et al.
[16] extended the static solution of graph coloring to enable
dynamic allocation through live-range splitting and interval
coloring. Udayakumaran et al. [21] reported a performance
comparable to a direct-map cache. Our study uses the fully-
associative cache, which is a more robust baseline.
It is non-trivial to implement dynamic allocation by a

compiler. The lease cache de-couples allocation from its im-
plementation. A compiler simply makes a request of alloca-
tion by specifying a lease. There is a broad range of analysis
that can potentially be used, including not just DPRG and
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Figure 4: The aggregate cache vacancy and the cache tenancy spectrum for 3mm using CARL (top row) and PRL
(bottom row).

graph coloring but also cutting-edge locality models in other
areas [4, 23]. Although such compiler designs are outside
the scope of the paper. Aside from its leasing algorithms,
CLAM provides a programming interface for use by other
algorithms and a fall-back policy, i.e. uniform leases, that is
performance safe.

Working Sets and Stack Algorithms. The uniform lease cor-
responds to the working-set parameter 𝜏 . Denning defined
the working set as the data touched in the last 𝜏 accesses [8–
10]. Virtual memory management is based on working sets.
It can be viewed as a variable-size cache.
Fixed-size caches are managed by a replacement policy.

Mattson et al. [18] showed that a set of policies including LRU,
MRU, LFU, and OPT can be modeled as a stack. In essence,
these policies maintain a total order among the cache blocks,
and this order is charted by the position of each block in the
stack. CLAM is a hybrid design — it uses program control
but manages a fixed-size cache with a replacement policy.
Unlike stack algorithms, CLAM does not use a total ranking.
Each block is assigned a lease, and the lease is maintained

individually. One benefit is the ability to visualize a caching
policy as shown in Section 5.
Stack algorithms impose global management, which has

two shortcomings. First, stack algorithms do not permit soft-
ware control. An exception is collaborative caching. The
second problem of global management is cost, which practi-
cal designs have solved using pseudo LRU, which we have
evaluated in Section 4. We next discuss these two aspects.

Hardware Cache Design. Hardware cache is set associative,
so each eviction considers just the data blocks in the same set.
Sampling by our lease cache has the effect of associativity.
We plan to add associativity in our cache design and evaluate
its effects.
Duong et al. developed the Protecting Distance-based Pol-

icy (PDP) [11]. PDP “prevents replacing a cache line until a
certain number of accesses to its cache set.” It is the same as
the uniform lease in our design. To choose the best protect-
ing distance, PDP included additional hardware to sample
the reuse interval (called reuse distance in the paper) and
adaptively found the protecting distance that maximized the
hit ratio. In comparison, CLAM algorithms assign different
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leases. In performance, the best FUL result is equivalent to
the best off-line PDP result. As shown in Section 4, PRL im-
provement is greater than the best PDP improvement in all
our tests except for one.
It is a widely recognized problem that LRU does not per-

formwell for the streaming pattern, e.g. when an array larger
than the cache size is repeatedly traversed. Many techniques
have been developed, including page coloring, cache replace-
ment techniques such as SRRIP (see Section 4), cache bypass-
ing, and cache hints. Two recent techniques are Talus [5] and
SLIDE [22]. Talus partitions the access stream to have the
effect of dividing the working set, and SLIDE, with scaled-
down simulation, achieves this effect for stack or non-stack
cache policies. The working-set portioning by the uniform
lease (discussed in Appendix) has a similar effect, but using
program rather than cache control.

Collaborative Caching. Wang et al. [24] coined to term
collaborative caching where a program uses cache hints to
communicate program knowledge to the cache as hints. A se-
ries of techniques have been developed to insert cache hints
in software [6, 14, 24]. Collaborative caching is performance
safe, because a program can always choose not to speculate.
Collaborative cache can be used to cache any program with-
out program information. By using uniform leases, CLAM
shares these qualities of the collaborative cache.
Unlike the lease cache, however, the collaborative cache

does not implement complete program control. In fact, it
requires the fully automatic cache control as the baseline.
Cache hints make the cache more complex to implement
and model. In comparison, the lease cache are controlled by
reference and uniform leases, which may be optimized using
CLAM algorithms.
In collaborative cache, program control is secondary. In

fact, it requires the fully automatic cache control as the base-
line. This makes it trivial to establish performance safety.
However, cache hints make the cache system strictly more
complex. Developing software techniques is challenging
since they must model the global management in the base-
line cache control. The collaborative cache is not just more
complex and also more complex to model. The lease cache,
in contrast, implements program control. It can be controlled
as simply as assigning a single uniform lease for the entire
execution. Cache management becomes localized in that its
lease tracking is de-coupled among data blocks. On the other
hand, collaborative cache can achieve optimal cache perfor-
mance with more complex program control, i.e. by inserting
a hint individually for every access (and changing it when
the cache size changes) [14].

7 SUMMARY
This paper has presented CLAM for compiler optimization
of cache management. The CLAM algorithms include CARL,
which optimizes for a variable size cache, PRL, which opti-
mizes for a fixed size cache. Both use dual leases to more
fully utilize the cache. By using variable-length leases, CLAM
achieves performance beyond what is possible with tradi-
tional automatic caching. For programs that are not amenable
to static or profiling analysis, the compiler inserts uniform
leases which perform at least as good as LRU.
CLAM has been implemented on a CycloneV-GT FPGA

card with a RISC-V processor and the new hardware cache.
The evaluation has shown performance improvements over
existing techniques in all of the 7 programs tested from the
Polybench suite. This is the first hardware design and imple-
mentation of the lease cache.
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A FUL PERFORMANCE AND ANALYSIS
When there is no vacancy, CLAM uses random eviction as
mentioned in Section 3.1. The choice is made after examining
three eviction methods, as listed next:

(1) Random: a randomly chosen block regardless of the
remaining lease

(2) SRL: shortest remaining lease
(3) LRL: longest remaining lease
Unlike Random, which is lease oblivious, the other two

choose a victim based on the remaining lease, shortest for
SRL and longest for LRL respectively. To implement SRL and
LRL efficiently, we sample a few cache blocks and check their
leases. The number of cache blocks sampled is the pool size.

By testing all three evictionmethods, we determinewhether
there is a benefit in using lease-based eviction.

The performance is shown in Figure 6 by the total number
of misses of FUL normalized to that of LRU.
FUL is programmable. We first consider the best perfor-

mance, i.e. lowest miss count, and comparison with LRU.
Judging by the best performance, FUL is significantly better
than LRU for two programs, slightly better for another two,
and the same as LRU for the remaining 4 programs.
Table 3 shows the best reduction over LRU and the FUL

parameters which give the best FUL performance for four
of the benchmarks used. For Nussinov, Mvt, FUL can be pro-
grammed to reduce the number of misses by 60% and 85%
respectively over LRU. For 2mm, 3mm, the improvement is
about 4% and 6% respectively. Except for Mvt, the improve-
ments by the best FUL are surpassed by

Table 3: Best FUL miss count reduction over LRU in
four benchmarks.

Benchmark FUL
Eviction

Pool
Size

Miss Count
Reduction [%]

Best FUL
Lease

Nussinov LRL 8 60.28 3683
Mvt LRL 8 85.15 2286
2mm All All 3.92 1778
3mm All All 5.62 1905

Case Study Mvt. The greatest improvement happens for
Mvt, whichwe analyze inmore detail. The program computes
a matrix-vector multiplication twice. In the second time,
the matrix is traversed column by column, shown by the
following code:

1 for (i=0; i < N; i++)

2 for (j=0; j< N; j++)

3 x2[i] = x2[i] + a[j][i] * y2[j];

Checking the source code, we found that 𝑁 = 120. The
inner loop traverses one column of thematrix, which consists
of 120 data blocks; 1 data block for vector 𝑥2; and 8 for𝑦2. The
total working set is just larger than the cache size, which
is 128 blocks. As a result, all matrix accesses miss in the
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LRU cache. In the FUL cache, when the lease covers only
a portion of the matrix column, the remaining portion is
evicted randomly. As a result, the remaining working set fits
in the cache, i.e. most matrix accesses become cache hits,
and hence the improvement.

At every miss, 
all leases have 

expired

FUL eviction 
method

SRL

LRL

Random

FUL lease length

MRU

RAND RAND

At every miss, 
no lease has 

expired

short long

Full space of 
FUL caching 

policies

RAND

RAND

LRU

Full working set 

Working-set portion 
that fits in cache 

Figure 5: Illustration of working-set portioning

Working-set Portioning. In effect, the FUL lease and evic-
tionmethod divide the working set ofMvt and store a portion
of the working set that fits in the cache. We call this effect
Working-set Portioning.

The effect is better explained using the simple illustration
in Figure 5. The best performance happens when the lease

captures the full working set. When the working set exceeds
the cache size, the FUL cache evicts part of the working set
so it fits in the available cache. The effect of working-set
portioning is seen in three other programs.
For streaming accesses, the best policy is most recently

used (MRU) eviction, which is why we see LRL performs the
best in Mvt and Nussinov. It may appear puzzling that SRL
can improve over LRU. The reason is the set sampling used
by FUL when selecting a block for eviction. It does not evict
deterministically as the fully associative LRU cache does.
This is also the reason that for 2mm,3mm, all three eviction
methods perform better.
When the lease is too short to capture the working set,

the FUL cache uses random replacement. In the extreme
case when the lease is 0, the miss ratio is that of random
replacement, which is worse than LRU in six of the test
programs. When the lease is too long, it “covers” data not in
the working set. SRL behaves the same as LRU. However, in
this case both Random and LRL perform worse than LRU.
If we compare the three eviction policies overall, we see

that no one policy dominates another. Among them, ran-
dom is the most space efficient and fastest to implement in
hardware. We therefore use random in CLAM.



Ian Prechtl, Ben Reber, Chen Ding, Dorin Patru, and Dong Chen

0 25000 50000

1

1.2

1.4
SRL

0 25000 50000

LRL

0 25000 50000

0.4

0.6

0.8

1 SRL

0 25000 50000

LRL

0 25000 50000
1

1.5

2
SRL

0 25000 50000

LRL

0 25000 50000
1

1.5

2
SRL

0 25000 50000

LRL

0 25000 50000
1

1.5

2
SRL

0 25000 50000

LRL

0 25000 50000

1

1.2

1.4
SRL

0 25000 50000

LRL

0 25000 50000

1

1.1

1.2

1.3
SRL

0 25000 50000

LRL

0 25000 50000
0.2
0.4
0.6
0.8

1 SRL

0 25000 50000

LRL

LRU Random Pool Size 4 Pool Size 8

F
U

L 
M

is
s 

R
at

io
 N

or
m

al
iz

ed
 to

 L
R

U
 M

is
s 

R
at

io

FUL Lease Length

Nussinov

Mvt

2mm

3mm

Atax

Bicg

Doitgen

Floyd-Warshall

Figure 6: The miss ratio of FUL cache normalized to LRU for each test program with eviction methods SRL (left
graph), LRL (right graph), Random (replicated in both graphs), and the FUL lease as the x-axis in each graph.
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