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ABSTRACT
The increasing demand for DRAM in modern vehicles creates new
challenges for automobile manufacturers. To allow DRAM subsys-
tems to be used in safety-critical tasks like autonomous driving, a
special Automotive Safety Integrity Level (ASIL) grading according
to the ISO 26262 is required. While the classification process is
already well-established for processors and on-chip memories with
dedicated automotive hardware introduced to the market, no simi-
lar research has been conducted for DRAM yet. As a consequence,
the process proves to be difficult for car manufacturers at this point.
Therefore, a methodology that captures all the DRAM subsystem
complexity in a comprehensive but yet understandable way is re-
quired. In this paper we use Component Fault Trees to create a
clearly-structured safety model of an exemplary LPDDR4 memory
subsystem. Based on the proposed model, we also evaluate the ASIL
that it can reach. For the automotive industry, our work can serve
as a foundation for future classification processes, therefore taking
one more step towards full autonomy.

CCS CONCEPTS
• Hardware → Safety critical systems; Dynamic memory; •
Computing methodologies → Modeling methodologies.

KEYWORDS
DRAM, LPDDR4, Safety, ECC, ASIL, Automotive, Fault Tree Analy-
sis, Component Fault Trees

1 INTRODUCTION
Currently, the automotive industry is in the middle of a great rev-
olution. The shift to electric cars, the rapid increase of Advanced
Driver-Assistance Systems (ADAS) and the advent of Autonomous
Driving (AD) presents great opportunities for future transportation
infrastructure, but also creates lots of challenges for manufacturers.
Vehicles have to be designed in compliance with safety metrics like
the Automotive Safety Integrity Level (ASIL) to guarantee a flawless
operation at all times and in all circumstances, since the respon-
sibility is fully transferred from humans to machines. In order to
classify the overall ASIL of a system, the ASIL of all subsystems
have to be classified first. For microcontrollers and System-on-Chips
(SoCs) consisting of processing cores and on-chip memories (SRAM,
Flash) this procedure is state-of-the-art. A lot of research has been
conducted in this area [6, 9, 14, 17, 21, 22] and dedicated automo-
tive products like the Infineon AURIX microcontroller family [2],
the ARM Cortex-A76AE [30] or the Synopsys DesignWare ARC
EM22FS Safety Processor [16] already enable operation at the high-
est level ASIL D. One type of subsystems with particular importance
in modern vehicles however are Dynamic Random-Access Memo-
ries (DRAMs), since the need for memory with high capacity and
bandwidth as well as low latency has grown dramatically over the
past few years due to the introduction of ADAS and AD [15]. Un-
fortunately, these devices originate from the consumer and server
domain, so they are not specialized to reach a certain ASIL. Their
strict optimization for cost per bit leads to a complex internal hard-
ware architecture and, moreover, they are highly sensitive to errors:
in addition to classical hard and soft errors, leakage effects can lead
to retention errors, because information is stored in the form of
extremely small amounts of charge. Technology scaling exacerbates
this problem more and more. Therefore, memory vendors try to
compensate the high error sensitivity by protecting devices with Er-
ror Correction Codes (ECC) [18, 19, 27]. In older DRAM standards the
corresponding ECC engines were placed externally on the memory
controller side and parity bits had to be stored in an extra chip or in
line with data by reducing the effective storage capacity. LPDDR4,
on the other hand, is the first DRAM standard that provides vendors
the opportunity to integrate ECC directly on the chip [24], reducing
both latency and power consumption. Driven by these facts and
the overall low power consumption compared to other available
standards [10, 15], LPDDR4 is the first choice for most automobile
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manufacturers and suppliers in their search for the most suitable
solution for their current products (see, e.g., Tesla Full Self-Driving
Computer [35], NVIDIA Drive Xavier [25]). However, while ECC
decreases failure rates and can enable a higher ASIL grading, at
the same time it complicates the classification process even more
because additional hardware is inserted. The automotive standard
ISO 26262 [13] defines a procedure to rate the ASIL of silicon hard-
ware and also gives some examples for diagnosis and coverage with
respect to memories. Unfortunately, this procedure relies on spread-
sheets and cannot capture the full complexity of today’s DRAM
device and subsystem architectures. Therefore, in this paper we
present for the first time a new approach for the safety modeling
of ECC-protected DRAM subsystems using a Fault Tree Analysis
(FTA) methodology, which is based on Component Fault Trees (CFT).
These fault trees allow a clear model structuring and fully capture
the device complexity at once. Based on the model, we evaluate
the ASIL that can be reached with state-of-the-art LPDDR4 tech-
nology. This will help automobile manufacturers to design, classify
and certify their current products. Finally, we give an outline on
coverage mechanisms that DRAM vendors should include in the
emerging LPDDR5 standard to make their products more suitable
for automotive applications by achieving a higher ASIL.

In summary, we make the following contributions:

• We present, to the best of our knowledge, for the first time an
DRAM safety modeling methodology based on CFTs, which
is compliant with the ISO 26262.

• In a case study, we show how this methodology can be ap-
plied to an exemplary LPDDR4 DRAM subsystem. Addition-
ally, we estimate the ASIL rating for this system.

The paper is structured as follows: Section 2 discusses related work
and introduces the resources that our assumptions in subsequent
sections are based on. Section 3 gives a short overview of the
LPDDR4 DRAM standard. The ECC architecture is presented and
explained in Section 4. Our CFT apprach is presented in Section 5.
A case study with an exemplary LPDDR4 subsystem is shown in
Section 6. The paper is then concluded with the Sections 7 and 8.

2 RELATED WORK
Lately, a lot of research has been carried out in the field of hard-
ware development and classification with regard to ISO 26262. The
authors of [14] list individual steps of the automotive hardware
development procedure. In [21] an ASIL-oriented hardware design
framework based on FTA is presented, while in [9] a methodology
for automated exploring of generic automotive architecture solu-
tions is shown. Similarly, the paper [6] demonstrates the ISO 26262
hardware assessment process based on an exemplary safety micro-
processor, and the authors of [17] introduce a real microcontroller
that already satisfies ASIL D. Unfortunately, these works are either
theoretical or only focus on smaller microprocessor solutions with
on-chip memory.

A larger SoC that reaches ASIL D and is specialized to achieve
high CNN performance was presented by the authors of [22] just
recently. Their platform uses dual-channel LPDDR4 memory to
satisfy the requirements for high bandwidth and capacity. The
requirements for ASIL D are achieved by the use of DRAM ECC
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and dual-core lock step. However, neither the ECC architecture nor
any failure rates are included.

The variety of problems that the use of consumer DRAM devices
in modern automotive applications brings along has already been
outlined in [15] in great detail. One section also targets the safety
issues with regard to ISO 26262.

Field studies on DRAM failures and error sources have been con-
ducted extensively over the last years and can be found numerously
in literature [3, 11, 26, 29, 31–33]. They cover different application
fields, DRAM standards, DRAM configurations, error-correction
schemes, DRAM failure modes, etc., creating a solid base of error
probabilities for our experiments in Section 6.

In addition to an experimental root cause analysis, the authors
of [20] also perform a fault tree analysis for DDR4 DIMMs. Their
analysis focuses on mechanical failures and electrical failures, how-
ever, no microarchitectural insights are considered. Besides, neither
external nor internal ECC engines are modelled.

In order to find out the internal ECC architecture that is used
in current LPDDR4 devices, we refer to various independent re-
sources. Both Samsung and SK Hynix, two of the three large DRAM
manufacturers, propose LPDDR4 devices with on-chip ECC using a
(136, 128) shortened Hamming code [18, 19, 27]. In contrast to the
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purpose in our research, they exploit the error correction capability
to reduce power by reducing the supply voltage or increasing the
refresh interval. The authors of [5] have investigated different on-
chip ECC solutions with regard to area and latency overhead, which
led them to the same preferred architecture. By reverse-engineering
a large set of different LPDDR4 devices, the paper [28] also reveals
this architecture. For that reason, a (136, 128) shortened Hamming
code is assumed for the rest of this work.

3 LPDDR4 BACKGROUND
Low Power Double Data Rate 4 (LPDDR4) [24] is the fourth gen-
eration of low power Dynamic Random-Access Memory (DRAM)
specified by the JEDEC Solid State Technology Association (short
JEDEC) in 2014. Compared to its predecessor LPDDR3 [23], the max-
imum data rate is doubled from 2133MT/s to 4266MT/s. Instead of
a single 32-bits-wide channel, LPDDR4 comes with either a single
or two 16-bits-wide channels per die. Besides the standard dies,
there are special byte-mode dies with only 8 bits per channel. Two
of these dies can be combined into a 16-bit standard configuration
with twice the density. Each memory channel consists of 8 banks. In
order to match the low internal access frequency, which is caused
by the architecture optimized for cost per bit, and the increased
interface data rate, LPDDR4 uses a 16n prefetch and a burst length
of 16, resulting in 32 bytes of data transferred per access on one
channel. Alternatively, the burst length can be set to 32 to transfer
64 bytes of data with a single burst. As a novelty, LPDDR4 is the
first DRAM standard that allows vendors to implement efficient

Error Correction Codes (ECC) based on larger blocks of data, i.e., a
full burst and not a single byte, in the device itself. This requires the
DRAM to treat a write command with a data mask differently from
a normal one, because ECC is then calculated on a combination
of already stored data and newly transmitted data. Internally, the
command triggers a so-called Read-Modify-Write (RMW) sequence.
It first reads out a complete burst of data to the ECC engine and
corrects errors, then partially overwrites old data with new one,
and finally calculates new parity bits and writes the complete burst
back to the cells like a normal write. This RMW sequence intro-
duces a higher latency for masked writes, which is considered in
the standard separately. In contrast, previous DRAM generations
could only be equipped with an external ECC engine located in the
DRAM controller, because all writes were associated with the same
latency. External RMW for data masking in combination with ECC
was then realized by sending a separate read command before the
actual write. Compared to this approach, the on-chip solution has
three major benefits:

• The power consumption is reduced because both the read
data for RMW and the ECC bits are not transferred over the
interface but only inside the device.

• No additional device for parity storage is required and the
effective storage capacity is not affected.

• The achievable performance is higher because internal RMW
introduces shorter latencies than external RMW (shorter
transfer paths, no data bus turnarounds).

4 ECC ARCHITECTURE
The following sections describe both the on-chip ECC architecture
that is used inside the LPDDR4 devices as well as an additional
exemplary external ECC architecture. Placing a second, external
ECC around devices is one way of further decreasing the overall
failure rates to reach a higher ASIL for the subsystem.

4.1 On-Chip ECC Architecture
Although the JEDEC standard defines a special masked write com-
mand with increased latency to allow vendors the implementation
of on-chip ECC in LPDDR4 devices, neither the specific code nor
the internal hardware implementation are specified in the standard.
However, vendors are constrained by the standardized delays, the
area overhead and the minimum access granularity of 256 bits. This
usually limits them to Single Error Correction (SEC) codes, since cor-
recting more than one error in a codeword results in a significantly
higher computational complexity and exceeds the maximum area
and latency [5].1 Assuming the smallest access granularity of 256
bits, a (265, 256) shortened SEC Hamming code could be applied.
But as we have seen in Section 2, the vendors only use a (136, 128)
code. To be more precise, they split each DRAM bank up into two
physical banks [18, 19, 27], leading to 16 and not only 8 banks per
channel as specified in the standard. One bank is storing the lower
half of each data beat while the other one is storing the upper half,
and each half of a complete burst is protected with a (136, 128)
shortened SEC Hamming code. This architecture enables a cheap

1Only detecting but not correcting errors in LPDDR4 brings no advantage because
the information about occurrences cannot be propagated to the controller and the
remaining system.
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implementation of byte mode with minimal hardware overhead
by using the same devices and simply accessing only one physical
bank per read or write access. In contrast, a byte-mode device with
only eight physical banks and a (265, 256) code would require an in-
ternal RMW operation also for normal write accesses because only
half of the data would be updated each time. This would worsen
the power efficiency significantly. One additional advantage the
two-bank architecture brings along with is that also 50% of all
possible double bit errors of the merged 256-bit codeword can be
corrected. At the same time, storing in total 16 parity bits of two
(136, 128) codes might not even require more chip area than 9 parity
bits of a single (265, 256) code due to fixed layout rules. To hide the
additional latency of RMW for masked writes, each physical bank
uses its own local ECC engine, making the ECC encoding in one
bank and decoding in another bank happen simultaneously and
allowing gapless masked writes in a bank-interleaved fashion [27].
For illustration, the simplified architectures of a single bank and a
complete LPDDR4 channel are shown in Figures 1 and 2.

4.2 External ECC Architecture
In addition to the on-chip ECC, an external ECC can be wrapped
around one or several LPDDR4 devices to further decrease fail-
ure rates. At this point board manufacturers have more flexibility
on selecting a suitable ECC architecture by combining multiple
devices to one wider channel. As stated in Section 3, the parity
bits for external ECC either have to be stored on an extra device
or in the same device by reducing the effective storage capacity.
Without any loss of generality, we choose the latter to demonstrate
our methodology. Similar to the approach of Micron introduced
in a presentation about the use of DRAM in automotive applica-
tions [4, 34], the 128 bits of data fetched from one internal bank are
protected with an external (72, 64) shortened Single Error Correction,
Double Error Detection (SEC-DED) Hamming code. While for the
on-chip ECC of LPDDR4 devices the detection of double-bit errors
brings no advantage (see Section 4.1), spending one additional par-
ity bit to detect double-bit errors in the external ECC engine is a
worthwhile investment in automotive platforms. This information
can be communicated to the remaining system in order to enter a
safe state when proper operation is not guaranteed any more. Since

the parity bits are stored in line with the actual data, only 64 of
128 bits can effectively be used, meaning that the device capacity
is reduced by half. A more efficient external ECC storage could be
achieved by spreading one codeword across several internal banks,
devices or burst accesses. However, it would result in a much more
complex error propagation and is omitted in this work for the sake
of simplicity. To match the 64 bytes usual last level cache line size
of modern processors, two dual-channel devices are combined and
form a single 64-bits-wide channel. With each burst access, eight
internal banks are then targeted simultaneously. The remaining
system is coupled to the memory controller via a 512-bits-wide
on-chip bus to transfer the data of one DRAM access in a single
beat. This exemplary subsystem architecture is shown in Figure 3.

5 LPDDR4 FAULT TREE MODEL
For safety in automotive applications, error detection is more im-
portant than error correction in order to bring the car into a safe
state. Therefore, intelligent coverage mechanisms are required to
meet the safety goals. To ensure that a safety goal is not violated,
a careful analysis must be employed. Fault tree analysis is a well-
known method to perform deductive safety analysis. On the basis
of Boolean logic (OR, AND, and NOT gates) a series of lower-level
events with certain probabilities is combined. However, for safety
analyses at the hardware level, inductive methods are better suited
to analyze the faults from their origin in the hardware elements,
the failure propagation through the system, and the effects at the
system boundary. Therefore, we use the more advanced variant of
Component Fault Trees (CFT) as proposed by Adler et al. [1] in this
work. A particular advantage they bring along with is the struc-
turing of the fault trees based on the system components, in our
case hardware elements. This way, the failure modes that can occur
at the respective interfaces can be described for each component.
By modularizing the fault trees into small subproblems, it allows
for both deductive and inductive approaches. The failure propa-
gation through the system is mapped onto a composite fault tree,
which combines the individual CFTs of the components. At the
system boundary, qualitative and quantitative analyses can finally
be performed with tool support.
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one half of a 16-bits-wide channel, i.e., accesses to one internal bank.
The full system is then composed of eight identical independent
subsystems. It is important to note that our presented fault tree is
a template for an exemplary LPDDR4 system, which, of course, has
to be adopted to or extended for the specific use case (e.g., DRAM
subsystem configuration or ECC implementation).

5.1 DRAM Array
Most of the errors in our model originate in the DRAM array itself.
According to [4, 34], we model four main errors that may occur in
the DRAM array: Single-Bit Errors (SBE),Double-Bit Errors,Multi-Bit
Errors (MBE) andWrong Data (WD). The latter includes for example
an error in a row decoder, which will deliver wrong data, but most
likely with correct ECC information. This error propagates directly
to the DRAM subsystem boundary. The exact distribution of these
errors is described in Section 6 by means of different scenarios. As
shown in Figure 4, these errors are propagating upwards in the
system to the next component, which is the internal DRAM SEC
ECC.

SBE DBE MBE WD

Corrected Data with ECC (128b + 8b)

SBE DBE MBE WD

Figure 5: Component Fault Tree of the DRAM Array

5.2 SEC ECC Engine
The CFT of the SEC ECC engine is depicted in Figure 6. It describes
the propagation of bit errors happening inside the DRAM when a
(136, 128) Hamming SEC ECC is used (see Section 4.1). Accordingly,
the input consists of 136 bits in total, whereof 128 bits correspond
to the actual data protected by 8 parity bits. The input error events
considered in this CFT are SBEs, DBEs and MBEs.

All SBEs will be corrected by the SEC ECC. Thus, the incoming
SBE can only stay a SBE if there is a defect in the SEC engine, which
we assume to happen with 0.1 FITs. In case of an incoming DBE,
two cases have to be differentiated. First, if there is a defect in the
SEC engine, the DBE will stay a DBE. Second, in case there is no
defect in the SEC engine, the SEC will either detect that there is an
uncorrectable error or attempt to correct the data, resulting in the

introduction of a third error. The probability for introducing a third
error largely depends on the specific code that is used, in particular
on the number of minimal weight-3 codewords of the code. For the
(136, 128) shortened SEC Hamming code from [7] there are 512
minimal codewords. Each of those minimal codewords results in 3
different double-bit-error patterns that will be miscorrected by the
decoder. Thus, the probability for a miscorrection calculates to

𝑃 (“Third Error”) = 3 · 512(136
2
) ≈ 17%.

The complementary probability 1 − 𝑃 (“Third Error”) ≈ 83% ac-
counts for the probability that the SEC engine detects a double-bit
error and does not perform an attempt of correction. In theory,
the information about a detected uncorrectable error can be prop-
agated to the system boundary (marked as (∗) in Figure 6) and,
e.g., in an automotive application, the car could go into a safe state.
But as this is not done for LPDDR4, we omit the differentiation
between detected an undetected DBEs at this point and combine
them with the other DBEs. However, for future DRAM generations
like LPDDR5 it would be beneficial to propagate this information
out of the memory such that the control unit can react on the DBE
detection. In case of an incoming MBE, the SEC engine will not be
able to correct any bit errors. Thus, a MBE is always propagated as
a MBE.
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Third Error
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The overall model consists of three major components including
6 CFTs (see Figures 4-10), which are explained in the following
subsections in more detail. For the sake of simplicity, we only model
one half of a 16-bits-wide channel, i.e., accesses to one internal bank.
The full system is then composed of eight identical independent
subsystems. It is important to note that our presented fault tree is
a template for an exemplary LPDDR4 system, which, of course, has
to be adopted to or extended for the specific use case (e.g., DRAM
subsystem configuration or ECC implementation).

5.1 DRAM Array
Most of the errors in our model originate in the DRAM array itself.
According to [4, 34], we model four main errors that may occur in
the DRAM array: Single-Bit Errors (SBE),Double-Bit Errors,Multi-Bit
Errors (MBE) andWrong Data (WD). The latter includes for example
an error in a row decoder, which will deliver wrong data, but most
likely with correct ECC information. This error propagates directly
to the DRAM subsystem boundary. The exact distribution of these
errors is described in Section 6 by means of different scenarios. As
shown in Figure 4, these errors are propagating upwards in the
system to the next component, which is the internal DRAM SEC
ECC.
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The CFT of the SEC ECC engine is depicted in Figure 6. It describes
the propagation of bit errors happening inside the DRAM when a
(136, 128) Hamming SEC ECC is used (see Section 4.1). Accordingly,
the input consists of 136 bits in total, whereof 128 bits correspond
to the actual data protected by 8 parity bits. The input error events
considered in this CFT are SBEs, DBEs and MBEs.

All SBEs will be corrected by the SEC ECC. Thus, the incoming
SBE can only stay a SBE if there is a defect in the SEC engine, which
we assume to happen with 0.1 FITs. In case of an incoming DBE,
two cases have to be differentiated. First, if there is a defect in the
SEC engine, the DBE will stay a DBE. Second, in case there is no
defect in the SEC engine, the SEC will either detect that there is an
uncorrectable error or attempt to correct the data, resulting in the

introduction of a third error. The probability for introducing a third
error largely depends on the specific code that is used, in particular
on the number of minimal weight-3 codewords of the code. For the
(136, 128) shortened SEC Hamming code from [7] there are 512
minimal codewords. Each of those minimal codewords results in 3
different double-bit-error patterns that will be miscorrected by the
decoder. Thus, the probability for a miscorrection calculates to

𝑃 (“Third Error”) = 3 · 512(136
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The complementary probability 1 − 𝑃 (“Third Error”) ≈ 83% ac-
counts for the probability that the SEC engine detects a double-bit
error and does not perform an attempt of correction. In theory,
the information about a detected uncorrectable error can be prop-
agated to the system boundary (marked as (∗) in Figure 6) and,
e.g., in an automotive application, the car could go into a safe state.
But as this is not done for LPDDR4, we omit the differentiation
between detected an undetected DBEs at this point and combine
them with the other DBEs. However, for future DRAM generations
like LPDDR5 it would be beneficial to propagate this information
out of the memory such that the control unit can react on the DBE
detection. In case of an incoming MBE, the SEC engine will not be
able to correct any bit errors. Thus, a MBE is always propagated as
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5.2 SEC ECC Engine
The CFT of the SEC ECC engine is depicted in Figure 6. It describes
the propagation of bit errors happening inside the DRAM when a
(136, 128) Hamming SEC ECC is used (see Section 4.1). Accordingly,
the input consists of 136 bits in total, whereof 128 bits correspond
to the actual data protected by 8 parity bits. The input error events
considered in this CFT are SBEs, DBEs and MBEs.

All SBEs will be corrected by the SEC ECC. Thus, the incoming
SBE can only stay a SBE if there is a defect in the SEC engine, which
we assume to happen with 0.1 FITs. In case of an incoming DBE,

two cases have to be differentiated. First, if there is a defect in the
SEC engine, the DBE will stay a DBE. Second, in case there is no
defect in the SEC engine, the SEC will either detect that there is an
uncorrectable error or attempt to correct the data, resulting in the
introduction of a third error. The probability for introducing a third
error largely depends on the specific code that is used, in particular
on the number of minimal weight-3 codewords of the code. For
the (136, 128) shortened SEC Hamming code from [7] there are 512
minimal codewords. Each of those minimal codewords results in 3
different double-bit-error patterns that will be miscorrected by the
decoder. Thus, the probability for a miscorrection calculates to

P(“Third Error”) =
3 · 512(136

2
) ≈ 17%.

The complementary probability 1 − P(“Third Error”) ≈ 83% ac-
counts for the probability that the SEC engine detects a double-bit
error and does not perform an attempt of correction. In theory,
the information about a detected uncorrectable error can be prop-
agated to the system boundary (marked as (∗) in Figure 6) and,
e.g., in an automotive application, the car could go into a safe state.
But as this is not done for LPDDR4, we omit the differentiation
between detected an undetected DBEs at this point and combine
them with the other DBEs. However, for future DRAM generations
like LPDDR5 it would be beneficial to propagate this information
out of the memory such that the control unit can react on the DBE
detection. In case of an incoming MBE, the SEC engine will not be
able to correct any bit errors. Thus, a MBE is always propagated as
a MBE.

5.3 SEC ECC Trimming
Since the DRAM’s SEC ECC is only used internally, the redun-
dancy is not further propagated out of the DRAM and is therefore
discarded. This so-called trimming has severe effects on the error
distribution. For example, if a TBE exists, but two of the erroneous
bits are located in the redundancy part, these bits are discarded,
which results in a SBE that is propagating towards the memory
controller (i.e., 2/3 trimmed). Figure 7 shows all possibilities of how
different errors transform to other errors as a CFT. The probabilities
for these transformations can be calculated as follows,

P(x/y) =

(n−y
r−x

)
·
(y
x
)(n

r
) , (1)

where n denotes the total number of bits, r the number of parity bits
(or bits that will be trimmed), y the total number of errors before
trimming, and x the number of errors after trimming.

For MBEs, we always assume the worst case, in which MBEs
will always stay MBEs during all trimming events.
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one half of a 16-bits-wide channel, i.e., accesses to one internal bank.
The full system is then composed of eight identical independent
subsystems. It is important to note that our presented fault tree is
a template for an exemplary LPDDR4 system, which, of course, has
to be adopted to or extended for the specific use case (e.g., DRAM
subsystem configuration or ECC implementation).
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According to [4, 34], we model four main errors that may occur in
the DRAM array: Single-Bit Errors (SBE),Double-Bit Errors,Multi-Bit
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5.2 SEC ECC Engine
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But as this is not done for LPDDR4, we omit the differentiation
between detected an undetected DBEs at this point and combine
them with the other DBEs. However, for future DRAM generations
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out of the memory such that the control unit can react on the DBE
detection. In case of an incoming MBE, the SEC engine will not be
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5.3 SEC ECC Trimming
Since the DRAM’s SEC ECC is only used internally, the redun-
dancy is not further propagated out of the DRAM and is therefore
discarded. This so-called trimming has severe effects on the error
distribution. For example, if a TBE exists, but two of the erroneous
bits are located in the redundancy part, these bits are discarded,
which results in a SBE that is propagating towards the memory
controller (i.e., 2/3 trimmed). Figure 7 shows all possibilities of how
different errors transform to other errors as a CFT. The probabilities
for these transformations can be calculated as follows,

𝑃 (𝑥/𝑦) =
(𝑛−𝑦
𝑟−𝑥

)
·
(𝑦
𝑥

)(𝑛
𝑟

) , (1)

where 𝑛 denotes the total number of bits, 𝑟 the number of parity bits
(or bits that will be trimmed), 𝑦 the total number of errors before
trimming, and 𝑥 the number of errors after trimming.

For MBEs, we always assume the worst case, in which MBEs
will always stay MBEs during all trimming events.
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5.4 Bus and Trimming
As explained in Section 4.2, only 72 of the 128 bits of one internal
bank fetch are used for data and parity storage of the external
SEC-DED ECC. The remaining 56 bits are discarded and trimmed
away. Figure 8 shows the effects of this trimming and the error
behavior of the DRAM’s data bus. The probabilities for the trimming
are computed similarly as shown in Section 5.3 (see Equation 1).
Furthermore, this component also models errors of the DRAM bus
as basic events, e.g., errors like DQ bus disturbances or no data
driven (AZ) (i.e., the termination pulls all pins to 𝑉𝑆𝑆 such that bits
are all zero), which will lead to MBEs.

5.5 SEC-DEC ECC Engine
The CFT of the SEC-DED ECC engine is depicted in Figure 9. The
incoming data consists of 72 bits in total, whereof 64 bits correspond
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to the actual data protected by 8 parity bits. The input error events
correspond to the output error events of the bus and trimming CFT
(see Section 5.4 and Figure 8).

Similar to the SEC ECC engine (see Section 5.2 and Figure 6), we
assume the SEC-DED ECC engine to have 0.1 FITs. As in the SEC
ECC CFT, all types of errors are propagated as is in case there is a
defect in the SEC-DED ECC engine.

In case that the SEC-DED ECC is working properly, it will correct
all SBEs and detect all DBEs. In contrast to the on-chip SEC ECC,
we now assume that detected errors are propagated to the system
boundaries and cause the application to go into a safe state. Thus,
detected errors do not count into the final error statistics.

Similar to the DBEs in the SEC ECC, there is a probability that
TBEs can be detected in the SEC-DED ECC. As before, it depends
on the number of minimal codewords of the code used. A popular
SEC-DED code and alternative to the classical Hamming code is
the so-called Hsiao code [12]. It is constructed in a certain way to
simplify the hardware implementation complexity and is therefore
widely used in memory applications. The Hsiao code yields a TBE
miscorrection probability of around 56%, which we assume in our
CFT model. Other codes aiming to minimize TBE miscorrections
can reduce this probability to around 48% [8], but may not yield
the same hardware complexity reduction as the Hsiao code.

In case of a MBE, we assume that around 50% of all MBEs will
be detected by the SEC-DEC ECC. This assumption is based on the
capability of the SEC-DED to detect an even number of errors.

5.6 SEC-DED ECC Trimming
Similar to the internal SEC of the DRAM, the redundancy infor-
mation (8 bit) of the external SEC-DED will be discarded from the
72-bit word, leading to a payload data of 64 bits. This effect is con-
sidered by the CFT shown in Figure 10 and the probabilities are
again computed according to Equation 1.
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5.4 Bus and Trimming
As explained in Section 4.2, only 72 of the 128 bits of one internal
bank fetch are used for data and parity storage of the external
SEC-DED ECC. The remaining 56 bits are discarded and trimmed
away. Figure 8 shows the effects of this trimming and the error
behavior of the DRAM’s data bus. The probabilities for the trimming
are computed similarly as shown in Section 5.3 (see Equation 1).
Furthermore, this component also models errors of the DRAM bus
as basic events, e.g., errors like DQ bus disturbances or no data
driven (AZ) (i.e., the termination pulls all pins to VSS such that bits
are all zero), which will lead to MBEs.
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5.3 SEC ECC Trimming
Since the DRAM’s SEC ECC is only used internally, the redun-
dancy is not further propagated out of the DRAM and is therefore
discarded. This so-called trimming has severe effects on the error
distribution. For example, if a TBE exists, but two of the erroneous
bits are located in the redundancy part, these bits are discarded,
which results in a SBE that is propagating towards the memory
controller (i.e., 2/3 trimmed). Figure 7 shows all possibilities of how
different errors transform to other errors as a CFT. The probabilities
for these transformations can be calculated as follows,
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where 𝑛 denotes the total number of bits, 𝑟 the number of parity bits
(or bits that will be trimmed), 𝑦 the total number of errors before
trimming, and 𝑥 the number of errors after trimming.

For MBEs, we always assume the worst case, in which MBEs
will always stay MBEs during all trimming events.
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5.4 Bus and Trimming
As explained in Section 4.2, only 72 of the 128 bits of one internal
bank fetch are used for data and parity storage of the external
SEC-DED ECC. The remaining 56 bits are discarded and trimmed
away. Figure 8 shows the effects of this trimming and the error
behavior of the DRAM’s data bus. The probabilities for the trimming
are computed similarly as shown in Section 5.3 (see Equation 1).
Furthermore, this component also models errors of the DRAM bus
as basic events, e.g., errors like DQ bus disturbances or no data
driven (AZ) (i.e., the termination pulls all pins to 𝑉𝑆𝑆 such that bits
are all zero), which will lead to MBEs.

5.5 SEC-DEC ECC Engine
The CFT of the SEC-DED ECC engine is depicted in Figure 9. The
incoming data consists of 72 bits in total, whereof 64 bits correspond
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to the actual data protected by 8 parity bits. The input error events
correspond to the output error events of the bus and trimming CFT
(see Section 5.4 and Figure 8).

Similar to the SEC ECC engine (see Section 5.2 and Figure 6), we
assume the SEC-DED ECC engine to have 0.1 FITs. As in the SEC
ECC CFT, all types of errors are propagated as is in case there is a
defect in the SEC-DED ECC engine.

In case that the SEC-DED ECC is working properly, it will correct
all SBEs and detect all DBEs. In contrast to the on-chip SEC ECC,
we now assume that detected errors are propagated to the system
boundaries and cause the application to go into a safe state. Thus,
detected errors do not count into the final error statistics.

Similar to the DBEs in the SEC ECC, there is a probability that
TBEs can be detected in the SEC-DED ECC. As before, it depends
on the number of minimal codewords of the code used. A popular
SEC-DED code and alternative to the classical Hamming code is
the so-called Hsiao code [12]. It is constructed in a certain way to
simplify the hardware implementation complexity and is therefore
widely used in memory applications. The Hsiao code yields a TBE
miscorrection probability of around 56%, which we assume in our
CFT model. Other codes aiming to minimize TBE miscorrections
can reduce this probability to around 48% [8], but may not yield
the same hardware complexity reduction as the Hsiao code.

In case of a MBE, we assume that around 50% of all MBEs will
be detected by the SEC-DEC ECC. This assumption is based on the
capability of the SEC-DED to detect an even number of errors.

5.6 SEC-DED ECC Trimming
Similar to the internal SEC of the DRAM, the redundancy infor-
mation (8 bit) of the external SEC-DED will be discarded from the
72-bit word, leading to a payload data of 64 bits. This effect is con-
sidered by the CFT shown in Figure 10 and the probabilities are
again computed according to Equation 1.
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can reduce this probability to around 48% [8], but may not yield
the same hardware complexity reduction as the Hsiao code.

In case of a MBE, we assume that around 50% of all MBEs will
be detected by the SEC-DEC ECC. This assumption is based on the
capability of the SEC-DED to detect an even number of errors.
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mation (8 bit) of the external SEC-DED will be discarded from the
72-bit word, leading to a payload data of 64 bits. This effect is con-
sidered by the CFT shown in Figure 10 and the probabilities are
again computed according to Equation 1.
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6 EXPERIMENTAL RESULTS
As shown in Section 5, our model has basic events, for instance
SBE, DBE or MBE. Unfortunately, these error rates are not disclosed
by DRAM vendors. Therefore, we first use the information from
publicly-available references and second use different scenarios for
a simple Monte Carlo analysis. In the following we will explain
the assumptions made for our exemplary case study with the error
model. In our experiments we assume a device channel size of 8 Gib.
The parity bits for the internal SEC ECC require 8

128 ·8Gib = 0.5Gib
of additional storage. According to [32] a DRAM has 0.066 FIT/Mib,
which translates into an overall FIT rate of

𝑅 = (4Gib + 0.25Gib) · 0.066 FIT
Mib

≈ 287 FIT

for one half of a 16-bits-wide DRAM channel in our example. Ac-
cording to [31, 32] SBEs are most prevalent, i.e., they account for

SBE DBE MBE AZ DQ Wrong Data
Scenario 1 70% 7.48% 7.48% 7.48% 0.1% 7.48%
Scenario 2 70% 20% 6% 1.9% 0.1% 2%
Scenario 3 70% 6% 20% 1.9% 0.1% 2%

Table 1: Scenarios for Fault Tree Analysis

70 % of the total DRAM FIT rate. For the other events no measure-
ment results exist in the literature. Therefore, we assume different
scenarios shown in Table 1 for the further analysis, where Sce-
nario 1 assumes that all errors besides SBEs and DQ are equally
distributed and Scenarios 2 and 3 vary the distribution between
DBE and MBE.

For the automated evaluation, we use the tool SafeTBox2 as well
as Enterprise Architect3. With these tools, we model the presented
architecture and the corresponding CFTs. The SafeTBox tool re-
ceives the parameters of our scenarios and calculates the metrics
that are required for the ASIL rating. The ISO 26262 [13] specifies
the hardware metrics that are used to evaluate the risk posed by
hardware elements:

• Single-Point Fault Metric (SPFM): This metric reflects the
coverage of an item or hardware element with respect to
single-point faults either by design or by coverage from
safety mechanisms.

• Latent Fault Metric (LFM): This metric reflects the coverage
of an item or hardware element with respect to latent faults
either by design (primarily safe faults), fault coverage via
safety mechanisms, or by the driver’s recognition of a fault’s
existence within the fault tolerant time interval of a safety
goal.

In addition, target values are specified depending on the ASIL.
Table 2 shows the required target values for different ASILs. When
calculating the SPFM and LFM, we assume a failure portion of the
DRAM of 4 %, and we attribute 96 % of the allowed residual failures
to the rest of the hardware of the control unit as shown in [4, 34].
In the case of ASIL B and C, these are 96 FIT for the rest of the
hardware, which we consider with initial 1920 FIT (50 % safety-
related, 90 % diagnostic coverage) in our calculations. Comparing
the results from our scenarios (see Table 3) with the target values,
it becomes apparent that not even ASIL B can be reached. While all
three scenarios achieve high values in the LFM sufficient for ASIL D,
only Scenarios 2 and 3 achieves values in the SPFM in the range of
ASIL B. However, the remaining absolute failure rates are too high
in all three scenarios and would only satisfy ASIL A. This shows
that further safety measures are required to fulfill the requirements
of ADAS and AD in the future.

2https://www.safetbox.de/publications
3https://sparxsystems.com/products/ea/
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As shown in Section 5, our model has basic events, for instance
SBE, DBE or MBE. Unfortunately, these error rates are not disclosed
by DRAM vendors. Therefore, we first use the information from
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a simple Monte Carlo analysis. In the following we will explain
the assumptions made for our exemplary case study with the error
model. In our experiments we assume a device channel size of 8 Gib.
The parity bits for the internal SEC ECC require 8
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of additional storage. According to [32] a DRAM has 0.066 FIT/Mib,
which translates into an overall FIT rate of
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scenarios shown in Table 1 for the further analysis, where Sce-
nario 1 assumes that all errors besides SBEs and DQ are equally
distributed and Scenarios 2 and 3 vary the distribution between
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For the automated evaluation, we use the tool SafeTBox2 as well
as Enterprise Architect3. With these tools, we model the presented
architecture and the corresponding CFTs. The SafeTBox tool re-
ceives the parameters of our scenarios and calculates the metrics
that are required for the ASIL rating. The ISO 26262 [13] specifies
the hardware metrics that are used to evaluate the risk posed by
hardware elements:

• Single-Point Fault Metric (SPFM): This metric reflects the
coverage of an item or hardware element with respect to
single-point faults either by design or by coverage from
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• Latent Fault Metric (LFM): This metric reflects the coverage
of an item or hardware element with respect to latent faults
either by design (primarily safe faults), fault coverage via
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existence within the fault tolerant time interval of a safety
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In addition, target values are specified depending on the ASIL.
Table 2 shows the required target values for different ASILs. When
calculating the SPFM and LFM, we assume a failure portion of the
DRAM of 4 %, and we attribute 96 % of the allowed residual failures
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6 EXPERIMENTAL RESULTS
As shown in Section 5, our model has basic events, for instance
SBE, DBE or MBE. Unfortunately, these error rates are not disclosed
by DRAM vendors. Therefore, we first use the information from
publicly-available references and second use different scenarios for
a simple Monte Carlo analysis. In the following we will explain
the assumptions made for our exemplary case study with the error
model. In our experiments we assume a device channel size of 8 Gib.
The parity bits for the internal SEC ECC require 8

128 ·8Gib = 0.5Gib
of additional storage. According to [32] a DRAM has 0.066 FIT/Mib,
which translates into an overall FIT rate of
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for one half of a 16-bits-wide DRAM channel in our example. Ac-
cording to [31, 32] SBEs are most prevalent, i.e., they account for
70 % of the total DRAM FIT rate. For the other events no measure-
ment results exist in the literature. Therefore, we assume different

SBE DBE MBE AZ DQ Wrong Data
Scenario 1 70% 7.48% 7.48% 7.48% 0.1% 7.48%
Scenario 2 70% 20% 6% 1.9% 0.1% 2%
Scenario 3 70% 6% 20% 1.9% 0.1% 2%

Table 1: Scenarios for Fault Tree Analysis

ASIL SPFM LFM Residual FIT
A - - < 1000
B > 90% > 60% < 100
C > 97% > 80% < 100
D > 99% > 90% < 10

Table 2: Requirements According to ISO 26262 [13]

scenarios shown in Table 1 for the further analysis, where Sce-
nario 1 assumes that all errors besides SBEs and DQ are equally
distributed and Scenarios 2 and 3 vary the distribution between
DBE and MBE.

For the automated evaluation, we use the tool SafeTBox2 as well
as Enterprise Architect3. With these tools, we model the presented
architecture and the corresponding CFTs. The SafeTBox tool re-
ceives the parameters of our scenarios and calculates the metrics
that are required for the ASIL rating. The ISO 26262 [13] specifies
the hardware metrics that are used to evaluate the risk posed by
hardware elements:

• Single-Point Fault Metric (SPFM): This metric reflects the
coverage of an item or hardware element with respect to
single-point faults either by design or by coverage from
safety mechanisms.

• Latent Fault Metric (LFM): This metric reflects the coverage
of an item or hardware element with respect to latent faults
either by design (primarily safe faults), fault coverage via
safety mechanisms, or by the driver’s recognition of a fault’s
existence within the fault tolerant time interval of a safety
goal.

In addition, target values are specified depending on the ASIL.
Table 2 shows the required target values for different ASILs. When
calculating the SPFM and LFM, we assume a failure portion of the
DRAM of 4 %, and we attribute 96 % of the allowed residual failures
to the rest of the hardware of the control unit as shown in [4, 34].
In the case of ASIL B and C, these are 96 FIT for the rest of the
hardware, which we consider with initial 1920 FIT (50 % safety-
related, 90 % diagnostic coverage) in our calculations. Comparing
the results from our scenarios (see Table 3) with the target values,
it becomes apparent that not even ASIL B can be reached. While all
three scenarios achieve high values in the LFM sufficient for ASIL D,
only Scenarios 2 and 3 achieves values in the SPFM in the range of
ASIL B. However, the remaining absolute failure rates are too high
in all three scenarios and would only satisfy ASIL A. This shows
that further safety measures are required to fulfill the requirements
of ADAS and AD in the future.

2https://www.safetbox.de/publications
3https://sparxsystems.com/products/ea/

https://www.safetbox.de/publications
https://sparxsystems.com/products/ea/
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SPFM LFM Residual FIT
Scenario 1 87.5% 94.3% 529.35
Scenario 2 93.8% 89.9% 262.23
Scenario 3 90.1% 91.3% 418.76
Table 3: Results for Fault Tree Analysis

7 OBSERVATIONS
From these results we can make the following observations:

• The usual ECC mechanisms from commodity DRAMs like
internal SEC as well as external SEC-DED do not fulfil ASIL
B requirements for the presented LPDDR4 subsystem. If, for
example, an ASIL D classification is required for ADAS and
AD, new coverage mechanisms or ASIL decomposition must
be employed.

• As mentioned in Section 5.2, propagating the detection of a
double-bit error to the outside would be helpful to increase
the coverage and achieve a higher ASIL. Especially for future
LPDDR5 applications this should be considered.

• For safety in automotive applications, error detection is more
important than error correction in order to bring the car into
a safe state in case of a hazard. From this perspective, the
usage of ECC might not be the most suitable choice. If it is
more important to detect errors, other coding techniques like
Cyclic Redundancy Check (CRC) would bring a much better
coverage compared to classical Hamming ECC approaches
with a similar redundancy and de-/encoding effort. There-
fore, DRAM and SoC vendors should consider to implement
error detection mechanisms into SoCs and memories, since
they are suited much better for safety-critical applications.

8 CONCLUSION
In this paper we showed a CFT-based methodology for the safety
analysis of LPDDR4 memory subsystems. Based on the proposed
model, we also evaluated the ASIL of an exemplary LPDDR4 sub-
system. Since DRAM is an essential component in today’s advanced
automotive control units, our work can serve as a foundation for
future classification processes in the automotive industry, there-
fore taking one more step towards full autonomous driving. In the
future, we will explore other coverage mechanisms with our CFT
methodology.
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