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ABSTRACT
As per-core CPU performance plateaus and data-bound applica-

tions like graph analytics and key-value stores become more preva-

lent, understanding memory performance is more important than

ever. Many existing techniques to predict and measure cache per-

formance on a given workload involve either static analysis or

tracing, but programs like key-value stores can easily have billions

of memory accesses in a trace and have access patterns driven by

non-statically observable phenomena such as user behavior. Past

analytical solutions focus on modeling cache hits, but the rise of

non-volatile memory (NVM) like Intel’s Optane with asymmetric

read/write latencies, bandwidths, and power consumption means

that writes and writebacks are now critical performance consid-

erations as well, especially in the context of large-scale software

caches. We introduce two novel analytical cache writeback models

that function for workloads with general frequency distributions;

in addition we provide closed-form instantiations for Zipfian work-

loads, one of the most ubiquitous frequency distribution types in

data-bound applications. The models have different use cases and

asymptotic runtimes, making them suited for use in different cir-

cumstances, but both are fully analytical; cache writeback statistics

are computed with no tracing or sampling required. We demon-

strate that these models are extremely accurate and fast: the first

model, for infinitely large level-two (L2) software cache, averaged

5.0% relative error from ground truth and achieved a minimum

speedup over a state-of-the-art trace analysis technique (AET) of

515x to generate writeback information for a single cache size. The

second model, which is fully general with respect to L1 and L2

sizes but slower, averaged 3.0% relative error from ground truth

and achieved a minimum speedup over AET of 105x for a single

cache size.

CCS CONCEPTS
• Computing methodologies → Modeling methodologies; •
Information systems→ Hierarchical storage management.

1 INTRODUCTION
At its core, locality analysis seeks to rigorously understand the 
interaction between a program and a memory hierarchy. This re-
lationship is multifaceted, and understanding program memory 
access patterns as well as caching system structure is essential to 
effective analysis.

This work explores the interactions between programs with Zipfian 
access patterns and caching systems, specifically through the lens 
of understanding writes and writebacks. This focus is of growing 
importance with the advent of memory technologies such as Intel’s 
Optane, which is of growing interest in the memory community 
[25, 30]. Optane has asymmetric read/write behavior: its read band-
width is around 3x that of its write bandwidth, and writes incur sub-
stantially more latency and power consumption [19]. We introduce 
probabilistic analytical models of cache behavior that are accurate 
and effective at predicting caching events while being closed form: 
as prior work tends to rely on tracing and sampling [10, 17] or 
focuses on modeling hits [7, 14, 21, 27], these models represent 
not only a substantial theoretic contribution but also a significant 
improvement in asymptotic cost and performance. Besides cost, 
another problem with trace analysis is "...the trace reflects only a 
specific workload, and there is always the question of whether the 
results generalize to other systems or load conditions..." [13]. There 
exist tools that use static analysis for cache performance predic-
tion [9], but these require the program memory access pattern to 
be statically inferrable, which is often not the case for things like 
key-value stores and graph applications. As such, our modeling 
work represents a domain extension over these static analysis tech-
niques.

Many existing locality models and techniques [9, 10, 34, 39] focus 
on reuse, characterizing the intervals between consecutive accesses 
to the same memory location (hardware caching) or object (soft-
ware caching). This is especially apt for programs whose memory 
access pattern is driven by static, source-level references. Another 
paradigm entirely is frequency analysis, built on the Independent 
Reference Model (IRM) [32], which views program memory accesses 
as sequences of independent samples to a frequency distribution.
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Frequency analysis is the focus of this work.

One of the most important and ubiquitous types of frequency dis-
tribution is a Zipfian (power-law) distribution, which is found in 
many disparate areas of computer science [3, 26, 35, 40]. In the 
context of frequency analysis of programs, Zipfian distributions 
are commonly found in situations where memory access patterns 
are driven by things beyond static program references, such as 
user behavior in key-value stores or the structure of data in graph 
analytics.

In the background section we provide a brief overview of this work’s 
parent project, CLUsivity. CLUsivity is a hybrid DRAM-NVM soft-
ware caching system that seeks to jointly optimize key-value stores 
over both cache misses and writes. The main technique involves 
offline parameter-space exploration of a combinatorial number of 
system configurations, something made possible by the existence 
of fast, fully closed-form models that require no traces. In this way, 
the CLUsivity project provides both motivation for this modeling 
and a demonstration of its applicability and utility.

The rest of the paper is structured as follows: Section 2 contains 
background information and related work discussion. Section 3 
contains the analytical models that are the core contributions of 
the paper, analyses of their runtimes, implementation details, and 
discussion of their limitations. Section 4 contains empirical results 
from validating our models against simulators and a state-of-the-art 
sampling technique. Section 5 contains discussion of how our work 
can be extended and strengthened as well as concluding remarks.

1.1 Main Contributions
The main contributions of this work are as follows:
• An Infinite L2 Writeback Model (Proposition 1), which in-

troduces an analytical model of LRU cache writebacks for

infinitely large L2, and Theorem 1, which instantiates the

model for Zipfian access patterns and presents an optimized

and closed-form result.

• A General Writeback Model (Proposition 2), which intro-

duces a second, fully general analytical model of LRU cache

writebacks, and Theorem 2, which instantiates the model

for Zipfian access patterns as before.

• Evaluation of the performance and runtimes of our mod-

els against simulation and a state-of-the-art trace sampling

technique.

2 BACKGROUND
2.1 Zipfian Access Patterns
One of the most ubiquitous types of memory access pattern is char-

acterized by a Zipfian distribution, with the following probability

density function:

p(i) =
ω(α ,m)

iα
(1)

where:

• i: the rank of the element in question

• m: the datasize (number of unique objects)

• α : the Zipfian distribution parameter

• ω(α ,m): a normalizing term

• p(i): the probability of accessing element i
The parameter α dictates the gap in probability density between

consecutively ranked items. Higher α means a larger gap, and thus

better locality. α = 0 characterizes a uniform distribution.

Such power-law distributions are some of the most fundamental

and omnipresent mathematical objects in computer science, ap-

pearing everywhere from corpora analytics in natural language

processing [26], to key-value store access patterns [40], to traffic

routing at both the hardware (per-router traffic) level and the per-

website user traffic level [3], to partitioning techniques for graph

analytics [35]. This work’s parent project, CLUsivity, builds a K-V

store to run on top of hybrid DRAM/NVM caching systems. Zipf

distributions in this context often have α values that “...fall in [0.9,

0.99] for daily scenarios, and in [1, 1.22] for extreme cases” [40].

Yang et al. [38] show that block I/O writes in storage systems follow

Zipfian popularity distributions as well.

2.2 Analytical Miss Ratio Modeling
The literature on modeling the performance of LRU caches is ex-

tensive and dates back to the 1970s, with Ronald Fagin’s seminal

probabilistic counting approach. Fagin describes computing the

expected working-set size, or expected number of unique elements

in a length-x trace window, as follows [12]:

wssavд(x) = fp(x) =
m∑
i=1
(1 − (1 − p(i))x ) (2)

This expression has a straightforward intuitive explanation: (1 −

p(i))x is the probability that element i does not appear in a given

window of length x in the trace, so its complement is the probability

that it appears one or more times. Summing this quantity over all

data results in expected working-set size.

The working-set function concept is expanded on in Yuan et al.

[39], who use the term footprint, or fp(x). The Denning-HOTL con-

version, discussed in the same paper, shows how fp(x) captures the
performance of a trace on an LRU cache of size c:

mr (c) = ∆fp(x)|fp(x )=c (3)

In words, the miss ratio for an LRU cache of size c is the finite

difference of the footprint function at the point where fp(x) = c . The
core ideas behind this relationship are visualized in Figure 1.

We can combine Equations 1 and 2 to get an approximation of the

footprint function for a Zipfian probability distribution:

fp(x) =
m∑
i=1

1 −

(
iα − ω(m,α)

iα

)x
(4)

Differentiating Equation 4 will give an approximate LRU miss ra-

tio curve. However, since window size x ranges from 0 to n, trace
length, and at each step we must sum over m, datasize, this ap-

proach is intractable for real traces. As such, a closed form solution
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is desirable.

Jelenković [20] gave a closed form approximation for Zipfian distri-

butions with α > 1 in 1999, which is generalized for all values of α
by Christian Berthet [5] in a 2017 publication. His model, although

using different domain language, computes approximate fp(x) (and
by extension miss ratio) as follows:

fp(x) ≈m
(
1 −

1

α
· E

1+ 1

α

(
x

Hm,α ·mα

))
(5)

Throughout the rest of this paper we refer to Equation 5 as the

Jelenković-Berthet approximation. Here Hm,α is themth general-

ized harmonic number, related to our normalizing term from before

as follows:

1

ω(m,α)
=

m∑
i=1

1

iα
= Hm,α (6)

and Ek (x) is the kth generalized exponential integral:

Ek (x) =

∫ ∞
1

e−x ·t

tk
dt (7)

Equation 5 (miss ratio) is a required component in one of the models

presented in the following sections: we implement it in Rust using

the RGSL math library.

2.3 Average Eviction Time Cache Modeling
The Average Eviction Time (AET) model [17, 18] is an online trace

based approach to computing cache performance information. AET

first samples requests to build a reuse interval histogram. The his-

togram is then used to calculate the probability that reference x has

reuse time greater than t , which is then related to a stack movement

in an LRU queue. Note that AET and cache fill time are equivalent

measures.

Given a reuse interval histogram we can solve for the average evic-

tion time for a given cache size, c . It is realized by the following

equation: ∫ AET (c)

0

P(t)dt = c (8)

where P(t) is the probability that a reference has reuse interval

greater than t . We obtain P(t) from the reuse time histogram. Armed

with the average eviction time for a cache of size c , we can now

compute the miss ratio curve using the following equation:

mr (c) = P(AET (c)) (9)

where P(AET (c)) is the probability that a reuse interval is greater

than the average eviction time for cache of size c , AET (c). Figure 1
explains this visually.

AET can be extended to calculate writeback ratio curves for infinite

and finite L2 cache sizes. For infinite L2 caches, AET implements

Chen’s writeback model formula [10]. For finite L2 caches, AET

implements the equations outlined in Section 3.3 for generalized

modeling. Specifically, the conditions in equations 23 and 25 are

met by keeping track of each backward reuse interval for each write

a

≤ AET(c) ≥ AET(c)

reuse

aa

reuse

hit miss

AET(c) = x |fp(x)= c

Figure 1: A visual explanation of the core ideas behind AET
modeling and the relationship between footprint and miss
ratio.

interval. The additional complexity increases the accuracy of AET’s

writeback ratio calculation at the cost of additional space usage.

3 MODELING
In the following sections we describe the following four contribu-

tions:

• Analytical modeling of access pattern writeback ratio curves
for caching systems with infinitely large L2 and that model’s

application to Zipfian programs.

• Analytical modeling of Zipfian access pattern writeback ratio
curves for caching systems with finitely or infinitely large

L2 and that model’s application to Zipfian programs.

Both writeback models are fully general, functioning for programs

with arbitrary access frequency distributions: see Propositions 1

and 2. We also instantiate each model for Zipfian frequency dis-

tributions, providing closed-form results for power-law programs

in the form of Theorems 1 and 2. Pseudocode implementations

of these models are available in Algorithms 1 and 2. Section 3.5.5

discusses these models’ runtimes, implementations, and limitations.

At a high level, the disadvantage of the second model (whose do-

main includes the first model’s domain and as such is more general)

is that it is harder to work with mathematically and as such our

result for Zipfian programs is less optimized. These differences are

summarized in Figure 2:

All models derive the desired information directly from access

pattern information and the mathematical objects such as distri-

butions and functions that characterize it, rather than requiring

trace measurement as in many prior locality analysis techniques.

An alternative approach to computing the information we need

would be to generate traces according to the information passed

by the user (m,α ,pw : data size, Zipfian parameter, write probabil-

ity) and do trace measurement. Fast trace sampling models like

AET make trace sampling efficient, but the asymptotic cost of trace

generation is O(n) for both time and space for trace length n. A
week-long trace from a single cluster at Twitter can be over 100
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Infinite L2 Finite L2
Instantiated 
for Zipfian 
programs

Optimized 
Zipfian 

instantiation

Infinite L2 
writeback 

model 
(Proposition 1)

General 
writeback 

model 
(Proposition 2)

Figure 2: The tradeoffs between our two models. The first
is less general but easier to work with mathematically (and
hence optimize), while the second is more general but more
complex.

GB [37]. In addition, very large traces would have to be generated

to guarantee characteristics conformant with the workload prob-

ability distribution. The models are intuitively faster than trace

generation or collection, and they are asymptotically faster as well:

by binary searching over window sizes, two of the models in the

following sections run with O(loд(n̂)) time and constant space cost

(and the third with O(m · loд(n̂)) time and constant space) to com-

pute information for a specific cache size, where n̂ is the maximum

window size required to get the correct outputs of equations in the

following sections. Almost always, n̂ < n, trace length. We present

more runtime information in Table 1 at the end of the section, and

more thorough discussion after it.

3.1 Modeling writebacks for infinite L2
Modeling writes is of interest to people concerned with cache per-

formance: memory technologies such as Intel Optane often suffer

from limited write bandwidth, write endurance, and/or read/write

latency asymmetry [19]. In order to generate writeback informa-

tion offline, we extend the modeling ideas discussed in the previous

section to compute writeback information instead of cache miss

information.

In the case where L2 is infinitely large (in practical terms, when

application data fits in L2), we know that the only misses in L2 are

cold misses. In other words, the only writes to L2 (excluding cold

misses) are writebacks from L1, or dirty elements evicted from L1.

We build a model for this case by extending the miss ratio modeling

ideas from the previous section. We will first introduce the model

in a fully general sense and then instantiate it for programs whose

frequency distributions are Zipfian.

The main idea behind this model is to compute the probability that

a given miss results in eviction of a “dirty" (written to) element

from L1 (and hence a writeback to L2). To do this, we first need to

compute write footprint (wfp(x), or the expected number of dirty

elements per length-x trace window.

Occurrences of element i in x accesses (window length) follow a bi-

nomial distribution with x trials and success probability p(i) (access
rate from the program’s frequency distribution):

B (x ,p(i)) (10)

Expectation of a random variable X following this distribution is

simple:

X ∼ B (x ,p(i)) → E[X ] = x · p(i) (11)

We now approximate wfp(x) with probabilistic counting, much

as in Equation 2. We compute for all data the chance that, in a

window of length x , at least one of the expected accesses is a write.

Mathematically:

wfp(x) =
m∑
i=1

(
1 − (1 − pw )

x ·p(i)
)

(12)

Then, we express the “dirty” part of footprint as a ratio:

dfp(x) =
wfp(x)
fp(x)

(13)

Finally, we multiply the dirty footprint ratio (dfp(x)) by the cache

miss ratio at the point where footprint equals cache size (as in Equa-

tion 3) to determine the fraction of accesses that incur writebacks.

Proposition 1 (Infinite L2 Writeback Model). The writeback
ratio for an LRU cache of size c can be approximated as the product
of miss ratio with the ratio of write footprint to footprint at the point
where footprint equals cache size. Mathematically:

wbr(c) =mr (c) · dfp(x)|fp(x )=c (14)

This probabilistically approximates the number of misses that

incur writebacks to L2. In the form presented above, the model has

runtime O(n ·m) for trace length n and data sizem: we go from n
to loд(n) by binary searching over window sizes to find the point

where footprint equals cache size, and eliminate the factor ofm by

approximating the summation over all data elements by integrating

the corresponding continuous function. Next we demonstrate this

by applying the above model to Zipfian frequency distributions.

3.2 Application to Zipfian workloads
Equation 1 gives us p(i) for an element with rank i . So, we can get

a closed form instantiation of the previous model as follows.

Our binomial distribution and corresponding expectation look as

follows:

B
(
x ,

ω(m,α)

iα

)
(15)

Write footprint:

wfp(x) =
m∑
i=1

(
1 − (1 − pw )

x ·ω (m,α )
iα

)
(16)
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Our dirty footprint ratio:

dfp(x) =

∑m
i=1 1 − (1 − pw )

x ·ω (m,α )
iα∑m

i=1 1 −
(
iα−ω(m,α )

iα
)x (17)

The denominator can be approximated without the summation by

Equation 5 (the Jelenković-Berthet approximation), and we approx-

imate the numerator (Equation 16) as follows:

wfp(x) ≈
∫ m

1

(
1 − (1 − pw )

x ·ω (m,α )
iα

)
di (18)

= (m − 1) − (WFP(m) −WFP(1)) (19)

where

WFP(i) =
∫
(1 − pw )

x ·ω (m,α )
iα di (20)

=
i

α

(
−x · ω(m,α) · i−α · ln(1 − pw )

) 1

α

· Γ

(
−1

α
,−x · ω(m,α) · i−α · ln(1 − pw )

)
Here, Γ(s,x) is the incomplete gamma function:

Γ(s,x) =

∫ ∞
x

ts−1e−tdt (21)

related to the generalized exponential integral (Equation 7) as fol-

lows:

Ek (x) = xk−1 · Γ(1 − k,x) (22)

Equations 18 and 20 are combined to form the following theorem.

Theorem 1. Letm,α be the datasize and parameter characterizing
a Zipfian distribution. Then the expected number of elements per
length-x trace window incurring a writeback on eviction for an LRU
cache, assuming static write probability pw , can be approximated by
the following:

wfp(x) ≈ (m − 1)

−
m

α

(
−x · ω ·m−α · ϕ)

) 1

α · Γ

(
−1

α
,−x · ω ·m−α · ϕ

)
+

1

α
(−x · ω · ϕ)

1

α · Γ

(
−1

α
,−x · ω · ϕ

)
where ϕ = ln(1 − pw ) and ω = ω(m,α) as in Equation 1.

The previous theorem is then combined with Equations 5, 17,

and 14 to generate a writeback ratio curve for specific cache sizes.

Algorithm 1 demonstrates this, and includes a binary-search based

optimization to make the process of finding points where fp(x)
equals cache size (see Proposition 1) logarithmic in trace length.

Note that in the algorithm we compute miss ratio as the finite

difference of footprint (i.e. fp(x) − fp(x − 1)) for concision, while
in our implementation we computed the actual derivative of the

function.

Algorithm 1: Computing writeback ratio

Input :m: data size

Input :α : Zipfian exponent

Input :c: L1 cache size
Input :pw : write probability

Output :writeback ratio for cache size c , Zipfian
distribution (m, α )

/* Start search with window size 1 */

window← 1;

search_up(window);

Function search_up(x):
fp← compute_footprint(x ,m,α );

if f p > c then
return search_down(

x
2
, x );

else
return search_up(2x );

end function

Function search_down(x, y):
fp← compute_footprint(⌊

x+y
2
⌋,m,α );

fp′ ← compute_footprint(⌊
x+y
2
⌋ − 1,m,α );

/* Check if we’ve found the window size we need */

if fp > c and fp′ < c then
/* if so, proceed */

return compute_wbr(x , fp − fp′,m,α ,pw );

/* otherwise, continue searching */

else if fp > c then
return search_down(x , ⌊

x+y
2
⌋);

else
return search_down(⌊

x+y
2
⌋,y);

end function

Function compute_normalizer(m,α ):
/* Equation 6 */

ω ← 1∑m
i=1

1

iα
;

return ω;

Function compute_wbr(x ,mr ,m,α ,pw ):
/* Equation 17 */

fp← compute_footprint(x ,m,α);

wfp← compute_wfp(x ,m,α ,pw );
/* Proposition 1 */

returnmr ·
wfp
fp ;

Function compute_footprint(x ,m,α ):
/* Equation 5 (the Jelenković-Berthet approximation) */

returnm
(
1 − 1

α · E1+ 1

α

(
x

Hm,α ·mα

))
;

Function compute_wfp(x ,m,α ,pw ):
/* Theorem 1 */

return
(m−1)−m

α (−x · ω ·m
−α · ϕ))

1

α ·Γ
(
−1
α ,−x · ω ·m

−α · ϕ
)
+

1

α (−x · ω · ϕ)
1

α · Γ
(
−1
α ,−x · ω · ϕ

)
;



Smith et al. 

3.3 Generalized writeback modeling
In the previous model, we built on existing miss ratio models to 
count writes to L2 as a fraction of misses (evictions). In this section 
we introduce a second model which takes a different approach by 
counting occurrences of the scenario that creates a writeback at 
write time as opposed to at eviction time. The difference is under-
standing when an eviction causes a writeback versus understanding 
when a program write will eventually need to be written back. The 
previous model only functions for cases where data size fits in L2; 
in contrast, this second approach takes into consideration the fact 
that data accesses can cause (non cold-start) misses in L2. As such, 
this model is fully general.

We compute writebacks by probabilistically counting occurences 
of the following scenario:

A write occurs where:
(1) The backward reuse interval of the item being written is small

enough that the item resides in L2 cache,

(2) The write reuse interval of the item being written is large

enough that the next time the item is written, it will not be

in L1 cache

Backward reuse interval (BRI) denotes the number of trace elements

between the current item and its most recent past use. If the access’

BRI is too large, the write causes an L2 miss, and in that case the

versions in L1 and L2 agree on value and the write in question will

never incur a writeback.

Write reuse interval [10] denotes the maximum reuse interval be-

tween two consecutive writes to the same item (including all reuse

intervals generated by reads in between the two writes). If the ac-

cess’ WRI is too small, the datum will not be evicted from L1 before

it is written to again (as each reuse interval is too small to force

eviction), and as such the write is “absorbed" by L1 and its value

will never need to be written back. This is explained visually in

Figure 3.

Our first condition, mathematically:

P(BRI ≤ AET(L2)) (23)

where AET(L2) = x |fp(x )=c , or x where fp(x) = c , similar to Equa-

tion 3.2. This is straightforward to express probabilistically for an

element of a Zipfian distribution (m,α) with rank i:

P(BRI ≤ v) =
(
1 − (1 − pi )

v )
(24)

for constant v , using the same reasoning techniques as in Equation

3.1.

Our second constraint is more difficult to model, expressible as

follows:

P(WRI > AET(L1)) (25)

To reiterate, write reuse interval (WRI) denotes themaximum reuse

interval that exists between two consecutive writes to the same data

item. In this section we will use a1 and a2 to denote the memory

write reuse interval     d

a
write

a a a a
writereads

d≤d≤ d≤ d≤

write reuse interval > d

a
write

a a a
writereads

>dd≤ d≤

≤

Figure 3: A visual explanation of write reuse interval, where
a represents the data item being accessed. In the top fig-
ure, the maximum reuse interval between two consecutive
writes is small enough that the item will never be evicted
between them, whereas in the bottom the maximum reuse
interval is too large and as such the first write needs to be
written back. d represents a constant related to cache size,
as discussed later on.

accesses forming the bounds of the write reuse pair. We observe

that this can be modeled probabilistically with the following case

analysis:

• Case 1: the next access to the item in question is a write (a2).
Here, we know there is only one reuse interval to be analyzed,

as there are no reads in between the two consecutive writes

forming the write reuse interval (a1 and a2).
• Case 2: the next access to the item in question is a read (a′).
Here we must do further case decomposition and apply a

recursive probabilistic definition.

In Case 1, which occurs with probability pw (static write probability

over the whole execution), the probability that the write reuse

interval is “too big” (WRI > d for d = AET (L1)) is equivalent to the
probability that a single reuse interval is “too big” (RI > d):

P(WRI > d) = pw ·
(
(1 − pi )

d
)
+(1−pw )·P(WRI > v | Case 2) (26)

for constant v .

In Case 2, things are slightly more complicated. We know that the

next access to the current item is a read (a′), giving us another level
of case decomposition:

(1) Case 2a: the reuse interval formed by the next read (from

a1 to a
′
) is “too big” (RI > d)

(2) Case 2b: the reuse interval formed by the next read is small

enough (RI ≤ d), but the write reuse interval from a′ to a2
is “too big” (WRI > d)
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Case 2a is simple to model, just as in Equation 3.18. We observe that

Case 2b can be modeled with a recursive probability definition: if

we know that the reuse interval between a1 and a
′
is small (RI ≤ d),

the probability that there exists a “too big” (RI > d) reuse interval
between a′ and a2 is identical to our original probability, as the data
item in question has unchanged access frequency from the Zipfian

distribution. We can then rewrite Equation 3.20 as follows:

P(WRI > d) = pw · ((1 − pi )
d ) + (1 − pw ) · ((1 − pi )

d

+(1 − (1 − pi )
d ) · P(WRI > d))

(27)

where pi =
ω(m,α )

iα as before. Expanded:

P(WRI > d) = P(WRI > d) · (1 − pw + (pw − 1)

·((1 − pi )
d )) + ((1 − pi )

d )
(28)

P(WRI > d) ·
(
(1 − pw ) ·

(
(1 − pi )

d
)
+ pw

)
=
(
(1 − pi )

d
)

(29)

Solving for the probability we’re interested in, we get the following

expression:

P(WRI > d) =
(1 − pi )

d

(1 − pw ) (1 − pi )
d + pw

(30)

This gives the fraction of accesses that cause a writeback of element

i: as before, summing over data size will give total writeback ratio.

We can then combine the probabilities from our case analyses:

Proposition 2 (General Writeback Model). The writeback
ratio of a program with write probability pw on an LRU cache can be
approximated as follows:

wbr(c) =
m∑
i=1

pw · (1 − (1 − pi )
v ) · (1 − pi )

d

(1 − pw ) (1 − pi )
d + pw

(31)

where d = AET(L1) and v = AET(L2) (see Equation 23).

3.4 Application to Zipfian workloads
Substituting Zipfian access probability into the previous equations

is straightforward. The first condition:

P(BRI ≤ v) =
(
1 − (1 − pi )

v ) = (
1 −

(
1 −

ω(m,α)

iα

)v )
(32)

And the second:

P(WRI > d) =

(
1 −

ω(m,α )
iα

)d
(1 − pw )

(
1 −

ω(m,α )
iα

)d
+ pw

(33)

Combined:

Theorem 2. Letm,α be the datasize and parameter characterizing
a Zipfian distribution. Then the fraction of data accesses causing a
cache writeback from L1 to a finite L2, assuming LRU caching with
static write probability pw , can be approximated by the following:

wbr (d,v) =
m∑
i=1

pw ·
( ω
iα

)
·
(
1 −

(
1 − ω

iα
)v )
·
(
1 − ω

iα
)d

(1 − pw )
(
1 − ω

iα
)d
+ pw

where ω = ω(m,α), d = AET(L1) and v = AET(L2) (see Equation
23).

Algorithm 2 contains a pseudocode specification that applies

Theorem 2 to probabilistically approximate writeback ratio. Note

that, in contrast to Algorithm 1, AET(L1) (and AET(L2), although
this of course is not meaningful for infinite L2) are inputs to the

algorithm and not computed by binary search. We elide this for

readability of the algorithm; add the binary search step present in

Algorithm 1 to compute these.

Algorithm 2: Computing writeback ratio for finite L2

Input :m: data size

Input :α : Zipfian exponent

Input :d : AET(L1)
Input :v : AET(L2)
Input :w : write probability

ratioSum← 0;

for i ← 1 tom do
/* Theorem 2 */

pi ← get_frequency(i);

BRIi ← get_BRI_probability(pi );

WRIi ← get_WRI_probability(pi );

ratioSum← ratioSum + pi ·w · BRIi ·WRIi ;

return ratioSum;

Function get_frequency(i):
/* Equation 1 */

return ω(α,m)
iα ;

Function get_BRI_probability(i):
/* Equation 32 */

return
(
1 −

(
1 −

ω(m,α )
iα

)v )
;

Function get_WRI_probability(i):
/* Equation 33 */

return

(
1−

ω (m,α )
iα

)d
(1−w )

(
1−

ω (m,α )
iα

)d
+w

;

3.5 Model Runtimes and Limitations
3.5.1 Miss ratio. We implement Berthet’s miss ratio model [5]

(Equation 5, the Jelenković-Berthet approximation) in Rust, using

the RGSL math library [2] for the special mathematical functions

required. Algorithm 1, which computes writeback ratio, contains

specification for computing miss ratio, as does the original paper,
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α

 

and as such we present no standalone algorithm for the miss ratio 
model.

3.5.2 Writeback ratio for infinite L2. Algorithm 1 contains a pseu-
docode specification for how this model, culminating in Theorem 1, 
can be implemented. Our implementation is in Rust using the RGSL 
math library [2]. In the Evaluation section we compare this model to 
a trace-based cache simulator and the AET online sampling tool. As 
the optimizations we present in this section require binary search-
ing and evaluation of special mathematical functions, Algorithm 1 
is quite lengthy and technical, but should provide insight on how 
the equations in the modeling section are combined and applied.

Theorem 1 uses Γ(s, x) and not Ek (x) (see Equation 22) because 
rgsl::exponential_integrals::En(), the GSL implementation of 
Equation 7, accepts only integer parameters for the subscript k 
which in our case is 1 + 1 

. We convert with Equation 22 and
use rgsl::gamma_beta::incomplete_gamma::gamma_inc() in-
stead.

3.5.3 Writeback ratio for finite L2. Algorithm 2 contains a pseu-

docode specification for how this model, culminating in Theorem 1,

can be implemented. Because this model is not optimized to remove

the summation as the first writeback model is, it requires evaluation

of no special mathematical functions and does not require RGSL.

We have implemented Algorithm 2 in Rust similarly to Algorithm

1 without the use of the RGSL library.

3.5.4 Summary. Table 1 gives asymptotic runtimes for the exact

models (Equations 4, 16, and Theorem 2) and the approximate mod-

els (Equations 5, 18, 20), as well as the trace generation approach

discussed earlier in Section 3. All three models require evaluation

of functions “at the point where” some relationship holds, and each

model can find this point by binary search, leading to a logarithmic

factor in runtime. Algorithm 1 contains a pseudocode implementa-

tion of this binary-search based optimization.

Our RGSL function calls contain a do...while loop and as such their

runtime is somewhat difficult to analyze, but we consider their

most expensive execution to be a constant upper bound that can

be removed asymptotically when considering the time complexity

of the closed form model in the following table.

These analytical models derive results directly from distributions,

which is mathematically equivalent to processing infinitely long

traces. In the previous table, n̂ is the length of the shortest trace

that perfectly conforms to our distributions required to derive the

performance of a given cache capacity (i.e x such that fp(x) is big
enough to apply the Denning-HOTL conversion [[39], Equation

3]). The larger the cache, the larger n̂ needs to be. This differs from

trace analysis, for which n is the actual trace length. In all but the

most contrived examples/unlikely traces, n̂ < n. We leave it to fu-

ture work to more rigorously analyze this relationship and develop

better understanding of n̂.

3.5.5 Limitations. The models discussed in the previous sections,

while accurate and effective, have the following limitations:

Workloads

Approach Complexity

Model:

summation

Miss ratio

Writeback ratio (inf. L2) O(m · s · loд(n̂))
Writeback ratio (general)

Model:

optimized

Miss ratio O(m + s · loд(n̂))
Writeback ratio (inf. L2) O(m + s · loд(n̂))
Writeback ratio (general) N/A

Trace

Analysis (AET)

Miss ratio

Writeback ratio (inf. L2) O(n)
Writeback ratio (general)

Trace Analysis

(simulation)

Miss ratio

Writeback ratio (inf. L2) O(s · n)
Writeback ratio (general)

Table 1: Asymptotic complexity of different approaches for
computing themiss andwriteback information that CLUsiv-
ity requires. n,m are tracelength and datasize. n̂ is described
in the following paragraph. s denotes the number of cache
sizes for which writeback information needs to be gener-
ated.

These models derive miss and writeback information from fre-

quency distributions, with the caveat that the underlying distribu-

tion must be Zipfian. The methods by which the exact, intractable

expressions (Equations 4, 16, 3.25) are derived are fully general, but

the applicable versions are specific to Zipfian distributions. Trace

analysis is more general than these models and applicable to all

workloads. Chen et al. [10] developed a model of write locality

based on reuse distance. Reuse distance can be analyzed in near-

linear time [41] and in logarithmic space [34].

Static write probability
The models assume static write probability pw across all data ele-

ments: in other words, they assume that the percentage of memory

accesses that are writes for the whole execution is the same as

the per-element percentage. This of course can be untrue in real

applications, as write hotness can vary across an application’s data.

We leave it to future work to consider variance in write probability.

Caching systems
The caching systems here are assumed to be using the LRU replace-

ment policy. While for many caching systems (especially hardware

caching) this will lead to inaccuracies in prediction results, LRU

is commonly used in software caching systems (e.g. memcached

[1]) and is perhaps the most representative single policy across all

caching systems. Attempts to extend the modeling ideas here to

other policies, while appealing, could be difficult due to the mathe-

matical bases for the models [5, 39] both considering LRU.

The two writeback models proposed considered both apply only to

two level, vertically aligned caching systems. We leave considera-

tion of more complicated cache topologies to future work.
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Trace Parameters

Zipf-α % Writes Objects Number of requests

0.8, 1.0, 1.2 0.05, 0.25, 0.50 10M 500M

Table 2: Trace parameters used in evaluation. Zipfian alpha
andwrites are chosen to reflect a realistic range from typical
key-value workloads.

4 EVALUATION
4.1 Experimental Setup
Our experiments are run on a Dell PowerEdge R730 server with 8-

core Intel Xeon CPU (E5-2620) and 128GB DRAM running Ubuntu

16.04 with Linux kernel 4.4.0. The AET tool is written in C com-

piled with gcc 5.4 (-O3). The trace generator is written in Python

using Numpy libraries. The simulator is based on libCacheSim [36]

written in C++ compiled with g++ 5.4 (-O3). The interested reader

can find our source code here: github.com/anon/model-tools.

Evaluation Traces. To evaluate each model, we compared model-

generated writeback ratios with ground truth writeback ratios and

those generated by the AET online sampling tool on nine traces

each, varying Zipfian α , write probability pw , and L2 size for the

finite L2 case. These traces are synthetic traces, generated to be

Zipfian with uniform write probability. Table 2 details the param-

eters used in the traces. We assume uniform object size across all

traces since miss ratio curves are often used to describe a class of

objects relating to a particular size bound [8, 16, 31].

We choose to use synthetic traces because, given our stated limi-

tations/assumptions in Section 3.5.5, the best way to evaluate the

accuracy of our models without external sources of error is to ap-

ply them to cases where our assumptions are met. Analyzing the

performance of our models on real-world industry cloud caching

traces (e.g. Twitter cache traces [37]) would not be an effective form

of evaluation, as it would be difficult to decouple the error inherent

in the model due to our probabilistic and trace agnostic approach

from the error due to the trace’s deviance from its mathematical

characterization (accuracy of the Zipfian α parameter, write proba-

bility variance across keys, validity of the IRM assumption/churn,

etc). We recognize the utility of being able to apply these models

to traces that don’t fully conform to our assumptions, and leave a

rigorous analysis of our models’ performance on industry traces

and how to correct for external sources of error to future work.

4.2 Modeling writebacks for infinite L2
Our first writeback model is extremely accurate: Table 3 presents

numerical percent deviation from ground truth results for our pre-

dicted writeback ratios as well as those generated by the AET online

trace sampling technique. We see that, even without requiring a

trace, our model slightly outperforms the accuracy of AET, with av-

erage errors of 5.0 and 5.2% respectively. For higher α and P(write)

values the model error tends to be higher: this is a result of more

variance reducing the effectiveness of our assumptions about the

trace.

α 0.8 1 1.2

P(write) Anl. AET Anl. AET Anl. AET

0.05 0.1 0.6 1.4 1.0 2.9 2.3

0.25 1.8 2.6 3.2 4.1 5.2 6.7

0.5 10.6 7.4 10.2 9.1 9.6 13.2

Table 3: WBR modeling for infinite L2. Relative differences
(percent deviation from ground truth) for the model’s write-
back ratio prediction compared to the AET sampling tech-
nique across different static write probabilities and αs. The
baseline is an offline cache simulator. Lower is better.

4.3 Generalized writeback modeling
Our secondmodel is very accurate as well, this time with an average

error of 3.0% compared to AET’s 2.7%. Note that AET performs

better here than in the previousmodel: this is a result of our building

additional functionality into the AET model to allow for an apples-

to-apples comparison (see the AET background section). Table 4

presents numerical results for the generalized writeback model.

α 0.8 1 1.2

P(write) Anl. AET Anl. AET Anl. AET

0.05 0.2 1.8 0.0 2.5 4.2 1.2

0.25 0.3 0.9 1.3 1.1 8.4 2.6

0.5 0.5 0.7 1.9 1.1 10.1 1.6

Table 4: Generalized WBR modeling. Relative differences
(percent deviation from ground truth) for the model’s write-
back ratio prediction compared to the AET sampling tech-
nique across different static write probabilities and αs. The
baseline is an offline cache simulator. Lower is better.

4.4 Runtimes and speedup
Table 5 presents the execution times for trace generation, AET,

our analytical models, and the simulator. Note that AET and the

simulator require a trace, so we report both the runtime of AET

for cases where the user has a pre-existing trace and the cost of

generating a trace. Note that AET generates full miss and writeback

ratio curves sampled from the trace, while the simulator must be

run for each individual L1 and L2 size.We simulate 16 cache sizes for

each trace and report an estimated 1137 minute ( 19 hour) execution

time for 100 cache sizes (s=100). Likewise, the analytical models are

run for individual L1 and L2 sizes in order to generate sufficient

miss ratio and writeback ratio information. The generalized model’s

asymptotic runtime isO(m·s ·loд(n̂)), where s is the number of cache

sizes for which writeback information is computed. This is reflected

in the 200x runtime increase from s = 1 to s = 100 ( note that a

writeback ratio is defined for each L1/L2 cache size combination).

The infinite L2 model, on the other hand, runs in O(m + s · loд(n̂)),
where it is typical thatm >> s · loд(n̂), so similar executions time

for one cache size (s=1) and many cache sizes (s=100) are expected

for this model.



Smith et al.

0.8 1 1.2

0.05
0.25

0.5

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

0.00

0.01

0.02

0.03

0.04

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.4

0.5

Cache Size (Millions of objects)

W
rit

eb
ac

k 
R

at
io

AET
Analytical
Sim

Figure 4: WBR modeling for infinite L2. Writeback ratio comparison for our model (Analytical) against an online trace anal-
ysis model (AET) and an offline cache simulator (Sim) which represents ground truth. The values at the top of each column
represent varied α values, while the values at the right side of each row represent varied write probability values.
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Figure 5: Generalized writebackmodelingWriteback ratio comparison for our model (Analytical) against an online trace anal-
ysis model (AET) and an offline cache simulator (Sim), which represents ground truth. The values of α and write probability
appear at the top of each graph. The three sets of lines per graph represent varied L2 size, the largest of which is infinite (data
size fits in L2).
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Method Requires Trace # of Cache Sizes

s = 100 s = 1

AET yes 4m 33s 4m 33s

Simulator yes 1137m (est.) 36m 24s

Generalized Anl. Model no 5m 46s 2.6s

Infinite L2 Anl. Model no 0.54s 0.53s

Trace Generation Time 46m 51s

Table 5: Execution times for trace generation and each
method of obtaining writeback ratio information. Average
execution times are over the 9 synthetic traces used in the
evaluation.

Model Trace pre-existing (AET) Speedup over AET

Infinite L2 Anl.

yes 515x

no 5,819x

Generalized Anl.

yes 105x

no 1,186x

Table 6: Speedup information: single cache size calculation
(s = 1)

Model Trace pre-existing (AET) Speedup over AET

Infinite L2 Anl.

yes 506x

no 5,711x

Generalized Anl.

yes 0.8x

no 8.9x

Table 7: Speedup information: miss ratio curve calculation
(s = 100)

Tables 6 and 7 contain the previous runtime information in speedup

form. Specifically, they compare the two analytical models to AET

(as that is a faster and more realistic method than simulation to

obtain writeback information) both when AET does and does not

have a preexisting trace to analyze.

5 RELATEDWORK
5.1 Locality models
Yuan et al. [39] introduce a unifying mathematical framework that

rigorously defines and analyzes different approaches to measuring

program locality. Their highest-level decomposition separates lo-

cality analyses into the following three categories: access locality,
related to individual memory accesses; timescale locality, related to

understanding sequences of memory accesses; and cache locality, re-
lated to cache behavior. This work is primarily concerned with the

interactions between program frequency distributions and caching

systems, falling under the access locality and cache locality cate-

gories. Most methods of frequency analysis are built on top of the

Independent Reference Model (IRM) [32], a simplistic but effective

model in whichmemory accesses are independent random variables

sampled from a given distribution. Another technique in the access

locality category is Static Parallel Sampling [9]. Like our work, SPS

generates predictive statistics for an program’s execution, although

SPS generates reuse information through compile-time analysis of

program references while we generate cache statistics through a

fully offline analysis of the program’s workload characterization

information.

5.2 Write Locality
The research community interested in caching systems recognizes

the importance of considering the differences between reads and

writes. For example, Beckmann et al. [4] describe how to integrate

writeback cost into cache replacement algorithms. The main reason

for this consideration is hardware limitations: memory technolo-

gies such as Intel Optane often suffer from limited write bandwidth,

write endurance, and/or asymmetric read/write latency and power

consumption [19]. A related issue is write amplification [33], where

storage systems write substantially more data than necessary as a

result of data granularity and wear leveling. Yang et al. [38] build

an analytical model of write amplification in block I/O traces that

is very similar in motivation and goal to the models presented in

this work, although different in technique and domain. Salkhordeh

et al. [28] analytically model the lifetime and performance of Intel

Optane modules, taking into consideration their fundamental asym-

metries for reads and writes and their wear leveling technique [15],

which Intel argues gives Optane SSDs several times the endurance

of NAND SSDs. Olson and Hill [24] design a cache replacement

policy using mathematical approximations of working-set size to

reduce writeback count.

Chen et al. [10] introduce a metric for measuring write locality,

write reuse interval, that is central to one of our writeback models.

Write reuse interval is defined as follows: let a1,a2 be two consec-

utive writes to the same data item (a) in a trace. Between a1 and
a2 there exist any number of accesses to other data items, as well

as any number of reads to a (but no writes to a). If reuse interval
[39] denotes the number of accesses between an access to an item

and the next access to the same item, what is the maximum reuse

interval formed by a1, a2, and any of the reads to a in between the

two?

The same paper introduces a linear-time algorithm for comput-

ing writeback ratio based on trace analysis. Our analytical models

provide asymptotically faster methods of computing the same in-

formation without the need for traces.

Kant [22] introduces an analytical model capable of approximating

writeback counts in multiprocessor systems: however, this model

uses iterative algorithms on Markov chain formulations and as such

does not introduce closed-form solutions as we do. Their focus is

on approximating writebacks in the context of the MESI coherence

protocol on hardware, while we focus on the problem of approxi-

mating writebacks from frequency distributions, especially Zipfian

distributions. As a result the domain and results of their work are

fundamentally different from ours.
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5.3 Miss ratio modeling
In the past few years, the Content-Centric Network model has

gained steam in the networking community, and as a result much

work has been done to analytically model LRU miss ratios and

throughputs for various workload types, interleavings, and cache

topologies [7, 14, 21, 27]. These works, while similar in approach

and technique, do not consider writes and writebacks, which are

of growing performance importance due to memory hardware

limitations and are the main focus of our paper.

5.4 Analysis of Zipfian distributions
Mathematical analysis of Zipfian distributions is standard in re-

search in related areas. Serpanos et al. [29] derive a probabilistic

bound on how much of an execution needs to be observed to de-

termine a workload’s unknown α value. In the context of cache

design, Breslau et al. [6] derive reuse behavior from Zipfian dis-

tributions and argue for specific approaches to frequency-based

caching, and Li et al. [23] develop a device-to-device (D2D) caching

scheme for Zipfian distributions based on an analytical expression

of edge cache hit rate.

The base Zipfian model has been extended for purposes beyond

those listed above: for example, Duarte-Lopez et al. [11] introduce

what they term the Zipf-Poisson-stopped-sum distribution, whose

added complexity over the standard power-law distribution makes

it more representative of real-world social network graphs.

6 CONCLUSION
The prevalence of data-bound applications means that understand-

ing memory performance is more important than ever. More specif-

ically, the rise of write-bottlenecked memory technologies such as

Optane means we must go beyond traditional caching analyses that

focus on hit rate. We have introduced two novel models that pre-

dict cache writebacks in LRU caching systems. The first functions

when application data size fits in L2 cache and counts occurences of

eviction-time situations that trigger writebacks. The second is more

general, working for infinite or finite L2, and counts occurences of

access-time situations that will eventually incur a writeback. We

instantiate both models with frequency distributions from Zipfian

access patterns to derive two fully analytical models, capable of

predicting writeback ratio with no tracing or sampling required. We

demonstrate that these models are extremely accurate and fast: the

first model, for infinitely large L2 systems, averaged 5.0% relative

error from ground truth and achieved a minimum speedup over

the AET trace analysis technique of 515x to generate writeback

information for a single cache size. The second model, which is fully

general with respect to L1 and L2 sizes but slower, averaged 3.0%

relative error from ground truth and achieved a minimum speedup

over AET of 105x for a single cache size. Taken together, the two

writeback models and their applications to Zipfian programs rep-

resent both a theoretical contribution to our ability to understand

memory performance and a practical contribution to our ability

to design effective caching systems for domains including graph

analytics and key-value stores.
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