
PPT-SASMM: Scalable Analytical Shared Memory Model
Predicting the Performance of Multicore Caches from a Single-Threaded Execution Trace

Atanu Barai

Klipsch School of ECE

New Mexico State University

Las Cruces, NM 88003, USA

atanu@nmsu.com

Gopinath Chennupati

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

gchennupati@lanl.gov

Nandakishore Santhi

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

nsanthi@lanl.gov

Abdel-Hameed Badawy
∗

Klipsch School of ECE

New Mexico State University

Las Cruces, NM 88003, USA

badawy@nmsu.com

Yehia Arafa

Klipsch School of ECE

New Mexico State University

Las Cruces, NM 88003, USA

yarafa@nmsu.com

Stephan Eidenbenz

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

eidenben@lanl.gov

ABSTRACT
Performance modeling of parallel applications on multicore proces-

sors remains a challenge in computational co-design due to multi-

core processors’ complex design. Multicores include complex pri-

vate and shared memory hierarchies. We present a Scalable Analyt-

ical Shared Memory Model (SASMM). SASMM can predict the per-

formance of parallel applications running on a multicore. SASMM

uses a probabilistic and computationally-efficient method to predict

the reuse distance profiles of caches in multicores. SASMM relies

on a stochastic, static basic block-level analysis of reuse profiles.

The profiles are calculated from the memory traces of applications

that run sequentially rather than using multi-threaded traces. The

experiments show that our model can predict private L1 cache hit

rates with 2.12% and shared L2 cache hit rates with about 1.50%

error rate.

CCS CONCEPTS
•Computer systems organization→Multicore architectures.

KEYWORDS
Performance modeling, Parallel application, Shared cache, Reuse

distance analysis, Probabilistic model, LLVM basic block

∗
Also affiliated with Los Alamos National Laboratory, Los Alamos, NM, USA.

Multicore Caches from a Single-Threaded Execution Trace. In The Inter-
national Symposium on Memory Systems (MEMSYS 2020),September 28-
October 1, 2020, Washington, DC, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3422575.3422806

1 INTRODUCTION
With the emergence of Exascale computing and Moore’s law com-

ing to a halt, high core counts onmulticore processors with complex

and large cache hierarchies have become common. Such compli-

cated designs comewith several challenges [42], such as the efficient

use of available computing cycles, memory delays, and modeling

the performance of caches. Designers of parallel applications that

run on multicores have to work hard to leverage this extensive com-

puting power. One of the critical factors that determine a parallel

application’s performance on a multicore processor is the availabil-

ity of data to the cores. One way to measure an application’s data

availability is through its cache utilization ability, which directly

impacts runtime performance.

Modern processors have shared caches, which significantly im-

pact the performance of an application in the form of data locality

and inter-process communication. These factors are both complex

to analyze and hardware dependent. Simulation as a modeling tool

helps understand and predict applications’ behavior and study the

impact of the above factors on performance in a multicore config-

uration. Co-design, which we define as modeling both hardware

and software, helps to tune an application’s performance. Most of

the efforts in co-design have focused on getting simulation data

from cycle-accurate dynamic instrumentation tools [17, 24, 26, 45].

However, these simulations require a large number of runs and

experimentation with many hardware configurations. Such config-

urations include variations in cache hierarchies, core counts, and

problem sizes, all of which contribute to increasing design space

complexity. Using cycle-accurate dynamic simulators to evaluate

and predict performance does not scale well. Our solution is to

build a scalable simulation model that relies on a detailed cache

hierarchy model and application.

In analyzing a cache’s performance, Reuse Distance Analysis [33]
is one of the commonly used techniques. Reuse distance is defined as

the number of unique memory references between two references

to the same memory reference. For sequential programs, reuse

myzinsky
2020

Atanu, et al.

analysis is architecture-independent, whereas for parallel programs

that run on multicores, reuse distance dependents on how the

memory references of threads interact. Therefore, on multicores,

Concurrent Reuse Distance (CRD) profiles [19] use a global stack to

quantify reuse across thread-interleaved memory references, and

thus accounts for data sharing and interaction between threads

accessing shared caches. However, CRD profiles are unscalable

as the core count increases, and the thread interactions increase;

thus, the memory traces get large, which significantly changes the

CRD profiles. On the other hand, Private-stack Reuse Distance (PRD)
profiles depend on how the tasks are scheduled among multiple

cores.

In this paper, we introduce the Scalable Analytical Shared Mem-

ory Model (SASMM). SASMM relies on the prediction capabili-

ties of the recently open-sourced Performance Prediction Toolkit

(PPT) [14]. SASMM is based on reuse distance estimation meth-

ods. Our crucial innovation is to include the realistic scenario of

caches shared among multiple threads of an application, compared

to existing cache models even in the PPT library. SASMM esti-

mates shared and private cache hit rates in a multi-thread and

complex cache hierarchy architecture for different applications,

which the user can specify. We use a translator based on the Rose
compiler [31] to get the threaded version of a parallel code written

in OpenMP [15]. We develop a compiler-driven technique to iden-

tify the threaded programs’ basic blocks in measuring the exact

probabilities of executing a given basic block of a program. We col-

lect LLVM basic block [30] labeled memory trace from a sequential

execution of translated code only once. Using this memory trace,

we explore through different scheduling and interleaving strategies

of execution to mimic the behavior of multi-threaded programs on

shared-memory multicores. These strategies are carried out at the

basic block level. We collect a basic block labeled memory trace

generated from the translated program’s sequential run and apply

a probabilistic analytical method to measure both the PRD and the

CRD profiles. Using these profiles, we measure cache hit rates of the

applications. We evaluate our approach with the hit rates collected

using the Cachegrind tool from Valgrind [34]. The results show

that the model accurately predicts cache hit rates compared to hit

rates collected using the Cachegrind tool.

2 BACKGROUND
2.1 Execution of Parallel Application: Fork

Join Model
OpenMP uses fork-join model for parallel execution of a program.

The program begins as a sequential applicationwith amaster thread.

When the first parallel region construct is encountered, the master

thread forks a team of almost identical parallel threads. The forked

threads have access to all the variables from the master thread, and

those are shared variables. These threads may also have private

variables of their own and can identify themselves with unique

thread number. When the threads finish executing all the parallel

region statements, they synchronize and terminate (join), leaving

only the master thread. It is also possible to have nested parallelism

where one in the team of threads can fork recursively until it reaches

a certain task granularity.

Table 1: Reuse Distance Example

Address a b a c b d d a

RD ∞ ∞ 1 ∞ 2 ∞ 0 3

2.2 Reuse Distance Analysis
Reuse distance (D) of a memory address, also known as LRU stack

distance, is the number of unique memory references made by a

program between two consecutive references to the same address.

Note that, when a memory address is referenced for the first time,

D’s reuse distance is ∞. Reuse profile is the histogram of reuse

distances for all memory references of a program. Reuse distance

analysis measures the locality [22, 49] of an application, which can

be used to predict the cache performance of that application [5,

8, 41] and make cache management policy decisions [23]. For a

fully associative cache with capacity C, a memory reference’s reuse

distance will always trigger a cache miss, if D ≥ C. Table 1 shows

the reuse distance calculation for a sample trace. In the example,

50% of memory references will cause a compulsory cache miss. If we

consider that cache size is three, then 13% of all memory references

will cause a capacity cache miss. In our work, we calculate the

reuse profile at cache line granularity. The addresses we consider

to calculate D are cache line addresses.

Reuse distance analysis is robust and architecture-independent

for sequential applications. The same reuse profile can be used to

determine the performance of different cache sizes. This saves a sig-

nificant amount of time in cache hit rate analysis as we do not have

to collect memory traces for different cache configurations. Many

attempts [3, 21, 46] demonstrated the use of memory traces for

reuse profile calculations. These approaches use binary instrumen-

tation tools to collect memory traces. The memory traces used in

most of these attempts are significant in size and time-consuming to

process, thereby unscalable. However, recent attempts from Chen-

nupati et al. [11–13] demonstrated analytical models that scale with

a small input run of a program. These attempts help predict the

performance of an application on single-threaded programs. In a

similar spirit, we model the private and shared cache performance

of multicore programs.

2.3 Multicore Reuse Distances
Most of the multicore processors contain both shared and private

caches. Although the locality of references of a parallel program in

a multicore processor is somewhat architecture-specific, it largely

depends on the application’s characteristics. The corresponding

thread of a core accesses the private cache while the shared cache

is accessed through all the cores. Two separate reuse profiles, Con-
current and Private-stack reuse profiles (CRD and PRD) are used

to model shared and private caches [27] respectively. We can in-

terleave memory references from all cores on a single LRU stack

to measure concurrent reuse profiles. This interleaving causes dif-

ferent types of interaction: dilation, overlap, and interception [47].

Table 2 shows the memory references from two cores. For access

of a at time 4, CRD is two where its PRD is 1. Here CRD is larger

than PRD, which shows dilation. On the other hand, data sharing

reduces dilation. For the memory reference of a at time 9, CRD

is three, although there are four memory references between two

PPT-SASMM: Scalable Analytical Shared Memory Model

Table 2: Concurrent Reuse Distance Example

Time 1 2 3 4 5 6 7 8 9 10

Core 𝐶1 a b a e d a b

Core 𝐶2 c d b

Shared Memory

Access

a c b a e d b d a b

consecutive memory references at times 4 and 8. This shows over-
lapping as d is accessed by both cores inside reuse interval of a.
Again for the reference b at time 10, the reused data itself is shared.

So its CRD is two, which is less than its PRD.

Several recent works have focused on CRD profile and perfor-

mance prediction of the shared cache [9, 18, 20, 44, 48]. Recently

researchers attempted to use an analytical model and sampling

to speed up the performance prediction [4, 27, 38–40]. All these

models require trace collection from parallel execution of an ap-

plication for different numbers of threads. On the other hand, our

model collects trace once from the sequential run of the application.

From that trace, we predict shared cache performance for a different

number of threads. This makes our model highly scalable with core

counts.

3 PPT-SASMM: SCALABLE ANALYTICAL
SHARED MEMORY MODEL

The scalable analytical shared memory model is a parameterized

model for the performance prediction of parallel codes. We leverage

reuse distance analysis to determine a parallel program’s multicore

reuse profile that runs on multiple cores. The reuse profiles are later

used to determine the hit rates at different cache hierarchies. Fig-

ure 1 shows different steps of the analytical shared memory model.

Various steps of our model include a) translating the OpenMP pro-

gram to a threaded program, b) adding labels for shared variables

in the threaded program, c) generating a memory trace from basic

block labels, d) mimicking shared and private memory traces, e)
estimating private stack and concurrent reuse profiles and hit rates.

We describe each of these steps in detail as follows.

3.1 Program Translation
In the first step, we convert the OpenMP application to an interme-

diate threaded code using OpenMP translator in ROSE [31] compiler.

In the translation process, the parallel sections of the original code

are transformed into intermediate threaded code. The translation is

important in order to track the reuse distances of shared variables.

With the high-level OpenMP code, measuring the reuse distances

of shared variables is difficult. Therefore, the translated code helps

in efficient reuse analysis, thereby the shared cache performance.

The threaded version of the code contains XOMP wrapper func-

tions (generated from the Rose compiler), that call GNU OpenMP

(GOMP) (when compiled with GCC) library functions. The parallel

sections’ private variables are translated as local variables in the

code’s corresponding threaded version. Each thread under execu-

tion runs the XOMPwrapper functions, where each thread allocates

memory for the local variables. The threaded version of the code’s

functions receives pointers’ structure as a parameter for the shared

Start

Input OpenMP code

Translate OpenMP code to threaded code

Add label to the threaded code to identify refer-

ences of shared variables in the memory trace

Generate basic block labeled memory

trace from sequential run of the program

Mimic private and shared memory trace

Estimate private and concurrent

reuse profiles and calculate hit rates

Hit rates at different cache levels

Stop

Figure 1: Flow Chart of the Scalable Analytical Shared Mem-
ory Model (SASMM)

variables. At the beginning of these functions, all the members of

those structures are assigned to locally declared pointers. We create

separate labels for these shared parts of the code, which is where

the assignments happen so that the memory trace of the shared

variables of the code are grouped in the corresponding basic block

labels (described in section 3.2). Figure 3 shows the transformed

code of the simple OpenMP code in Figure 2. In the translated code

in Figure 3 the static function named OUT__1__7285 corresponds
to the parallel section of the simple OpenMP code in Figure 2. The

shared variables are passed to this function using a pointer to the

structure named __out_argv. We put the assignment statements of

shared variables under shared_var_trace0 label. In thememory trace,

all the references under the shared_var_trace0 label are grouped

together.

int main()
{

int i, n;
int sum = 0;
n = 500;
#pragma omp parallel for reduction (+:sum)
for (i = 0; i < n; i++)

sum = sum + i;
}

Figure 2: An Example OpenMP Program

Atanu, et al.

#include "libxomp.h"

struct OUT__1__7285___data
{

void *n_p;
void *sum_p;

}
;
static void OUT__1__7285__(void *__out_argv);

int main(argc ,argv)
int argc;
char **argv;
{

int status = 0;
XOMP_init(argc ,argv);
int i;
int n;
int sum = 0;
n = 500000;
struct OUT__1__7285___data __out_argv1__7285__;
__out_argv1__7285__ . sum_p = ((void *)(&sum));
__out_argv1__7285__ . n_p = ((void *)(&n));
XOMP_parallel_start(OUT__1__7285__ ,& __out_argv1__7285__

);
XOMP_parallel_end ();
XOMP_terminate(status);

}

static void OUT__1__7285__(void *__out_argv)
{
shared_var_trace0: {}

int *n = (int *)(((struct OUT__1__7285___data *)
__out_argv) -> n_p);

int *sum = (int *)(((struct OUT__1__7285___data *)
__out_argv) -> sum_p);

other_trace1: {}
int _p_i;
int _p_sum;
_p_sum = 0;
long p_index_;
long p_lower_;
long p_upper_;
XOMP_loop_default (0, *n - 1,1,&p_lower_ ,& p_upper_);
for (p_index_ = p_lower_; p_index_ <= p_upper_;

p_index_ += 1) {
_p_sum = _p_sum + p_index_;

}
XOMP_atomic_start ();
*sum = *sum + _p_sum;

XOMP_atomic_end ();
XOMP_barrier ();

}

Figure 3: Transformed OpenMP code using Rose compiler

3.2 Memory Trace Generation for Different
Cache Hierarchies

In the second step, we generate LLVM basic block labeled mem-

ory trace of the translated threaded program. The LLVM IR of the

source code consists of basic blocks, consisting of a single entry and

a single exit point. In producing the trace, we execute the translated

code sequentially for the parametrized program. We use LLVM

based instrumentation to generate the basic block labeled memory

trace of the translated program through sequential execution. In

this memory trace the ith basic block (BBi) of the labeled trace

contains all the memory addresses that are accessed as a result of

executing the corresponding straight-line code of (BBi). For each
shared section, marked with a label, we gather the corresponding

memory references of those shared sections from the trace. Sequen-

tially using this memory trace result, we mimic the memory access

behavior of the parallel program and thus generate the private

memory trace on each thread under execution.

As OpenMP works within a fork-join model, the parallel sec-

tion of the OpenMP code is executed at the same time on different

cores. Each core has its copy of the parallel section of the code.

Note that only the master thread executes the code’s sequential

part and the corresponding parallel section of the code. We mimic

this behavior by making copies of each basic block of the paral-

lel sections’ memory references. Our mimicking strategy tries to

replicate the memory trace of an OpenMP program on multiple

cores. For example, if the parallel program uses 4 cores, we make

four copies of a basic block. We then add an offset to the memory

addresses for each of the cores under execution except the core

executing master thread. The basic blocks selected belong to the

parallel region of the code. The offset is carried out on all memory

references of a parallel region’s basic blocks except for the shared

variables’ memory references. Some basic blocks (loop iterations)
under the parallel region are executed multiple times. They appear

multiple times in the labeled memory trace. After adding offsets in

the same way, we distribute the memory references belonging to

these basic blocks evenly among all the cores. We choose the offset

in such a way that the mimicked memory references do not match

with the original memory references produced in the sequential

execution. This mimicking strategy helps to show that the memory

references belong to different cores.

Algorithm 1 Private Memory Trace Generation

1: procedure 𝑔𝑒𝑛_𝑝𝑟𝑣𝑡_𝑡𝑟𝑐(𝑎𝑙𝑙_𝑏𝑏, 𝑡𝑟𝑎𝑐𝑒 , 𝑠ℎ𝑎𝑟𝑒𝑑_𝑣𝑎𝑟_𝑟𝑒 𝑓 𝑠)
2: 𝑒𝑎𝑐ℎ_𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑐𝑒 ← [[] ∗ 𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠]
3: 𝑎𝑙𝑙_𝑏𝑏_𝑤𝑖𝑛𝑠 ← 𝑔𝑒𝑡_𝑎𝑙𝑙_𝑏𝑏_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 (𝑡𝑟𝑎𝑐𝑒)
4: for 𝑏𝑏𝑖 in 𝑎𝑙𝑙_𝑏𝑏 do
5: 𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 ← 𝑎𝑙𝑙_𝑏𝑏_𝑤𝑖𝑛𝑠 [𝑏𝑏𝑖]
6: 𝑙𝑒𝑛_𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 ← len(𝑏𝑏𝑖_𝑤𝑖𝑛𝑠)
7: if 𝑏𝑏𝑖 in 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑏𝑏𝑠 then
8: if 𝑙𝑒𝑛_𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 == 1 then
9: for 𝑐𝑜𝑟𝑒_𝑖𝑑 in range (𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠) do
10: each_core_trace[core_id]←
11: 𝑡𝑟𝑎𝑐𝑒 [𝑏𝑏𝑖_𝑤𝑖𝑛𝑠]
12: end for
13: else
14: 𝑠𝑝𝑙𝑖𝑡_𝑤𝑖𝑛𝑠 ← array_divide(𝑏𝑏𝑖_𝑤𝑖𝑛𝑠,
15: 𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠, 𝑐ℎ𝑢𝑛𝑘_𝑠𝑖𝑧𝑒)
16: for 𝑐𝑜𝑟𝑒_𝑖𝑑 in range (𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠) do
17: each_core_trace[core_id]←
18: 𝑡𝑟𝑎𝑐𝑒 [𝑠𝑝𝑙𝑖𝑡_𝑤𝑖𝑛𝑠 [𝑐𝑜𝑟𝑒_𝑖𝑑]]
19: end for
20: end if
21: else
22: 𝑒𝑎𝑐ℎ_𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑐𝑒 [0] ← 𝑡𝑟𝑎𝑐𝑒 [𝑏𝑏𝑖_𝑤𝑖𝑛𝑠]
23: end if
24: end for
25: end procedure

PPT-SASMM: Scalable Analytical Shared Memory Model

The private caches (such as 𝐿1) contain thread-specific execution

where each core will have thread-specific memory trace. Therefore,

we employ the procedure described in Algorithm 1 to generate

private traces for each core, thereby calculating the corresponding

reuse profiles and hit-rates. It takes a list of all the basic blocks, the

sequential memory trace, and the references belonging to shared

variables as input. It finds all instances of each basic block (BB𝑖) in
the memory trace and counts the number of instances. We refer

to these instances as windows. If the basic block is in the parallel

section with only one instance in the memory trace, we make a

copy of that for each core, add offset to the memory references and

assign it to each core. If that basic block has multiple instances in

the memory trace, then we evenly distribute them to each core.

We can perform distribution with chunk size, which is similar to

OpenMP static scheduling chunk size. When the basic block is part

of the code’s sequential region, then we assign all the memory

references of that basic block to the core executing the main thread.

We find the list of basic blocks using our LLVM based offline code

analysis tool.

The original OpenMP execution contains different scheduling

strategies (static, dynamic, and guided) to execute the parallel sec-

tions. Recording memory traces for such scheduling strategies is

cumbersome and inefficient in terms of both time and memory.

Therefore, our model in this paper tries to generate a trace similar

to the OpenMP scheduled traces. Here, we use the above recorded

sequential trace to mimic the interleaving of threads. Our mimick-

ing strategy distributes the corresponding memory threads equally

among multiple threads under execution, similar to following static

scheduling in OpenMP. We distribute the iterations to the cores

according to an adaptive chunk size. In order to further study the ef-

fect of scheduling strategies on memory reuse, we propose various

interleaving and scheduling strategies, described in section 3.3.

For a shared memory trace, we take the labeled memory refer-

ences from the basic block labeled private traces above. We inter-

leave thememory references of the same basic block from all private

traces of the cores sharing that particular memory. We try round-
robin and uniform random scheduling to interleave the memory

references. The resultant trace contains all basic blocks’ memory

trace under sequential execution and interleaved traces of all basic

blocks under parallel execution. Thus, the sequence of basic blocks

in the mimicked trace is retained from the sequential trace sequence.

Similar traces can be generated with binary instrumentation tools

such as Valgrind [34] and Pin [37]. However, we use an LLVM based

tool to leverage the conceptual advantage of dealing with simple

straight line basic blocks within a program. Valgrind’s Lackey tool

runs the multi-threaded program sequentially per thread, where the

threads’ interleaving is left to the operating system. Therefore the

resultant memory trace happens to be multi-threaded. On the other

hand, with Pin, one has to produce a sequential trace and propose

interleaving strategies. Nonetheless, we cannot derive a basic block

labeled trace from Pin instead of our LLVM instrumentation. We

estimate the reuse distances for each reference in the trace, once

we have the memory trace that mimics the multicore execution.

Algorithm 2 Interleave memory traces

1: procedure 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒_𝑡𝑟𝑎𝑐𝑒𝑠(𝑎𝑙𝑙_𝑏𝑏, 𝑝𝑟𝑣𝑡_𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒𝑠)

2: 𝑛𝑢𝑚_𝑜 𝑓 _𝑡𝑟𝑎𝑐𝑒𝑠 ← len
(
𝑝𝑟𝑣𝑡_𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒𝑠

)
3: 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒 ← 𝑝𝑟𝑣𝑡_𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒𝑠 [0]
4: for 𝑏𝑏𝑖 in 𝑎𝑙𝑙_𝑏𝑏 do
5: if 𝑏𝑏𝑖 in 𝑝𝑎𝑟_𝑏𝑏𝑠 then
6: for 𝑡𝑟𝑎𝑐𝑒_𝑖𝑑 in range(𝑛𝑢𝑚_𝑡𝑟𝑐𝑒𝑠) do
7: 𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 [𝑡𝑟𝑎𝑐𝑒_𝑖𝑑] ←
8: 𝑔𝑒𝑡_𝑏𝑏𝑖_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 (𝑏𝑏_𝑖, 𝑝𝑟𝑣𝑡_𝑚𝑒𝑚_

9: 𝑡𝑟𝑎𝑐𝑒𝑠 [𝑡𝑟𝑎𝑐𝑒_𝑖𝑑])
10: 𝑛𝑢𝑚_𝑏𝑏𝑖_𝑖𝑛𝑠𝑡𝑛𝑐 [𝑡𝑟𝑎𝑐𝑒_𝑖𝑑] ←
11: len(𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 [𝑡𝑟𝑎𝑐𝑒_𝑖𝑑])
12: end for
13: for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 in range(𝑛𝑢𝑚_𝑏𝑏𝑖_𝑖𝑛𝑠𝑡𝑛𝑐 [0]) do
14: 𝑟𝑒 𝑓 _𝑖𝑛𝑠𝑡𝑛𝑐_𝑖_𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒𝑠 ← [[] ∗ 𝑛𝑢𝑚_𝑡𝑟𝑐𝑒𝑠]
15: for 𝑡𝑟_𝑖𝑑 in range(𝑛𝑢𝑚_𝑡𝑟𝑐𝑒𝑠) do
16: 𝑟𝑒 𝑓 _𝑖𝑛𝑠𝑡𝑛𝑐_𝑖_𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒𝑠 [𝑡𝑟_𝑖𝑑] ←
17: 𝑝𝑟𝑣𝑡_𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒𝑠 [𝑡𝑟_𝑖𝑑] [𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒_
18: 𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 [𝑡𝑟_𝑖𝑑] [𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒]]
19: end for
20: 𝑡𝑟_𝑖𝑑 ← 0

21: while 𝑟𝑒 𝑓 _𝑖𝑛𝑠𝑡𝑛𝑐_𝑖_𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒𝑠 ≠ [] do
22: if 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 == 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 then
23: 𝑡𝑟_𝑖𝑑 ← 𝑟𝑎𝑛𝑑𝑖𝑛𝑡 (0, 𝑛𝑢𝑚_𝑡𝑟𝑐𝑒𝑠 − 1)
24: else if 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 == 𝑟𝑜𝑢𝑛𝑑_𝑟𝑜𝑏𝑖𝑛 then
25: if 𝑡𝑟_𝑖𝑑 == 𝑛𝑢𝑚_𝑡𝑟𝑐𝑒𝑠 then
26: 𝑡𝑟_𝑖𝑑 ← 0

27: else
28: 𝑡𝑟_𝑖𝑑+ = 1

29: end if
30: end if
31: 𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑_𝑏𝑏𝑖_𝑡𝑟𝑎𝑐𝑒 ← 𝑟𝑒 𝑓 𝑠_𝑖𝑛𝑠𝑡𝑛𝑐_

32: 𝑖_𝑎𝑙𝑙_𝑡𝑟𝑎𝑐𝑒𝑠 [𝑡𝑟_𝑖𝑑] .𝑝𝑜𝑝 (0)
33: end while
34: end for
35: 𝑠ℎ𝑎𝑟𝑒𝑑_𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒.𝑟𝑒𝑝𝑙𝑎𝑐𝑒_𝑏𝑏𝑖_𝑟𝑒 𝑓 𝑠 (𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎
36: 𝑣𝑒𝑑_𝑏𝑏𝑖_𝑡𝑟𝑎𝑐𝑒)
37: end if
38: end for
39: end procedure

3.3 Interleaving Strategies
To analyze the performance on shared caches (such as 𝐿2), we em-

ploy multiple interleaving strategies. This is to mimic the execution

strategies of OpenMP constructs over the shared variables. Algo-

rithm 2 takes private traces as inputs and applies our interleaving

strategies to generate shared traces for shared memory accesses.

The algorithm inputs are a list of all the 𝐵𝐵𝑖 and a two-dimensional

list of private memory traces of all the various cores under con-

sideration. Note that only the core executing the master thread

has memory trace for the sequential section of the code and the

trace for the parallel section. We assume that the master thread

is being executed in core 0 without loss of generality. We initiate

shared_mem_trace with private memory trace of core 0. In our next

step, we find each basic block’s 𝐵𝐵𝑖 instances in all the private

Atanu, et al.

memory traces and count the number of instances for each trace.

Then, we get the memory references and interleave the references

for each instance of the private memory traces’ basic block. We

use either uniform-random or round-robin scheduling to interleave

the traces. We replace the 𝑛𝑡ℎ instance of 𝐵𝐵𝑖 in shared_mem_trace
with corresponding interleaved 𝐵𝐵𝑖 instance. The 𝐵𝐵𝑖s under se-

quential execution are not interleaved and remain unchanged. It is

thus possible to mimic shared memory traces using this algorithm

for any specific cache configuration.

We employ two interleaving strategies: round-robin and uniform-
random (see lines 22–30). We employ these strategies on the sequen-

tial trace of a program, which in the end mimics the shared memory

trace of a multicore program. For example, when we run a for loop
for 100 iterations, to mimic the trace of a 4 core execution, we split

the 100 executions of each basic block of a for loop (note that a for
loop, typically contains on the order of 5 basic blocks) into 4 parts,

where each part belongs to a single core. We use the 4 part trace to

mimic the multicore trace, on which we employ the interleaving

strategies. The two interleaving strategies is to experiment with

different OpenMP scheduling strategies. In the round-robin strategy,
for a given basic block, we take the memory reference from each

of the four cores, that is core 0, 1, 2, and 3; then we repeat from

core 0 to 3 for all the memory references of a basic block. In this

way, the shared memory trace for 4 cores is used to calculate the

shared reuse profile across 4 cores. In the uniform-random strategy,

we select a number between 0 and 3 randomly using a uniform

distribution. From that trace, we select a memory reference. We

repeat this process until all the references from all 4 parts of the

trace are finished.

3.4 Calculating Basic Block Probabilities
In the third step, we calculate the probability of executing each basic

block from the basic block labeled sequential execution trace of the

program. Let us assume that 𝐵𝐵1, 𝐵𝐵2, ..., 𝐵𝐵 𝑗 , 𝐵𝐵𝑘 , ..., 𝐵𝐵𝑛 are the

basic blocks and any basic block can pass program execution flow

to any other basic block. Let us also assume that these basic blocks

are executed 𝑁1, 𝑁2, ..., 𝑁 𝑗 , 𝑁𝑘 , ..., 𝑁𝑛 number of times respectively.

Thus, the apriori probability of executing a basic block 𝑃 (𝐵𝐵𝑖) is:

𝑃 (𝐵𝐵𝑖) =
𝑁𝑖∑𝑛
𝑗=0 𝑁 𝑗

(1)

A particular basic block is executed depending on the number of

occurrences of a basic block in the memory trace. We get the values

of 𝑁𝑖 by counting the number of 𝐵𝐵𝑖 instances in the memory trace.

Note, 𝑁𝑖 changes with input size, as a result 𝑃 (𝐵𝐵𝑖) also changes.
For sequential execution, these probabilities are valid for all levels

of caches in the hierarchy. For parallel execution, each core uses

a private cache along with shared caches to fetch data. Thus, for

parallel execution, these probabilities are valid only for the last

level cache. For private caches we calculate 𝐵𝐵𝑖 probabilities using

Eq. 2 and 3.

𝑃 (𝐵𝐵 𝑗𝑖)
𝑗 ∈ 𝑠𝑒𝑟𝑖𝑎𝑙 =

𝑃 (𝐵𝐵𝑖)∑
𝑘∈𝑠𝑒𝑟𝑖𝑎𝑙

𝑃 (𝐵𝐵𝑘) +
∑

𝑙 ∈𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙
𝑃 (𝐵𝐵𝑙)

(2)

Algorithm 3 𝑃 (𝐷 |𝐵𝐵𝑖) Calculation
1: procedure 𝑐𝑜𝑛𝑑_𝑟𝑒𝑢𝑠𝑒_𝑝𝑟𝑜 𝑓 _𝐵𝐵𝑖 (𝑏𝑏,𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒)

2: 𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑠 ← []
3: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒 ← 𝑥

4: 𝑏𝑏𝑖_𝑤𝑖𝑛𝑠 ← 𝑔𝑒𝑡_𝑏𝑏𝑖_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 (𝑏𝑏_𝑖, 𝑡𝑟𝑎𝑐𝑒)
5: if 𝑙𝑒𝑛(𝑏𝑏𝑖_𝑤𝑖𝑛𝑠) == 0 then
6: 𝑟𝑒𝑡𝑢𝑟𝑛 0

7: end if
8: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑏𝑏𝑖_𝑤𝑖𝑛𝑠, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑠𝑖𝑧𝑒)
9: for𝑤𝑖𝑛𝑑𝑜𝑤 in 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑤𝑖𝑛𝑑𝑜𝑤𝑠 do
10: for 𝑖𝑑𝑥,𝑚𝑒𝑚_𝑟𝑒 𝑓 in enumerate𝑤𝑖𝑛𝑑𝑜𝑤 do
11: 𝑟𝑑_𝑣𝑎𝑙 ← 𝑔𝑒𝑡_𝑟𝑑 (𝑖𝑑𝑥,𝑚𝑒𝑚_𝑟𝑒 𝑓 ,𝑚𝑒𝑚_𝑡𝑟𝑎𝑐𝑒)
12: 𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑠 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑟𝑑_𝑣𝑎𝑙)
13: end for
14: end for
15: 𝑢𝑛𝑖𝑞𝑢𝑒_𝑟𝑑𝑠, 𝑐𝑜𝑢𝑛𝑡𝑠 ← 𝑢𝑛𝑖𝑞𝑢𝑒 (𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
16: 𝑝_𝑟𝑑 ← map(lambda 𝑥 :𝑥/𝑙𝑒𝑛(𝑟𝑒𝑢𝑠𝑒_𝑑𝑖𝑠𝑡𝑠), 𝑐𝑜𝑢𝑛𝑡𝑠)
17: 𝑟𝑒𝑢𝑠𝑒_𝑝𝑟𝑜 𝑓 ← zip(𝑢𝑛𝑖𝑞_𝑟𝑑𝑠 , 𝑝_𝑟𝑑)
18: end procedure

𝑃 (𝐵𝐵 𝑗𝑖)
𝑗 ∈ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =

𝑃 (𝐵𝐵𝑖)
𝑚∑

𝑘∈𝑠𝑒𝑟𝑖𝑎𝑙
𝑃 (𝐵𝐵𝑘) +

∑
𝑙 ∈𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑃 (𝐵𝐵𝑙)
𝑚

(3)

where, 𝑃 (𝐵𝐵𝑖) denotes probability of the basic block under consid-

eration,m denotes the number of cores, 𝑃 (𝐵𝐵𝑘) denotes probability
of a basic block of sequential region and 𝑃 (𝐵𝐵𝑙) denotes probability
of a basic block of parallel region. We find the values of 𝑃 (𝐵𝐵𝑖),
𝑃 (𝐵𝐵𝑘) and 𝑃 (𝐵𝐵𝑙) from the memory trace of sequential execution.

Eq 2 is used for calculating probabilities of basic blocks of sequential

region, while Eq 3 is used for basic blocks of parallel region of the

program.

3.5 Probabilistic Reuse Profile Estimation
In our next step, we analytically estimate the Private-stack and the

Concurrent reuse profiles of the program (P(D)) from our mimicked

private and shared memory traces. The conventional methods of

measuring the reuse profile are costly because of the enormous

size of the memory traces. We use a technique described in [11],

which produces reuse distances at smaller input sizes of a program,

and from those reuse distances, we estimate reuse profiles at more

massive input sets. We estimate the reuse profile of a program using

Eq. 4.

P(𝐷) =
𝑛 (𝐵𝐵)∑
𝑖=0

𝑃 (𝐵𝐵𝑖) × 𝑃
(
𝐷 |𝐵𝐵𝑖

)
(4)

where n(BB) is the number of basic blocks, 𝑃 (𝐵𝐵𝑖) is the apriori
probability of executing a basic block , D is the reuse distance and

𝑃 (𝐷 |𝐵𝐵𝑖) is the conditional reuse profile of 𝑖𝑡ℎ basic block.

Algorithm 3 calculates conditional reuse profile 𝑃 (𝐷 |𝐵𝐵𝑖) of a
basic block. It takes the basic block and a mimicked memory trace

as input, identifies the basic block’s windows in memory trace,

randomly selects sample_size windows. Typically we randomly

select 1% samples of basic block windows. For all memory addresses

PPT-SASMM: Scalable Analytical Shared Memory Model

Table 3: Applications used to verify our model. †, ∗, and ♦ denote applications from PolyBench/OpenMP [36], Rodini-
a/OpenMP [10], and PARSEC [6] benchmark suites respectively.

Application Description Domain Input Size Trace Size Abbr.

† ADI
Alternating Direction

Implicit method for 2D

heat diffusion

Stencils N=512, TSTEPS=2 2.1 GB adi

∗ BFS Breadth-First Search Graph Traversal 64K Nodes 1.1 GB bfs

♦ Blackscholes Black-Scholes partial

differential equation

Recognition, Mining and

Synthesis

Options=4096, Runs=100 1.7 GB blk

† Convolution-2D 2D Convolution Stencils 1024 1.5 GB c2d

† Durbin Yule-Walker equations

solver

Linear Algebra 2048 4.2 GB dbn

† Gramschmidt

QR decomposition with

modified Gram Schmidt

Linear Algebra 192 3.9 GB grm

† Jacobi Jacobi Iteration Stencils N=1024, Iterations=1024 3.0 GB jcb

† LU LU decomposition without

pivoting

Linear Algebra 256 3.2 GB lu

† 2MM Two Matrix Multiplication Linear Algebra 128 967 MB 2mm

of each sampledwindow, we calculate its reuse distance, fromwhich

we calculate the corresponding probabilities. This sampling strategy

saves significant time in the overall reuse distance calculation. Note

that some basic blocks may not be executed at all in the program.

In that case, there will be no window of that basic block in the

memory trace.

3.6 Hit Rate Estimation
With the probabilistic Private-stack and Concurrent reuse profiles
of each cache level, we measure private and shared cache hit rates

using an analytical memory model, a stack distance based cache

model (SDCM) [7]. Eq. 5 shows how to measure the hit rate at a

given reuse distance (𝑃 (ℎ | 𝐷)).

𝑃 (ℎ | 𝐷) =
𝐴−1∑
𝑎=0

(
𝐷

𝑎

) (
𝐴

𝐵

)𝑎 (
𝐵 −𝐴
𝐵

) (𝐷−𝑎)
(5)

where D is the reuse distance at cache line granularity, A is the

associativity of the cache and B is cache size in terms of number

of blocks (which is cache size over cache line size). Typically, Eq. 5

is used for an 𝑛-way associative cache. For a direct-mapped cache,

probability of hit is defined as

𝑃
(
ℎ | 𝐷

)
=

(
𝐵 − 1
𝐵

)𝐷
(6)

Finally, we calculate approximated unconditional the probability

of a hit P(h) for the entire program as shown in Eq. 7

𝑃 (ℎ) =
𝑁∑
𝑖=0

𝑃 (𝐷𝑖) × 𝑃 (ℎ | 𝐷𝑖) (7)

where, 𝑃 (𝐷𝑖) is the probability of 𝑖𝑡ℎ reuse distance (𝐷) in a reuse

distribution 𝑃𝑟 (𝐷). These hit rates can be further used in runtime

prediction of the applications, which is beyond this paper’s scope.

4 EXPERIMENTAL RESULTS
In this section, we validate our model and present the results. Ta-

ble 3 shows a list of the applications used in the validation. We

use nine different applications representing different domains from

PolyBench [36], Rodinia [10] and PARSEC [6] benchmark suites.

For PolyBench, we use the OpenMP implementation by [25]. We

choose these benchmark suites as they are widely used for validat-

ing performance models. The generated memory trace sizes are

also shown for the input used for each application.

We use the Cachegrind tool within the widely used Valgrind [34]

to collect the cache hit rates for different cache configurations.

Cachegrind is a dynamic binary analysis tool that performs a trace-

driven simulation of a machine’s cache as a program executes. The

simulated has a split L1 and a unified L2 cache with a write-allocate

policy. The L2 cache is inclusive. Cachegrind does not account for

interference from the kernel or other processes when it simulates

the caches. It is suitable for verifying ourmodel as we try to evaluate

the cache performance of the benchmark applications’ standalone

execution. It also does not account for virtual to physical address

mapping. These properties make it an excellent choice to evaluate

our method. We consider two cache levels where the L1 cache is

private to each core, and L2 is shared among all the cores. The cache

configurations used are as follows.

• L1 D-Cache Size: 8 KB, Associativity: 8, Line Size: 64 B
• L2 Cache Size: 128 KB, Associativity: 16, Line Size: 64 B

PPT-SASMM: Scalable Analytical Shared Memory Model

Figure 4 shows the comparison of hit rates of private L1 cache for

each core configuration. We show the hit rates of the applications

running on 1, 2, 4, 8, and 16 cores in Figures 4(a), 4(b), 4(c), 4(d),

and 4(e) respectively. We show the geometric mean of hit rates

from our model and Cachegrind in the figures. Our model’s aver-

age error rates are 2.18%, 2.16%, 2.16%, 2.13%, and 1.99% for the

core configurations. We compute the average hit rate of private

L1 caches obtained using our model. We change the number of

threads/cores using𝑂𝑀𝑃_𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆 environment variable

when we collect the hit rates using Cachegrind. The results show

that our model predicts the hit rates of L1 cache accurately with

an overall average error rate of 2.12%. As we mimic the memory

trace of multi-threaded execution from single-threaded execution,

we do not consider the effect of cache coherence in our model. Still,

the experiments show promising results.

Figure 5 compares the hit rates of shared L2 cache for each core

configuration. We show the results for both uniform random and

round-robin interleaving. We denote them as MU and MRR in

the figures. Note that, in the results of a single-core configuration

shown in Figure 5(a), there is no interleaving. We also show the

geometric mean of the hit rates on the L2 cache obtained using

our model and Cachegrind. For the single-core configuration, the

average error rate is 1.41% for all the applications. Figures 5(b),

5(c), 5(d) and 5(e) show hit rates for core configurations of 2, 4,

8, and 16 respectively. For uniform random interleaving, average

error rates are 1.33%, 1.36%, 1.59%, and 1.85%, respectively. These

make the overall error rate for uniform interleaving 1.53%. For
round-robin interleaving of memory traces, average error rates

are 1.28%, 1.29%, 1.60%, and 1.81% respectively for 2, 4, 8, and 16

core configurations. These make the overall average error rate for

round-robin interleaving 1.50%.
Overall, our error rates appear tolerable. However, we note quite

a bit of difference between the different applications that we tested.

In particular the adi, grm, and dbn applications give us trouble

when predicting L1 cache hit rates almost independent of core

count, whereas only adi, and dbn show higher fault rates on the

shared L2 cache at lower core count. Once we move to a larger core

count at L2, the model again starts to over-predict hit rates for grm.

The over-predictions in the three applications (adi, grm, and dbn)

have two reasons depending on the cache (private or shared) model.

For private caches, the discrepancies are because our model works

with more instances of thread-specific basic block trace instances

than the required. Similarly, the shared cache over-predictions are

due to the creation of extra basic block traces during interleaving

strategies’ mimicking behavior. Overall, although we over-predict

some of these applications, we observe low error rates, which can

be tolerated concerning the ground truth from Cachegrind.

5 RELATEDWORKS
Reuse distance [33] analysis has been widely used to predict cache

performance [5, 8, 32, 41], make policies for cache management [16,

23, 29] and to predict program locality [3, 22, 27, 49]. Researchers

also tried to speed up reuse distance calculation by parallelizing

the algorithm [35] and proposing analytical model and sampling

techniques [11–13, 43]. Recently, several research works have been

done on reuse distance analysis on multicore processors [4, 27, 38–

40, 47] and GPUS [1, 2].

Jiang et al. [27] introduced CRD profiles for multicores and pro-

vided a probabilistic model to estimate CRDs from the data locality

of each thread. They do not consider invalidation for data locality

analysis of private caches.

Wu et al. [47] explored PRD and CRD profiles for performance

prediction of loop-based parallel programs. They provided a detailed

analysis of the effect of core count on PDR and CRD profiles. They

also developed a model for predicting PRD and CRD profiles with

core count scaling. The predict the CRD profile with about 90%

accuracy.

Jasmine et al. [38] proposed a probabilistic method to calculate

the CRD profile of threads sharing a cache and derived coherent

reuse profile of each thread considering the effect of cache coher-

ence. They derived the concurrent reuse distance (CRD) profile of

each thread, sharing the cache with other threads from the thread’s

private reuse profile.

Schuff et al. [40] explored reuse distance analysis for shared

cache accounting inter-core cache sharing. They also studied PRD

profiles considering invalidation-based cache-coherence. They fur-

ther extended their work to accelerate CRD profile measurement

by introducing sampling and parallelization [39].

Ding et al. [19] explored theories and techniques to measure

program interaction on multicore processors and introduced a new

footprint theory. They proposed a trace-based model that computes

a set of per-thread metrics. They compute these metrics by single

pass over a concurrent execution of a parallel program. Using these

metrics, they propose a scalable per-thread data-sharing model.

They also propose an irregular thread interleaving model integrated

with the data-sharing model.

Kaxiras et al. [28] proposed statistical techniques from epidemi-

ological screening and polygraph testing for coherence communi-

cation prediction in shared-Memory multiprocessors.

Almost all of these approaches collect traces at different cache

levels from parallel execution of the application. Our approach

is different since we collect a trace only once from a sequential

execution of the application. This makes our approach very scalable

with core count.

6 CONCLUSION
Reuse distance analysis has been a valuable tool for application

performance prediction. This paper extends reuse distance analysis

to the parallel application domain by accounting for inter-thread in-

teractions for shared caches in a static way. It statically predicts the

hit rates of a parallel application on private and shared caches from

memory traces of the sequential execution of a single-threaded

version of the application. This makes the methodology scalable

with core counts and cache sizes. The results show that our model

is very accurate for a parallel application’s cache hit rate prediction

with accuracy ranging from 97.82% to 98.72%. We explore vari-

ous scheduling strategies of OpenMP with different interleaving

strategies using our model. Furthermore, the model takes the cache

configuration parameters as input, making it suitable for design

space exploration and cache sensitivity analysis.

Atanu, et al.

ACKNOWLEDGMENTS
The authors would like to thank the reviewers for their feedback.

We would also like to thank New Mexico Consortium (NMC) for

their continued support and for giving us access to their machines.

The authors would also like to thank Dr. David Newsom for

donating several machines to the PEARL laboratory at NMSU. Some

of the experiments in this paper were run on the donated machines.

This work is partially supported by Triad National Security, LLC

subcontract #581326. Parts of this research used resources provided

at the Los Alamos National Laboratory Institutional Computing

Program. Computations were run on Darwin, a research computing

heterogeneous cluster.

Any opinions, findings, and/or conclusions expressed in this pa-

per do not necessarily represent the DOE or the U.S. Government’s

views.

REFERENCES
[1] Yehia Arafa, Abdel-Hameed Badawy, Gopinath Chennupati, Atanu Barai, Nan-

dakishore Santhi, and Stephan Eidenbenz. 2020. Fast, Accurate, and Scal-

able Memory Modeling of GPGPUs Using Reuse Profiles. In Proceedings of
the 34th ACM International Conference on Supercomputing (ICS ’20). Associ-
ation for Computing Machinery, New York, NY, USA, Article 31, 12 pages.

https://doi.org/10.1145/3392717.3392761

[2] Yehia Arafa, Gopinath Chennupati, Atanu Barai, Abdel-Hameed A Badawy, Nan-

dakishore Santhi, and Stephan Eidenbenz. 2019. GPUs Cache Performance Estima-

tion using Reuse Distance Analysis. In 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC). IEEE, IEEE, Piscataway, NJ,
USA, 1–8.

[3] Erik Berg and Erik Hagersten. 2004. StatCache: a probabilistic approach to

efficient and accurate data locality analysis. In IEEE International Symposium
on - ISPASS Performance Analysis of Systems and Software, 2004. IEEE, IEEE,
Piscataway, NJ, USA, 20–27.

[4] Erik Berg, Hakan Zeffer, and Erik Hagersten. 2006. A statistical multiprocessor

cache model. In 2006 IEEE International Symposium on Performance Analysis of
Systems and Software. IEEE, Piscataway, NJ, USA, 89–99.

[5] Kristof Beyls and Erik H. D’Hollander. 2001. Reuse Distance as a Metric for Cache

Behavior. In In Proceedings of the IASTED Conference on Parallel and Distributed
Computing and Systems. IEEE, Piscataway, NJ, USA, 617–662.

[6] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

[7] Mark Brehob and Richard Enbody. 1999. An analytical model of locality and

caching. Tech. Rep. MSU-CSE-99-31 (1999).
[8] Calin Cascaval and David A. Padua. 2003. Estimating Cache Misses and Locality

Using Stack Distances. In Proceedings of the 17th Annual International Conference
on Supercomputing (ICS ’03). ACM, New York, NY, USA, 150–159.

[9] Germán Ceballos, Erik Hagersten, and David Black-Schaffer. 2016. Formalizing

Data Locality in Task Parallel Applications. In Algorithms and Architectures for
Parallel Processing. Springer International Publishing, Cham, 43–61.

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-

Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC) (IISWC ’09). IEEE Computer Society, USA, 44–54. https:

//doi.org/10.1109/IISWC.2009.5306797

[11] Gopinath Chennupati, Nandakishore Santhi, Robert Bird, Sunil Thulasidasan,

Abdel-Hameed A. Badawy, Satyajayant Misra, and Stephan Eidenbenz. 2018. A

Scalable Analytical Memory Model for CPU Performance Prediction. In High
Performance Computing Systems. Performance Modeling, Benchmarking, and Sim-
ulation, Stephen Jarvis, Steven Wright, and Simon Hammond (Eds.). Springer

International Publishing, Cham, 114–135.

[12] Gopinath Chennupati, Nandakishore Santhi, and Stephan Eidenbenz. 2019. Scal-

able Performance Prediction of Codes with Memory Hierarchy and Pipelines. In

Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (SIGSIM-PADS ’19). Association for Computing Machinery, New York,

NY, USA, 13–24. https://doi.org/10.1145/3316480.3325518

[13] Gopinath Chennupati, Nandakishore Santhi, Stephan Eidenbenz, and Sunil Thu-

lasidasan. 2017. An Analytical Memory Hierarchy Model for Performance Pre-

diction. In Proceedings of the 2017 Winter Simulation Conference (WSC ’17). IEEE
Press, Piscataway, NJ, USA, Article 65, 12 pages.

[14] Gopinath Chennupati, Nanadakishore Santhi, Stephen Eidenbenz, Robert Joseph

Zerr, Massimiliano Rosa, Richard James Zamora, Eun Jung Park, Balasubra-

manya T. Nadiga, Jason Liu, Kishwar Ahmed, and Mohammad Abu Obaida.

2017c. Performance Prediction Toolkit (PPT). Los Alamos National Laboratory

(LANL). https://github.com/lanl/PPT.

[15] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard

API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998),
46–55. https://doi.org/10.1109/99.660313

[16] Subhasis Das, Tor M. Aamodt, and William J. Dally. 2015. Reuse Distance-Based

Probabilistic Cache Replacement. ACM Trans. Archit. Code Optim. 12, 4, Article
33 (Oct. 2015), 22 pages. https://doi.org/10.1145/2818374

[17] John D. Davis, James Laudon, and Kunle Olukotun. 2005. Maximizing CMP

Throughput with Mediocre Cores. In Proceedings of the 14th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT ’05). IEEE
Computer Society, USA, 51–62.

[18] Sam V. den Steen and Lieven Eeckhout. 2018. Modeling Superscalar Processor

Memory-Level Parallelism. IEEE Computer Architecture Letters 17, 1 (Jan 2018),

9–12.

[19] Chen Ding and Trishul Chilimbi. 2009. A Composable Model for Analyzing
Locality of Multi-threaded Programs. Technical Report MSR-TR-2009-107. Mi-

crosoft. https://www.microsoft.com/en-us/research/publication/a-composable-

model-for-analyzing-locality-of-multi-threaded-programs/

[20] Chen Ding, Xiaoya Xiang, Bin Bao, Hao Luo, Ying-Wei Luo, and Xiao-Lin Wang.

2014. Performance Metrics and Models for Shared Cache. Journal of Computer
Science and Technology 29, 4 (01 Jul 2014), 692–712.

[21] Chen Ding and Yutao Zhong. 2001. Reuse Distance Analysis. Technical Report.
University of Rochester, Rochester, NY, USA.

[22] Chen Ding and Yutao Zhong. 2003. Predicting Whole-program Locality Through

Reuse Distance Analysis. SIGPLAN Not. 38, 5 (2003), 245–257.
[23] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and

Alexander V. Veidenbaum. 2012. Improving Cache Management Policies Using

Dynamic Reuse Distances. In Proceedings of IEEE/ACM International Symposium
on Microarchitecture (MICRO-45). IEEE, Piscataway, NJ, USA, 389–400.

[24] Magnus Ekman and Per Stenstrom. 2003. Performance and power impact of

issue-width in chip-multiprocessor cores. In 2003 International Conference on
Parallel Processing, 2003. Proceedings. IEEE, Piscataway, NJ, USA, 359–368. https:

//doi.org/10.1109/ICPP.2003.1240600

[25] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John

Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In 2012
Innovative Parallel Computing (InPar). IEEE, Piscataway, NJ, USA, 1–10.

[26] Jaehyuk Huh, Doug Burger, and Stephen W. Keckler. 2001. Exploring the Design

Space of Future CMPs. In Proceedings of the 2001 International Conference on
Parallel Architectures and Compilation Techniques (PACT ’01). IEEE Computer

Society, USA, 199–210.

[27] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen. 2010. Is Reuse Distance

Applicable to Data Locality Analysis on Chip Multiprocessors?. In Proceedings of
the 19th Joint European Conference on Theory and Practice of Software, International
Conference on Compiler Construction (CC’10/ETAPS’10). Springer-Verlag, Berlin,
Heidelberg, 264–282.

[28] Stefanos Kaxiras and Cliff Young. 2000. Coherence communication prediction in

shared-memory multiprocessors. In Proceedings Sixth International Symposium
on High-Performance Computer Architecture. HPCA-6 (Cat. No. PR00550). IEEE,
IEEE, Piscataway, NJ, USA, 156–167.

[29] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. 2007. Cache

replacement based on reuse-distance prediction. In 2007 25th International Con-
ference on Computer Design. IEEE, NY, USA, 245–250. https://doi.org/10.1109/

ICCD.2007.4601909

[30] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–86.

[31] Chunhua Liao, Daniel J. Quinlan, Thomas Panas, and Bronis R. de Supinski. 2010.

A ROSE-Based OpenMP 3.0 Research Compiler Supporting Multiple Runtime

Libraries. In Proceedings of the 6th International Conference on Beyond Loop Level
Parallelism in OpenMP: Accelerators, Tasking and More (IWOMP’10). Springer-
Verlag, Berlin, Heidelberg, 15–28.

[32] Rafael K. V. Maeda, Qiong Cai, Jiang Xu, Zhe Wang, and Zhongyuan Tian. 2017.

Fast and Accurate Exploration of Multi-level Caches Using Hierarchical Reuse

Distance. In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, Piscataway, NJ, USA, 145–156.

[33] Richard L. Mattson, Jan Gecsei, D. R. Slutz, and I. L. Traiger. 1970. Evaluation

Techniques for Storage Hierarchies. IBM Syst. J. 9, 2 (June 1970), 78–117. https:

//doi.org/10.1147/sj.92.0078

[34] Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavy-

weight Dynamic Binary Instrumentation. SIGPLAN Not. 42, 6 (2007), 89–100.
[35] Qingpeng Niu, James Dinan, Qingda Lu, and Ponnuswamy Sadayappan. 2012.

PARDA: A Fast Parallel Reuse Distance Analysis Algorithm. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing Symposium
(IPDPS ’12). IEEE Computer Society, USA, 1284–1294. https://doi.org/10.1109/

IPDPS.2012.117

PPT-SASMM: Scalable Analytical Shared Memory Model

[36] Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL:
http://www.cs.ucla.edu/pouchet/software/polybench (2012).

[37] Vijay J. Reddi, Alex Settle, Daniel A. Connors, and Robert S. Cohn. 2004. PIN: A

Binary Instrumentation Tool for Computer Architecture Research and Education.

In Proceedings of the 2004 Workshop on Computer Architecture Education: Held
in Conjunction with the 31st International Symposium on Computer Architecture
(WCAE ’04). Association for Computing Machinery, New York, NY, USA, 22–es.

https://doi.org/10.1145/1275571.1275600

[38] Jasmine M. Sabarimuthu and T. G. Venkatesh. 2019. Analytical Derivation of

Concurrent Reuse Distance Profile for Multi-Threaded Application Running on

Chip Multi-Processor. IEEE Transactions on Parallel and Distributed Systems 30, 8
(Aug 2019), 1704–1721.

[39] Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. 2010. Accelerating Multicore

Reuse Distance Analysis with Sampling and Parallelization. In Proceedings of the
19th International Conference on Parallel Architectures and Compilation Techniques
(PACT ’10). Association for Computing Machinery, New York, NY, USA, 53–64.

https://doi.org/10.1145/1854273.1854286

[40] Derek L Schuff, Benjamin S Parsons, and Vijay S Pai. 2010. Multicore-aware reuse

distance analysis. In 2010 IEEE International Symposium on Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW). IEEE, IEEE, Piscataway, NJ, USA,
1–8.

[41] Rathijit Sen and David A. Wood. 2013. Reuse-based Online Models for Caches.

In Proceedings of the ACM SIGMETRICS/International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS ’13). ACM, New York, NY, USA,

279–292.

[42] John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale Computing Tech-

nology Challenges. In High Performance Computing for Computational Science

– VECPAR 2010, José M. Laginha M. Palma, Michel Daydé, Osni Marques, and

João Correia Lopes (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–25.

[43] Xipeng Shen, Jonathan Shaw, Brian Meeker, and Chen Ding. 2007. Locality

Approximation Using Time. In Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’07). ACM,

New York, NY, USA, 55–61.

[44] Xudong Shi, Feiqi Su, Jih-Kwon Peir, Ye Xia, and Zhen Yang. 2009. Modeling and

Stack Simulation of CMP Cache Capacity and Accessibility. IEEE Trans. Parallel
Distrib. Syst. 20, 12 (Dec. 2009), 1752–1763.

[45] Guangyu Sun, Christopher J. Hughes, Changkyu Kim, Jishen Zhao, Cong Xu,

Yuan Xie, and Yen-Kuang Chen. 2011. Moguls: A Model to Explore the Memory

Hierarchy for Bandwidth Improvements. SIGARCH Comput. Archit. News 39, 3
(June 2011), 377–388. https://doi.org/10.1145/2024723.2000109

[46] Sam Van den Steen, Stijn Eyerman, Sander De Pestel, Moncef Mechri, Trevor

Carlson, David Black-Schaffer, Erik Hagersten, and Lieven Eeckhout. 2016. An-

alytical processor performance and power modeling using micro-architecture

independent characteristics. IEEE TRANSACTIONS ON COMPUTERS 65, 12 (2016),
3537–3551. http://dx.doi.org/10.1109/TC.2016.2547387

[47] Meng-Ju Wu and Donald Yeung. 2013. Efficient Reuse Distance Analysis of

Multicore Scaling for Loop-Based Parallel Programs. ACM Trans. Comput. Syst.
31, 1 (2013), 1:1–1:37.

[48] Yutao Zhong, Steven G. Dropsho, Xipeng Shen, Ahren Studer, and Chen Ding.

2007. Miss Rate Prediction Across Program Inputs and Cache Configurations.

IEEE Trans. Comput. 56, 3 (March 2007), 328–343.

[49] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program Locality Analysis

Using Reuse Distance. ACM Trans. Program. Lang. Syst. 31, 6 (2009), 20:1–20:39.

	Leere Seite

