
Evaluating Gather and Scatter Performance on CPUs and GPUs
Patrick Lavin
Georgia Tech

plavin3@gatech.edu

Jeffrey Young
Georgia Tech

jyoung9@gatech.edu

Richard Vuduc
Georgia Tech

richie@cc.gatech.edu

Jason Riedy
Lucata Corporation
jason@acm.org

Aaron Vose
NanoSemi Inc.

Aaron.Vose@nanosemitech.com

Daniel Ernst
Hewlett Packard Enterprise

daniel.ernst@hpe.com

ABSTRACT
This paper describes a new benchmark tool, Spatter, for assessing
memory system architectures in the context of a specific category
of indexed accesses known as gather and scatter. These types of
operations are increasingly used to express sparse and irregular
data access patterns, and they have widespread utility in many
modern HPC applications including scientific s imulations, data
mining and analysis computations, and graph processing. However,
many traditional benchmarking tools like STREAM, STRIDE, and
GUPS focus on characterizing only uniform stride or fully random
accesses despite evidence that modern applications use varied sets
of more complex access patterns.

Spatter is an open-source benchmark that provides a tunable
and configurable framework to benchmark a variety of indexed
access patterns, including variations of gather / scatter that are
seen in HPC mini-apps evaluated in this work. The design of Spat-
ter includes backends for OpenMP and CUDA, and experiments
show how it can be used to evaluate 1) uniform access patterns
for CPU and GPU, 2) prefetching regimes for gather / scatter, 3)
compiler implementations of vectorization for gather / scatter, and
4) trace-driven “proxy patterns” that reflect the patterns found in
multiple applications. The results from Spatter experiments show,
for instance, that GPUs typically outperform CPUs for these oper-
ations in absolute bandwidth but not fraction of peak bandwidth,
and that Spatter can better represent the performance of some
cache-dependent mini-apps than traditional STREAM bandwidth
measurements.

1 INTRODUCTION
We consider the problem of how to assess the performance of
modern memory systems with respect to indexed memory accesses,

such as gather and scatter (G/S) operations. Our motivation derives
from both applications and hardware. On the application side, there
are many instances where memory operations involve loads or
stores through a level of indirection (e.g., reg ← base[idx[k]]).
For instance, such indexed memory access is common in scientific
and data analysis applications that rely on sparse and adaptive
data abstractions, including adaptive meshes, sparse matrices and
tensors, and graphs, which are our focus. On the hardware side,
new CPU architectures have begun to incorporate advanced vector
functionality like AVX-512 and the Scalable Vector Extension (SVE)
for improving SIMD application performance.

Within this context, our strategy to understanding the inter-
actions between application-relevant G/S operations and modern
hardware relies on the development of a microbenchmarking tool.
It aims to express critical features of real G/S workloads, derived
from applications but abstracted in a way that is easy to adopt by
system-oriented stakeholders. These include situations where (1)
vendors and hardware architects might wonder how new ISAs (such
as AVX-512) and their implementation choices affect memory sys-
tem performance; (2) application developers may consider how the
data structures they choose impact the G/S instructions their code
compiles to; and (3) compiler writers might require better data on
real-world memory access patterns to decide whether to implement
a specific vectorization optimization for sparse accesses. Although
these groups could turn to any number of memory-focused mi-
crobenchmarks available today [19], we believe a gap still exists in
the focused evaluation of system performance for indexed accesses,
including G/S workloads.

In light of these needs, we have formulated a new microbench-
marking tool called Spatter.1 It evaluates indexed access patterns
based on G/S operations informed by applications across different
language and architecture platforms. More importantly, we believe
Spatter can help to answer a variety of system, application, and
tool evaluation questions, some of which include: (1) What applica-
tion G/S patterns exist in the real world, and how do they impact
memory system performance? (2) How does prefetching affect the
performance of indexed accesses on modern CPU platforms? (3)
How does the performance of G/S change when dealing with sparse
data on CPUs and GPUs?

The design of the Spatter tool suite aims to address these ques-
tions. At a basic level, Spatter provides tunable gather and scat-
ter implementations. These includeCUDA and OpenMP back-
ends with knobs for adjusting thread block size and ILP on GPUs

1The source code for Spatter is available at https://github.com/hpcgarage/spatter

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3422575.3422794&domain=pdf&date_stamp=2021-03-21
myzinsky
2020

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

and work-per-thread on CPUs. Spatter also includes a scalar, non-
vectorized backend that can serve as a baseline for evaluating the
benefits of vector load instructions over their scalar counterparts.
Lastly, Spatter has built-in support for running parameterized mem-
ory access patterns and custom patterns. We show, for instance,
how one can collect G/S traces from Department of Energy (DOE)
mini-apps to gain insights or make rough predictions about perfor-
mance for hot kernels that depend on indexed accesses (Section 2).

This paper presents the structure of the Spatter benchmark tool,
and then documents experimental results from a number of plat-
forms. Our initial evaluations of Spatter show that newer GPU
architectures perform best in absolute bandwidth for both gather
and scatter operations, in part due to memory coalescing and faster
memories. AMD Naples performs best of all the CPU-based plat-
forms (Broadwell, Skylake, TX2) for strided accesses. A study of
prefetching with Spatter further shows how G/S benefits from
modern prefetching across Broadwell and Skylake CPUs. Spatter’s
scalar backend is also used to demonstrate how compiler vector-
ization can improve G/S with large improvements for both Sky-
lake and Knight’s Landing (Section 5.3). Experiments for three
DOE mini-apps show G/S performance improvements enabled by
caching on CPU systems and by fast HBM memory on GPUs. These
parameterized access pattern studies also suggest that STREAM
bandwidth does not correlate well with specific mini-apps that are
cache-dependent, which further motivates benchmarks like Spatter
that do better.

2 GATHER / SCATTER IN REAL-WORLD
APPLICATIONS

To motivate our interest in G/S performance, we studied several
prominent DOE mini-apps from the CORAL and CORAL-2 procure-
ments [1, 2]. Such software provides a rich source of information
about the computational and memory behavior requirements of
critical scientific workloads in both government as well as academic
environments. Many of these workloads contain important kernels
which stress G/S performance. Indeed, one aim of Spatter is to
leverage such mini-apps as a source of real-world G/S patterns.

Table 5 in the Appendix provides detailed information on the
specific patterns extracted from these applications, so we focus on
the high-level characteristics of each application in this section.
We note that many of these patterns are complex in that the index
defining the G/S does not fit into our categories (broadcast, stride-N,
mostly stride-1) as is discussed in Section 3 and Section 5.

In particular, this work considers mini-apps from CORAL and
CORAL-2, including AMG [28], LULESH [15], and Nekbone [10].
We built these mini-apps targeting ARMv8-A with support for
Arm’s Scalable Vector Extension (SVE) [24] at a vector length of
1024 bits. The resulting executables were run through an instru-
mented version of the QEMU functional simulator [4] to extract
traces of all instructions accessing memory along with their as-
sociated virtual addresses. From this instruction stream, collected
from rank 0, we examine only G/S instructions, and extract the base
address and offset vector for each, along with their frequencies.
The problem sizes are chosen so as to prioritize a realistic working
set with 64 MPI ranks per node with one thread per rank, while
the number of iterations is less emphasized. For these apps, it is

expected that multiple kernel iterations will have many patterns in
common. More information on how we configured these codes is
found in Table 2.

Table 1 shows the G/S characteristics extracted from several
kernels selected from the aforementioned mini-apps, along with
the percentage of data motion performed by G/S operations. The
reported G/S data motion percentages are conservative, as current
data records all scalar loads and stores them as being 64 bits, while
a significant fraction of 32-bit scalar data types is expected.

Examination of the G/S behavior results in the observation of
a small number of common pattern classes: uniform-stride, where
each element of a gather is a fixed distance from the preceding
element; broadcast, where some elements of a gather share the
same index; mostly stride-1, in which some elements of a gather
are a single element away from the preceding element; and more
complex strides, in which elements of a gather have a complicated
pattern containing many different strides.

We can make a few high-level remarks about Table 1. First, gath-
ers are more common than scatters. Secondly, G/S can account for
high fractions of total load / store traffic (last column; up to 67.6%,
or just over two-thirds, in these examples). Thirdly, the appearance
of differing categories of stride types suggests that there are multi-
ple opportunities for runtime (inspector / executor) and hardware
memory systems to optimize for a variety of G/S use-cases, which
Spatter can then help evaluate.

2.1 Open Source Techniques for Pattern
Analysis

The application analysis done in this work depends on a custom,
closed-source QEMU functional simulator that uses an SVE vector
size of 1024 and data from the first rank of an MPI run, which may
slightly differ from other ranks, along with post-processing scripts
to extract the most utilized G/S patterns. We recognize this is a
limitation of the current work in that trace capture and analysis
can be one of the most time-consuming portions of an analysis of
G/S patterns.

A useful open-ended project that would improve pattern inputs
for not just Spatter but many other application analysis frameworks
would be a tool based on either DynamoRio (which supports AVX-
512 and SVE instructions) or Intel Architecture Code Analyzer
(IACA) that generates this type of data in a less time-consuming
fashion and that performs correlation and clustering across all ranks
of an application for CPU and GPU codes.

3 DESIGN OF THE SPATTER BENCHMARK
Wehave developed Spatter because existing benchmarks like STREAM [19]
and STRIDE [22] focus on uniform stride accesses and are not config-
urable enough to handle non-uniform, indirect accesses or irregular
patterns. For more information on related benchmarks, see Sec-
tion 6. Figure 1 shows a conceptual view of the Spatter benchmark.
The design of the benchmark is described further below.

3.1 Kernel Algorithm
Spatter represents a memory access pattern as a short index buffer,
and a delta. At each base address address delta*i, a gather or
scatter will be performed with the indices in the index buffer. The

Evaluating Gather and Scatter Performance on CPUs and GPUs

Table 1: High-Level Characterization of Application G/S Patterns.

Application (Extracted Patterns) Selected Kernels Gathers Scatters G/S MB (%)

AMG (mostly stride-1)
hypre_CSRMatrixMatvecOutOfPlace 1,696,875 0 217 (17.8)

LULESH (uniform-stride)
IntegrateStressForElems 828,168 382,656 155 (22.4)
InitStressTermsForElems 1,121,844 1,153,827 291 (67.6)

Nekbone (uniform-stride)
ax_e 2,948,940 0 377 (33.3)

PENNANT (fixed-stride, broadcast)
Hydro::doCycle 728,814 0 93 (13.9)
Mesh::calcSurfVecs 324,064 0 41 (39.5)
QCS::setForce 891,066 0 114 (45.5)
QCS::setQCnForce 1,214,318 323,800 197 (64.5)

Table 2: Details for Selected Applications and Kernels Used for G/S Pattern Extraction.

Application – Version Problem Size / Changes Kernel Notes

AMG – github.com/
LLNL/AMG commit 09fe8a7

Arguments -problem 1 -n 36 36 36 -P 4 4 4, also
mg_max_iter in amg.c set to 5 to limit iterations.

Entirety of each of the functions listed in Table 1.

LULESH – 2.0.3 Arguments -i 2 -s 40, also modifications to
vectorize the outer loop of the first loop-nest in
IntegrateStressForElems.

The first loop-nest in IntegrateStressForElems.
Arrays [xyz]_local[8] as well as B[3][8] give
stride-8 and stride-24. Also, the entirety of the
InitStressTermsForElems function.

Nekbone – 2.3.5 Set ldim = 3, ifbrick = true, iel0 = 32, ielN =
32, nx0 = 16, nxN = 16, stride = 1, internal np and
nelt distribution. Also, niter in driver.f set to 30 to
limit CG iterations.

First loop in ax (essentially a wrapped call to ax_e)
contains the observed stride-6.

PENNANT – 0.9 Config file sedovflat.pnt with meshparams 1920
2160 1.0 1.125 and cstop 5.

Entirety of each of the functions listed in Table 1.

Figure 1: An overview of the Spatter benchmark with inputs
and outputs.

Algorithm 1 Gather Kernel

for i in 1..N do
src = src + delta * i
for j in 1..vector_length do
dst[j] = src[idx[j]]

The basic gather algorithm. Scatter is performed analogously. False sharing is
prevented by giving each thread its own dst buffer for gather, and src buffer for

scatter.

pseudocode is in Algorithm 1, and a visual representation is in
Figure 2. This algorithm allows us to capture some spatial and tem-
poral locality: spatial locality can be controlled by choosing indices

that are close together, and temporal locality can be controlled by
picking a delta that causes your gathers to overlap. In either case,
the locality will be fixed for the entirety of the pattern.

3.2 Backend Implementations
Spatter contains Gather and Scatter kernels for three backends:
Scalar, OpenMP, and CUDA. A high-level view of the gather kernel
is in Figure 2, but the different programming models require that
the implementation details differ significantly between backends.
Spatter provides performance tuning knobs for both the OpenMP
and CUDA backbones, such as index buffer length and block size.

OpenMP: The OpenMP backend is designed to make it easy for
compilers to generate G/S instructions. Each thread will perform
some portion of the iterations shown in Figure 2. To ensure high
performance when gathering, each thread will gather into a local
destination buffer (vice-versa for scattering). This avoids the effects
of false sharing.

CUDA:Whereas in the OpenMP backend, each thread will be
assigned its own set of iterations to perform, in the CUDA program-
ming model, an entire thread block must work together to perform
an iteration of the G/S operation (shown in Figure 2) to ensure high
performance. These backends are similar, in that each thread block
gathers into thread local memory to allow for high performance.

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

The major difference is that each thread block must read the in-
dex buffer into shared memory to achieve high performance on
Spatter’s indexed accesses.

Scalar: The Scalar backend is based on the OpenMP backend,
and is intended to be used as a baseline to study the benefits of
using CPU vector instructions as opposed to scalar loads and stores.
The major difference between this and the OpenMP backends is
that the Scalar backend includes a compiler pragma to prevent
vectorization, namely #pragma novec.

3.3 Benchmark Input
A Spatter user can evaluate a variety of memory patterns. Spatter
accepts either a single index buffer and run configuration as input,
or a JSON file containing many such patterns and configurations.

Pattern Specification: Spatter currently provides robust mech-
anisms for representing spatial locality with both standard patterns
and more complex, custom patterns for representing indirect ac-
cesses. In Spatter, a memory access pattern is described by spec-
ifying (1) either gather or scatter (2), a short index buffer, (3) a
delta, and (4) the number of gathers or scatters to perform. Spatter
will determine the amount of memory required from these inputs.
Spatter includes three built-in, parameterized patterns, which are
Uniform Stride, Mostly Stride-1, and Laplacian. These all describe
small index sets, which should be thought of as the offsets for a sin-
gle G/S. When combined with a delta, these will describe a memory
access pattern. They are described in further detail below.

3.3.1 Uniform Stride. The Uniform Stride index buffer is specified
to Spatter with UNIFORM:N:STRIDE. It generates an index buffer of
size N with stride STRIDE. For example, the index buffer generated
by UNIFORM:8:4 is [0,4,8,12,16,20,24,28].

3.3.2 Mostly Stride-1. The Mostly Stride-1 index is the result of
accessing a few elements sequentially, and then making some jump
and accessing a few more elements sequentially. In code, this could
be the result of accessing the same few members of structs in
an array, or from accessing a sub-block of a matrix. In Spatter,
you can specify an MS1 pattern with MS1:N:BREAKS:GAPS. The
pattern will be length N, with gaps at BREAKS, with gaps of size
GAPS. For example, the index buffer generated by MS1:8:4:20 is
[0,1,2,3,23,24,25,26].

3.3.3 Laplacian. The Laplacian index is based on Laplacian stencils
from PDE solvers. Spatter can generate 1-D, 2-D, or 3-D stencils with
the pattern LAPLACIAN:D:L:SIZE. This creates a D-dimensional
stencil, with each “branch” of length L, for a problem size of SIZE.
Even though a 2- or 3-D problem can be specified, Spatter still only
allocates a 1-D data array. Thus the problem size must be specified
in the stencil so that Spatter can calculate the distances of the neigh-
bors in the stencil. For example, the input LAPLACIAN:2:2:100 gen-
erates the classic 5-point stencil [0,100,198,199,200,201,202,
300,400], which may be more familiar to users in the non-zero-
based form, [-200,-100,-2,-2,0,1,2,100,200].

3.3.4 Custom Patterns (Complex A ccesses). Finally, if users want to
represent a more complex pattern not specified above, they can spec-
ify a pattern index buffer as . /spatter - p idx0,idx1,...,idxN.
This allows users to develop more complex and irregular kernels

Figure 2: A visual representation of the first two iterations of the
gather kernel with a uniform stride-2 index buffer of length 4, and
a delta of 1.

that often show up in HPC applications. The use of custom patterns
is the basis of ongoing research described in Section 7.

Delta Specification:To form a full memory access pattern, Spat-
ter needs an index buffer, such as the ones described above, and a
delta. The index buffer will be used as the offsets for a gather or
scatter with base addresses 0, delta, 2*delta etc.

JSON Specification:When running tests, it is common to run
many different patterns. To support this, Spatter accepts a JSON
file as input that can contain as many configurations as the user
wishes. Spatter will parse this file and allocate memory once for
all tests, greatly speeding up test sets with many different patterns,
and easing data management.

3.4 Example
A user specifies a Spatter run with an index buffer, a delta, and the
number of gathers or scatters. The simplest example would be to
emulate a STREAM-like pattern, which would look like a uniform
stride-1 pattern with delta equal to the index length, so that there
is no data reuse between gathers. In Spatter, this is expressed as:
./spatter -k Gather -p UNIFORM:8:1 -d 8 -l $((2**24))

to run 224 (-l) gathers (-k), each one 8 doubles beyond the last
(-d), and each using an index buffer of length 8 and uniform stride-1
(-p). This will produce a STREAM Copy-like number, but it will
only be read bandwidth, as a gather reads data from memory to a
register. Spatter includes further options for choosing backends and
devices and performance tuning that are described in its README.

3.5 Benchmark Output
For each pattern specified, Spatter will report the minimum time
taken over 10 runs to perform the given number of gathers or
scatters. It will also translate this into a bandwidth, with the for-
mula Bandwidth = (sizeof(double) * len(index) * n) /
time, where n is the number of gathers or scatters. This value is
the amount of data that is moved to or from memory, and does
not count the bandwidth used by the the index buffer, as it is as-
sumed to be small and resident in cache. This measure may not
be a true bandwidth in the traditional sense of the word, as many
patterns specified to Spatter may allow for cache reuse. Thus, one
should think about the bandwidths reported as the rate at which
the processor is able to consume data for each pattern.

Optionally, PAPI [27] can be used to measure performance coun-
ters. However, we do not demonstrate that feature in this paper.

Evaluating Gather and Scatter Performance on CPUs and GPUs

For JSON inputs, Spatter will also report stats about all of the
runs, such as the maximum and minimum bandwidths observed
across configurations, as well as the harmonic mean of the band-
widths.

4 EXPERIMENTAL SETUP
Table 3 describes the different configurations and backends tested
for our initial evaluation using the Spatter benchmark suite. We
pick a diverse set of systems based on what is currently available
in our lab and collaborator’s research labs, including a Knight’s
Landing system, and a prototype system with ARMv8 ThunderX2
chips designed by Marvell (formerly Cavium). We also include
a server-grade and desktop-grade Intel CPU system and several
generations of NVIDIA GPUs. Recent AMD GPUs, CPUs, or APUs
were not available to us for testing at the time of this writing and
are instead left for future work. experiments.

OpenMP: To control for NUMA effects, CPU systems are tested
using all the cores on one socket or one NUMA region if the system
has more than one CPU socket. Some systems like the KNL on Cori
have an unusual configuration where the entire chip is listed as 1
NUMA region with 272 threads. For all the OpenMP tests, Spatter
is bound to one socket and run using one thread per core on that
socket. The following settings are used for OpenMP tests:

(1) OMP_NUM_THREADS = <num_threads_single_socket>
(2) OMP_PROC_BIND = master
(3) OMP_PLACES = sockets
(4) KMP_AFFINITY = compact (only for KNL)

An important performance tuning factor is the index buffer
length. On CPUs, we find that it is best to use an index buffer
that closely matches the hardware vector length, or a small multi-
ple. On the CPUs we have tested, we achieve good performance by
using an index buffer length of 16, which is 2-4x the length of the
vector registers on our systems.

CUDA: When testing on GPUs, the block size for Spatter is set
at 1024 and an index buffer of length 256 is used. These settings
allow Spatter to reach bandwidths within 20% of the vendor re-
ported theoretical peak for both gather and scatter kernels. These
bandwidths are slightly different than what is typically reported, as
gather is designed to only perform reads, and scatter should only
perform writes.

Experimental Configurations: Runs of Spatter use the maxi-
mum bandwidth out of 10 runs for the platform comparison uniform
stride and application pattern tests. STREAM results used for com-
parisons with Spatter are generated using 225 elements with either
STREAM for CPU or BabelStream for GPU, while all Spatter uni-
form stride tests read or write at least 8GB of data on the GPU
and 16GB on the CPU. The difference between CPU and GPU data
sizes results from most GPUs having less than 16 GB of on-board
memory. The application-specific pattern tests read or write at least
2GB.

5 CASE STUDIES
Spatter is designed to be a flexible tool that can allow the user
to run many different memory access patterns and expose many
knobs used for tuning. In this section, we use Spatter to investigate
several questions regarding CPU and GPU memory architecture

including: A) uniform stride access on CPUs, B) uniform stride
access on GPUs, C) the effectiveness of G/S over scalar load/store,
and D) the performance of trace-derived G/S patterns on CPU.

5.1 CPU Uniform Stride

20 21 22 23 24 25 26 27

Stride (Doubles)

103

104

105

Ba
nd

wi
dt

h
(M

B/
s)

Gather

BDW
KNL
Naples
SKX
TX2

(a)

20 21 22 23 24 25 26 27

Stride (Doubles)

103

104

105
Ba

nd
wi

dt
h

(M
B/

s)
Scatter

BDW
KNL
Naples
SKX
TX2

(b)

Figure 3: CPU Gather and Scatter Bandwidth Comparison
We increase the stride of memory access and show how performance drops
as the stride increase from 1 to 128 doubles on Skylake, Broadwell, Naples,
and Thunder X2 systems. Cascade Lake is omitted as it overlaps closely with
Skylake. A log-scale is used for the y-axis to make differences between the
platforms apparent. Takeaway: Uniform stride patterns show us that
peak bandwidth is not necessarily an indication of which architec-
ture will perform best at even moderate strides.

We begin with a basic test: running Spatter with the uniform
stride pattern, and increasing the stride by 2x until performance
flattens. A stride of 1 is analogous to the STREAM benchmark,2
except that Spatter will only generate read instructions (gathers)
for the gather kernel and write instructions for the scatter kernel,
meaning the bandwidths should be slightly different. Figure 3 shows
2On a CPU, we use an index buffer of length 8 and fill it with indices [1*stride, 2*stride,
...]. We set the delta to be 8*stride, so that there is no data reuse and indeed stride-1
matches the STREAM pattern.

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

Table 3: Experimental Parameters and Systems (OMP Denotes OpenMP, and OCL Denotes OpenCL).

System description Abbreviation System Type STREAM (MB/s) Threads, Backends

Knight’s Landing (cache mode) KNL Intel Xeon Phi 249,313 272 threads, OMP
Broadwell BDW 32-core Intel CPU (E5-2695 v4) 43,885 16 threads, OMP
Skylake SKX 32-core Intel CPU (Platinum 8160) 97,163 16 threads, OMP
Cascade Lake CLX 24-core Intel CPU (Platinum 8260L) 66,661 12 threads, OMP
ThunderX2 TX2 28-core ARM CPU 120,000 112 threads, OMP
Kepler K40c K40c NVIDIA GPU 193,855 CUDA
Titan XP Titan XP NVIDIA GPU 443,533 CUDA
Pascal P100 P100 NVIDIA GPU 541,835 CUDA
Volta V100 V100 NVIDIA GPU 868,000 CUDA

the results of our uniform stride tests on CPUs. We would expect
that as stride increases by a factor of 2, bandwidth should drop by
half; the entire cache line is read in but only every other element
is accessed. This should continue until about stride 8, as we are
then using one double from every cache line. This is what we see
on Naples, but performance continues to drop on TX2, Skylake,
and Broadwell. Interestingly, Broadwell performance increases at
stride-64, even out-performing Skylake. We can further use Spatter
to investigate these two points: 1) why does Broadwell outperform
Skylake at high strides, and 2) why does TX2 performance drop so
dramatically past 1/16?

5.1.1 Disabling Prefetching. To get an idea of what is causing
Broadwell to outperform Skylake, we turn prefetching off with
Model Specific Registers (MSRs) and re-run the same uniform stride
patterns. Figure 4a and b shows the results from this test. For Broad-
well, performance does not show the same increase for stride-64
with prefetching off and it instead bottoms out after stride-8. We
conclude that one of Broadwell’s prefetchers pulls in two cache
lines at a time for small strides but switches to fetching only a single
cache line at stride-64 (512 bytes). We can understand the perfor-
mance discrepancy between Broadwell and Skylake by looking at
Figure 4b. Performance drops to 1/16th of peak, as Skylake always
brings in two cache lines, no matter the stride. We did not get the
opportunity to run on the Thunder X2 without prefetching since
it does not have a similar MSR equivalent, but we suspect similar
effects are at play: one of the prefetchers likely always brings in the
next line, although that only helps to explain performance dropping
through stride-16, not through stride-64.

Lesson: By running uniform stride tests on CPUs we are able to (1)
identify a number of performance crossover points for intermediate
strides and (2) see some interesting differences between the Broadwell
and Skylake prefetching behavior

5.2 GPU Uniform Stride
As the memory architecture of CPUs and GPUs is quite different, it
is worthwhile to see howGPUs handle these uniform stride patterns.
Figure 5a shows how a K40c, a Titan Xp, and a P100 perform on the
same tests.3 As with the CPUs, we see bandwidth drop by half for
stride-2 and by another half for stride-4. However, for the P100 and
3To get high performance on GPUs, the threads within a block all work together to
read a pattern buffer into shared memory This buffer must be much longer than the
CPU index buffer (256 indices vs 8) so that each thread has enough work to do.

(a)

(b)

Figure 4: Broadwell Gather (a) and Skylake Gather (b) We show
the performance of gather for various strides, with prefetching on and
off. On the right, normalized bandwidth is shown to display the regularity
of the decrease in bandwidth. Takeaway: Uniform stride patterns
can help us identify interesting prefetching behavior, such as
above, where we see that Skylake always fetches two lines.

Evaluating Gather and Scatter Performance on CPUs and GPUs

20 21 22 23 24 25 26 27

Stride (Doubles)

105

106
Ba

nd
wi

dt
h

(M
B/

s)

Gather

GV100
K40c
P100
Titan
25% of peak

(a)

20 21 22 23 24 25 26 27

Stride (Doubles)

104

105

106

Ba
nd

wi
dt

h
(M

B/
s)

Scatter

GV100
K40c
P100
Titan
12.5% of peak

(b)

Figure 5: GPUGather (a) and Scatter (b) Uniform Stride Bandwidth
comparison Takeaway: We are able to use uniform stride patterns to
show improvements to the memory architecture of GPUs over time,
beyond simply improved bandwidth. We see here that in newer gener-
ations, not only do GPUs have more bandwidth, they are also able to
utilize a higher percentage of that bandwidth throughout intermedi-
ate strides.

the Titan Xp, from stride-4 to stride-8, we see that bandwidth stays
the same (illustrated by the dotted lines). This effect is due to the
GPUs’ ability to coalesce some loads. The older K40 hardware shows
less ability to do so. In the scatter kernel plot, Figure 5b, the effect of
coalescing is less pronounced, but still visible from stride 4 to stride
8. Instead of plateauing at 1/4th of peak bandwidth, however, it
plateaus at 1/8th. Regardless of the effect being less pronounced in
scatter vs. gather, we still see the benefit of a memory architecture
that is able to coalesce access, as we see how the bandwidth curves
of these GPUs platforms take a longer time to fall off than their
CPU counterparts.

Lesson: By running uniform stride tests on GPUs, we identify some
qualitative differences between CPU and GPU strided access, especially
in the range of stride-8 to stride-32.

20 21 22 23 24 25 26 27

Stride (Doubles)

20

0

20

40

60

80

Pe
rc

en
t I

m
pr

ov
em

en
t

BDW
KNL
Naples
SKX
TX2

(a)

20 21 22 23 24 25 26 27

Stride (Doubles)

20

0

20

40

60

80

100

Pe
rc

en
t I

m
pr

ov
em

en
t

BDW
KNL
Naples
SKX
TX2

(b)

Figure 6: Improvement of SIMD Gather Kernel (a) and Scatter Ker-
nel (b) Compared to Serial Scalar Backend. Takeaway: By examining
the performance of uniform stride patterns with and without vector-
ization enabled in the compiler, we show that achieving maximum
bandwidth on processors such as Knights Landing and Skylake re-
quires vectorization. On the other hand, these instructions can be
detrimental to performance on Broadwell.

5.3 SIMD vs. Scalar Backend Characterization
Spatter can also be used to test the effectiveness of different hard-
ware implementations of single instruction, multiple data (SIMD)
instruction set architectures (ISAs). In a real-world sense, this ca-
pability can be used by compiler writers to answer questions such
as whether it would be beneficial to load some addresses with vec-
tor instructions and others with scalar instructions to maximize
utilized memory bandwidth. Vector versions of indexed load and
store instructions help compilers to vectorize loops and can also
help avoid unnecessary data motion between scalar and vector
registers that might otherwise be required. We can use Spatter to
investigate whether these vector instructions are indeed superior
to scalar load instructions and whether compiler writers should
prioritize vectorized G/S optimizations.

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

To demonstrate the effectiveness of SIMD load / store instruc-
tions, we run Spatter using the gather kernel on multiple platforms
with the scalar backend as a baseline. This scalar baseline is then
compared to the OpenMP backend as vectorized by the Cray com-
piler (CCE 9.0) with the resulting percent improvement from vec-
torization reported in Figure 6 for strides 1-128, as before. The
Broadwell CPU performs the worst of all the tested CPUs, show-
ing worse performance with vectorized code in many cases for
both gather and scatter. Thus, for a memory heavy kernel, it would
likely be better to use scalar instructions than G/S instructions for
this architecture. At the same time, this difference may be miti-
gated somewhat as G/S instructions remove the need to move data
between regular and vector registers.

On the other hand, Skylake, Knights Landing, and Naples have
better gather performance in the vectorized case. The use of gather
instructions on these platforms is clearly justified. Of these three,
however, Naples is the only one to not improve in the scatter case
as well. This is due to the lack of scatter instructions on Naples.
TX2 has no G/S support at all, so it stays close to 0% difference
(save for a single outlier in the gather chart). Interestingly, for our
three processors with useful G/S instructions, they all gather best in
different regions, with Knights Landing best at small strides, Naples
for medium strides, and Skylake best at large strides. While we
are not able to explain the reason for this performance artifact, we
have demonstrated the benefit of G/S instructions over their scalar
counterparts. At least for Knights Landing, anecdotal evidence has
suggested that using vectorized instructions at lower strides reduces
overall unique instruction count and overall request pressure on
the memory system.

Lesson: Spatter shows that the G/S instructions themselves lead to
higher performance, especially on Knights Landing. G/S instructions
have a further benefit over scalar in that the data loaded is already
in a vector register, whereas after performing scalar loads, further
rearrangement would be needed to move the data into vector registers.

5.4 Application-derived G/S Patterns
While the three previous sections have focused on uniform stride
patterns, Spatter is also able to run more complex patterns. To
demonstrate Spatter’s ability to emulate patterns found in real
applications, we take the top patterns from several DOE mini-apps
(as described in Section 2) and run them in Spatter. The patterns
that come out of Section 2 are described by a buffer of offsets and a
delta. These offsets and deltas can be found in Table 5 in Section A.

In Section 5.4.1, we first look at how these patterns perform in
aggregate, and see if they correlate with STREAM bandwidth. In
Section 5.4.2, we look at each pattern individually, and look for
trends among the applications. Finally, in Section 5.4.3, we show a
method for plotting results that allows us to examine absolute and
relative performance of patterns at the same time.

5.4.1 Application Pattern / STREAM Correlation. Another question
is to what extent application-specific patterns are more informative
than STREAM, considering CPUs and GPUs separately. Table 4
shows the harmonic mean of the performance of the patterns. To see
if the performance correlates with STREAM, we calculate Pearson’s
correlation coefficient, R, as follows:

R = cov(X , STREAM) /(std(X) ∗ std(STREAM)) (1)

According to Table 4, in aggregate, LULESH shows poor perfor-
mance on most CPU platforms. The next section shows that this
result is due to the LULESH-S3 pattern, which is a scatter with delta
0. We believe this configuration triggers cache invalidations for
multicore writebacks.

We also see that AMG and Nekbone show higher performance
than STREAM in general. Inspecting their patterns, the deltas tend
to be small, which implies that gathered addresses overlap. Thus,
caching effects may explain this observation.

More interestingly, we see that the CPU runs of the Nekbone
and PENNANT patterns show poor correlation (close to 0) with
STREAM. In the case of AMG, the patterns perform much better
than STREAM, whereas in PENNANT, the patterns perform much
worse. This difference suggests that Spatter indeed captures distinct
behaviors from STREAM, and that the patterns Spatter generates
are not well approximated by STREAM on CPUs. For GPU systems,
however, the R coefficient shows that STREAM is much better
correlated (close to 1) with the Spatter results. This observation
may reflect the smaller and simpler memory hierarchy of GPUs
compared to CPUs.

5.4.2 Comprehensive Evaluation Across Platforms and Applications.
The design of Spatter makes it easy to collect lots of data, over
many platforms and patterns, and these results can reveal more
than single-number benchmarks like STREAM as discussed in Sec-
tion 5.4.1. A natural question is whether that data facilitates any
qualitative comparisons about broad classes of platforms or applica-
tions. For example, what can we say generally about CPU-oriented
memory system design today versus GPU-oriented design? Are
applications uniform in their patterns, or are they more varied?

To get a handle on such questions, we take the per-platform and
per-pattern data, and render them using small-multiple radar plots
as shown in Figure 7 and Figure 8. A single radar in this plot shows
the performance of a pattern relative to its stride-1 performance
across all CPUs (blue) and GPUs (green). The inner circle represents
100% of stride-1 bandwidth, meaning that any value larger than this
must be utilizing caching. This detailed look at the performance
gives us a number of insights:

(1) Consider LULESH-S3 in Figure 8. It indeed has very low
performance, except on the TX2, which appears to handle
the scenario of writing to the same location over and over
very well. This behavior could be due to an architectural
optimization that recognizes data is being overwritten before
it is ever used.

(2) Overall, we see that the GPUs are largely unable to outper-
form their stride-1 bandwidth. However, this behavior may
be changing in newer generations. The V100 values peak
above the 100% circle for many of the patterns.

(3) The Naples system (bottom-right of the CPU radars) largely
under-performs, save for one set of patterns, Nekbone. Cu-
riously, there is not much that differentiates the Nekbone
patterns from LULESH, as both have uniform stride patterns
with small deltas. Thus, these patterns may require more
thorough profiling and investigation.

(4) Restricting ourselves to the Intel processors, we see in the
Gather patterns that improvements to the caching archi-
tecture have been made between Broadwell and the new

Evaluating Gather and Scatter Performance on CPUs and GPUs

Table 4: Spatter Results for Mini-apps

Platform AMG (n=36) Nekbone (n=6) Lulesh PENNANT STREAM
GB/s GB/s GB/s GB/s GB/s

(H-Mean) (H-Mean) (H-Mean) (H-Mean)

BDW 123 121 20 6 43
SKX 328 309 12 35 96
CLX 315 287 14 41 94
Naples 140 323 3 11 97
TX2 270 247 232 28 241
KNL 201 190 19 4 249
R-value 0.15 -0.04 0.50 -.1

K40c 108 99 88 14 193
TitanXP 496 320 175 21 443
P100 703 673 165 19 541
R-value 0.66 0.62 0.62 0.57

Skylake and Cascade Lake architectures. We see a further
improvement in Cascade Lake when looking at the LULESH
scatter patterns, as it outperform Skylake as well. Thus, even
within the same architecture family, tweaks to caching and
prefetching models can improve performance for hard-to-
optimize scatter operations.

(5) To first order, performance appears most sensitive to each
pattern’s delta (distance between G/S operations). Looking
at the PENNANT patterns, we see a large difference in per-
formance starting at PENNANT-G5. If we look at Table 5, we
see that all the patterns before this have deltas less than or
equal to 4, and the patterns including PENNANT-G5 and af-
ter have deltas larger than 400. Section 5.4.3 further expands
on these patterns with a more detailed look at absolute and
relative performance for these later PENNANT patterns.

Lesson: Spatter can be used to differentiate performance across
architectures and can show how improved caching and prefetching
hardware support in CPUs and limited caching in GPUs affects pat-
terns with reuse. Additionally, these results can be correlated with
the patterns themselves to show that delta is a primary indicator of
performance for G/S operations.

5.4.3 Comprehensive Evaluation of Relative and Absolute Applica-
tion Pattern Performance. In addition to the high-level takeaways,
we can also use Spatter measurements to plot both the absolute and
relative performance of patterns and how this relative performance
varies between platforms. In Figure 9, we have a few selected gather
patterns from PENNANT in (a), and a few scatter patterns from
LULESH in (b).

These plots display application pattern performance as a function
of stride-1 bandwidth. What this means is that stride-1 bandwidth
will appear on the diagonal, and other bandwidths will appear in a
vertical line through that point. It also means that all lines with unit
slope are lines of constant fractional bandwidth. We have marked
some of these lines in the plot for your reference. For instance, you
can see that the PENNANT-G12 pattern runs at about 1/16th of
the peak bandwidth on Broadwell. This complicated plot structure
allows us to see both how well a pattern performs on platform X
vs platform Y (by comparing the y values of the two points) and

also how well a platform utilizes the bandwidth available to it on a
given platform (by measuring a point’s vertical distance from the
diagonal).

In Figure 9(a), we have 4 different PENNANT patterns plotted,
along with Stride-1 and Stride-16 results for reference. At a high
level, there is clear left-to-right separation between CPUs and GPUs,
due to the former having much less bandwidth available. There are
a number of interesting points to discuss:

(1) If we take a look at just the Broadwell and Cascade Lake
numbers, we see a slope that is greater than 1. What this
means is that Cascade Lake is not only better in absolute
terms, but in relative terms as well, utilizing more of its
available bandwidth than the Broadwell processor.

(2) A disappointing outlier is Naples, which performs much
worse than its stride-1 bandwidth would suggest. This sug-
gests a cache architecture much less capable than the other
CPUs. We hope to compare this result with AMD EPYC
processors in a future evaluation.

(3) If we shift our attention to just the GPUs, we see that the
large strides present in the higher-numbered PENNANT pat-
terns have a large impact on the performance. If we reference
Table 5, we see that the delta increases as the pattern number
increases. This shows us that while CPUs are able to handle
these large deltas relatively well, GPUs have much worse
relative performance as the delta increases.

(4) Finally, if we look at both CPUs and GPUs, we see the power
of this type of plot: we can see that the CPUs, due to the
fact that the patterns contain some data reuse, are able to
outperformGPUs on the selected patterns in terms of relative
bandwidth.

Figure 9(b) shows two LULESH scatter patterns.

(1) The only platform that does well on LULESH-S3, which has
a Scatter with delta 0, is the TX2, which we described in the
previous section.

(2) LULESH-S1 appears to distinguish CPUs and GPUs. This
pattern has a uniform stride-24 pattern with delta 8. Thus,
there is quite a bit of reuse between scatters, which is likely

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

CP
U

AM
G

G0

GP
U

G1

CP
U

Ne
kb

on
e

G0

GP
U

G1 G2

CP
U

PE
NN

AN
T

G0

GP
U

G1 G2 G3 G4 G5 G6 G7 G8

CP
U

G9

GP
U

G10 G11 G12 G13 G14 G15

CP
U

LU
LE

SH

G0

GP
U

G1 G2 G3 G4 G5 G6 G7

BDW

SKXCLX

KNL

TX2 NPL

Le
ge

nd

Percent of Stride-1 BW:
 Inner circle: 100%
 Outer circle: 325%

K40

TITAN Xp

P100

V100

Gather Patterns on CPUs and GPUs

Figure 7: App-derived Gather Patterns. Each circle represents a single pattern. A spoke represents the performance of that
pattern on a specific architecture as a percentage of the architecture’s stride-1 bandwidth. The pattern descriptions are in
Table 5. Takeaway: As the chart reports relative and not absolute performance, we must emphasize that this does not show CPUs
outperforming GPUs, but rather the ability of CPUs to utilize their caches on the chosen patterns.

Evaluating Gather and Scatter Performance on CPUs and GPUs

CP
U

PE
NN

AN
T

Percent of Stride-1 BW:
 Inner circle: 100%
 Outer circle: 522%

S0

GP
U

CP
U

LU
LE

SH

S0

GP
U

S1 S2 S3
Scatter Patterns on CPUs and GPUs

Figure 8: App-derived Scatter Patterns. Each circle repre-
sents a single pattern. A spoke represents the performance
of that pattern on a specific architecture as a percentage of
the architecture’s stride-1 bandwidth.

to be cached well by CPUs but is handled more poorly by
the smaller caches on GPUs.

Lesson: By examining a number of application-derived G/S pat-
terns, we show that (1) Spatter is able to reproduce unique behavior
on CPUs that is not easily modeled by STREAM, (2) Spatter can also
be used to discern improvements between architecture generations
that go beyond simple bandwidth improvements, and (3) the Spatter
benchmark suite can be used to quantitatively rank pattern perfor-
mance between CPUs and GPUs and identify regimes where the CPUs
are the clear winner in terms of relative performance.

6 RELATEDWORK
Our primary aim for Spatter is tomeasure at a low level the effects of
sparsity and indirect accesses on effective bandwidth for a particular
application or algorithm. While a number of bandwidth-related
benchmarks exist, there are no current suites that explicitly support
granular examinations of sparse memory accesses. The closest
analogue to our work is APEX-Map [26], which allows for varying
sparsity to control the amount of spatial locality in the tested data
set. However, APEX-Map has not been updated for heterogeneous
devices and does not allow for custom G/S patterns.

Similar to Spatter and APEX-Map, the HopScotch microbench-
mark [3] suite provides a tunable mechanism for representingmixes
of read-only, write-only, and mixed access kernels in a similar fash-
ion as Spatter. Currently, HopScotch includes a large suite of kernels
intended to produce many different types of memory access pat-
terns. While their suite does include G/S, we believe our work is
complementary, allowing users a large degree of flexibility in the
types of access patterns available. In addition, Spatter supports
GPUs. One technical difference is Spatter’s interface to the kernel:
instead of specifying the entire access pattern up front to the kernel,

1 GB/s 10 GB/s 100 GB/s 1 TB/s

Stride-1 DRAM Bandwidth

1
GB

/s
10

 G
B/

s
10

0
GB

/s
1

TB
/s

Pa
tte

rn
 B

an
dw

id
th

Str
ide

-1

Str
ide

-16

PE
NNANT-G

15
PE

NNANT-G
12

PE
NNANT-G

8

PE
NNANT-G

7

BDW

TX2
CLX
NPL

TITAN
P100

GV100

Fu
ll D

RAM Ban
dw

idt
h

1/2
 BW

1/4 1/8 1/1
6

Selected Gather Patterns

Uniform Stride Bandwidth vs PENNANT Patterns

(a)

1 GB/s 10 GB/s 100 GB/s 1 TB/s

Stride-1 DRAM Bandwidth

1
GB

/s
10

 G
B/

s
10

0
GB

/s
1

TB
/s

Pa
tte

rn
 B

an
dw

id
th

Str
ide

-1

Str
ide

-16LU
LES

H-S3
LU

LES
H-S1

BDW

CLX
NPL

TX2

TITAN
P100

GV100

Fu
ll D

RAM Ban
dw

idt
h

1/2
 BW

1/4 1/8 1/1
6

Selected Scatter Patterns
Uniform Stride Bandwidth vs LULESH Patterns

(b)

Figure 9: Bandwidth-Bandwidth Plots
We display a quantitative ranking of the selected platforms by plotting their
pattern bandwidths as a function of the platform’s stride-1 bandwidth. For
a given platform, its stride-1 bandwidth is on the x=y diagonal, and selected
pattern bandwidths appear directly below. Skylake is omitted from these
plots as it is very similar to Cascade Lake. Takeaway: For the patterns
selected, CPUs show both an increase in performance, and relative
performance across generations. Conversely, GPUs do not fare well on
these patterns at all, leading to a decrease in the percentage of the
bandwidth they use for the case of the gather patterns in (a).

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

we specify an index pattern and a delta. Therefore, Spatter can more
effectively mirror apps that generate indices dynamically, and it
does not incur the overhead of moving a large index buffer through
the memory hierarchy.

In terms of peak effective, or real-world achievable bandwidth,
STREAM [20] provides the most widely used measurement of sus-
tained local memory bandwidth using a regular, linear data access
pattern. Similarly, BabelStream [8], provides a STREAM interface
for heterogeneous devices using backends like OpenMP, CUDA,
OpenCL, SyCL, Kokkos, and Raja. Intel’s Parallel Research Kernels
[12] also supports an nstream benchmark that is used for some
platforms here. The CORAL 2 benchmarks also include a STREAM
variant called STRIDE [22], that includes eight different memory-
intensive linear algebra kernels written in C and Fortran. STRIDE
includes dot product and triad variations but still utilizes uniform
stride inputs and outputs. None of these suites support any access
pattern aside from uniform stride, which underlines the need for
a benchmark like Spatter which includes configurable and indirect
access patterns.

Whereas STREAM focuses on a single access pattern, pointer-
chasing benchmarks [13] and RandomAccess [18] use randomness
in their patterns. Pointer-chasing benchmarks measure the effects
of memory latency but are limited in scope to measuring memory
latency, and RandomAccess is only able to produce random streams.
Spatter cannot model dependencies like pointer chasing, but it
contains kernels for modeling random access and can be used for a
GUPS-like analysis.

6.1 Heterogeneous Architectural
Benchmarking

Memory access patterns have been studied extensively on hetero-
geneous and distributed memory machines, where data movement
has been a concern for a long time. Benchmarks such as SHOC, Par-
boil, and Rodinia provide varying levels of memory access patterns
that are critical to HPC application [5, 7, 25]. For example, SHOC
contains “Level 0” DeviceMemory and BusSpeedDownload bench-
marks that can be used to characterize GPUs and some CPU-based
devices. Likewise, other recent work has investigated vectorization
support with hardware and compiler suites for next-generation
applications for the SIERRA supercomputers [21]. Spatter intends
to be a more focused microbenchmark that supplements these exist-
ing benchmark suites and studies. It also aims to provide a simpler
mechanism for comparing scatter and gather operations across
programming models and architectures.

Other work focuses on optimizing memory access patterns for
tough-to-program heterogeneous devices like GPUs. Recent work
by Lai, et al. evaluates the effects of TLB caching on GPUs, develops
an analytical model to predict the caching characteristics of G/S and
then develops a multi-pass technique to improve the performance
of G/S on modern GPU devices [17]. Dymaxion takes an API ap-
proach to transforming data layouts and data structures and looks
at scatter and gather as part of a sparse matrix-vector multiplication
kernel experiment [6]. Jang et al. characterize loop body random
and complex memory access patterns and attempt to resolve them
into simpler and regular patterns that can be easily vectorized with
GPU programming languages [14]. Finally, CuMAPz provides a

tool to evaluate different optimization techniques for CUDA pro-
grams with a specific focus on access patterns for shared and global
memory [16].

6.2 Extensions to Other Architectures
One additional motivation for this work is to better implement
sparse access patterns on nontraditional accelerators like FPGAs
and the Emu Chick. For FPGAs, the Spector FPGA Suite provides
several features that have influenced the design of our benchmark
suite including user-defined parameters for block size, work item
size, and delta settings [11].

Spector uses OpenCL-based High-Level Synthesis and compiles a
number of different FPGA kernels with various parameters and then
attempts to pick the best configuration to execute on a specific FPGA
device. While this process can be time-consuming for FPGAs due to
routing heuristics, it could also be incorporated into a benchmark
like Spatter to pick and plot the best result for a given configuration
(i.e., work item size, block size, and vector length). This is supported
but not automated in the current version of Spatter.

Finally, there is also work in computer architecture that explores
the area of adding more capabilities to vector units. SuperStrider
and Arm’s Scalable Vector Extension both aim to implement G/S
operations in hardware [23, 24]. Similarly, the Emu system focuses
on improving random memory accesses by moving lightweight
threads to the data in remote DRAM [9]. Spatter complements
these hardware designs and associated benchmarking by allow-
ing users to test how their code can benefit from dedicated data
rearrangement units or data migration strategies.

7 CONCLUSIONS AND FUTUREWORK
This work is motivated by the growing importance of indexed ac-
cesses in modern HPC applications and specifically looks at the
use of gather and scatter operations in modern applications like
the DOE mini-apps investigated in Section 2. Spatter serves as a
configurable benchmark suite that can be used to better evaluate
these types of indirect memory accesses by using pattern-based
inputs to generate a wide class of indexed memory access patterns.
The presented experiments suggest how this tool could be used by
architects to evaluate new prefetching hardware or instructions for
gather and scatter, how compiler writers can inspect the perfor-
mance implications of their generated code, and potentially how
application developers could profile representative portions of their
application that rely on these operations.

We envision that the Spatter benchmark will be a tool that can
be used to examine any memory performance artifact that exists in
sparse codes. The current model that Spatter implements, which is
a single index buffer and delta for each pattern, is descriptive of a
wide range of patterns that we have seen in DOE mini-apps as well
as related benchmarks like STREAM and STRIDE. However, certain
aspects of the memory hierarchy cannot be properly examined by
the current version of Spatter, especially those relating to temporal
locality.

To increase Spatter’s ability to model memory access patterns,
we plan to expand the benchmark suite with the following fea-
tures: (1) model temporal locality for accesses using time delta

Evaluating Gather and Scatter Performance on CPUs and GPUs

patterns to better represent cacheable access patterns, (2) investi-
gate mathematical and AI techniques for modeling more complex
access patterns than can be represented with combinations of stride
and delta parameters, and (3) develop new open-source techniques
for extracting sparse memory access patterns from applications
in a timely fashion. For this last goal, we are currently working
on modeling 2D and 3D stencil operations from a proprietary full
waveform inversion code used for ocean surveying. Other features
that we are investigating for inclusion into Spatter are kernels writ-
ten with intrinsics as well as new backends for Kokkos, SyCL, and
novel architectures like FPGAs or the Emu Chick.

Our goal is also to make Spatter as easy to use as possible, and
useful for a wide audience. To aid in this effort, we plan to make the
following upgrades to the codebase: (1) support for OpenMP 4.5 and
SyCL backends, (2) automation of parameter selection, (3) optimized
CPU backends that make use of prefetching and streaming accesses,
and (4) make as much of our tracing and trace analysis infrastruc-
ture available along with our codebase, which is open-source and
available on Github.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1710371 (SuperSTARLU).

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

This research was performed in part during an internship at
Cray, Inc.

REFERENCES
[1] 2014. CORAL RFP B604142. https://asc.llnl.gov/CORAL/. Accessed: 2019-04-02.
[2] 2018. CORAL-2 ACQUISITION, RFP No. 6400015092. https://procurement.ornl.

gov/rfp/CORAL2/. Accessed: 2019-04-02.
[3] Alif Ahmed and Kevin Skadron. 2019. Hopscotch: A Micro-Benchmark Suite

for Memory Performance Evaluation. In Proceedings of the International Sym-
posium on Memory Systems (Washington, District of Columbia) (MEMSYS ’19).
Association for Computing Machinery, New York, NY, USA, 167–172. https:
//doi.org/10.1145/3357526.3357574

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC). 44–54. https:
//doi.org/10.1109/IISWC.2009.5306797

[6] Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. 2011. Dymaxion: Optimizing
Memory Access Patterns for Heterogeneous Systems. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis (Seattle, Washington) (SC ’11). ACM, New York, NY, USA, Article
13, 11 pages. https://doi.org/10.1145/2063384.2063401

[7] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scal-
able Heterogeneous Computing (SHOC) Benchmark Suite. In Proceedings of
the 3rd Workshop on General-Purpose Computation on Graphics Processing Units
(Pittsburgh, Pennsylvania, USA) (GPGPU-3). ACM, New York, NY, USA, 63–74.
https://doi.org/10.1145/1735688.1735702

[8] TomDeakin, James Price,MattMartineau, and SimonMcIntosh-Smith. 2016. GPU-
STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-Core
Processors Across Diverse Parallel Programming Models. In High Performance

Computing, Michela Taufer, Bernd Mohr, and Julian M. Kunkel (Eds.). Springer
International Publishing, Cham, 489–507.

[9] Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, and Richard Lethin.
2016. Highly scalable near memory processing with migrating threads on the
Emu system architecture. In Irregular Applications: Architecture and Algorithms
(IA3), Workshop on. IEEE, 2–9.

[10] P Fischer and K Heisey. 2013. NEKBONE: Thermal Hydraulics mini-application.
Nekbone Release 2 (2013).

[11] Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. 2016. Spector:
An OpenCL FPGA benchmark suite. (12 2016).

[12] Jeff R. Hammond and Timothy G. Mattson. 2019. Evaluating Data Parallelism
in C++ Using the Parallel Research Kernels. In Proceedings of the International
Workshop on OpenCL (Boston, MA, USA) (IWOCL’19). ACM, New York, NY, USA,
Article 14, 6 pages. https://doi.org/10.1145/3318170.3318192

[13] E. Hein, T. Conte, J. Young, S. Eswar, J. Li, P. Lavin, R. Vuduc, and J. Riedy.
2018. An Initial Characterization of the Emu Chick. In 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 579–588.
https://doi.org/10.1109/IPDPSW.2018.00097

[14] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. 2011. Exploiting Memory Access
Patterns to Improve Memory Performance in Data-Parallel Architectures. IEEE
Transactions on Parallel and Distributed Systems 22, 1 (Jan 2011), 105–118. https:
//doi.org/10.1109/TPDS.2010.107

[15] Ian Karlin, Jeff Keasler, and JR Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[16] Yooseong Kim and Aviral Shrivastava. 2011. CuMAPz: A Tool to Analyze Memory
Access Patterns in CUDA. In Proceedings of the 48th Design Automation Conference
(San Diego, California) (DAC ’11). ACM, New York, NY, USA, 128–133. https:
//doi.org/10.1145/2024724.2024754

[17] Zhuohang Lai, Qiong Luo, and Xiaoying Jia. 2018. Revisiting Multi-pass Scatter
and Gather on GPUs. In Proceedings of the 47th International Conference on Parallel
Processing (Eugene, OR, USA) (ICPP 2018). ACM, New York, NY, USA, Article 25,
11 pages. https://doi.org/10.1145/3225058.3225095

[18] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John Mccalpin, David Bailey, and Daisuke Takahashi. 2005. In-
troduction to the HPC Challenge Benchmark Suite. Technical Report.

[19] John McCalpin. 2018. Notes on “non-temporal” (aka “streaming”) stores. http:
//sites.utexas.edu/jdm4372/tag/cache/.

[20] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19–25.

[21] Mahesh Rajan, Douglas W Doerfler, Mike Tupek, and Simon Hammond. 2015.
An investigation of compiler vectorization on current and next-generation Intel
processors using benchmarks and Sandia’s Sierra Applications. (2015).

[22] Mark K. Seager. 2019. STRIDE CORAL 2 benchmark summary. https://asc.llnl.
gov/coral-2-benchmarks/downloads/STRIDE_Summary_v1.0.pdf.

[23] S. Srikanth, T. M. Conte, E. P. DeBenedictis, and J. Cook. 2017. The Superstrider
Architecture: Integrating Logic and Memory Towards Non-Von Neumann Com-
puting. In 2017 IEEE International Conference on Rebooting Computing (ICRC). 1–8.
https://doi.org/10.1109/ICRC.2017.8123669

[24] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. 2017.
The ARM Scalable Vector Extension. IEEE Micro 37, 2 (Mar 2017), 26–39. https:
//doi.org/10.1109/MM.2017.35

[25] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

[26] Erich Strohmaier and Hongzhang Shan. 2005. Apex-Map: A Global Data Access
Benchmark to Analyze HPC Systems and Parallel Programming Paradigms. In
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05). IEEE
Computer Society, Washington, DC, USA, 49–. https://doi.org/10.1109/SC.2005.
13

[27] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173.

[28] Ulrike Yang, Robert Falgout, and Jongsoo Park. 2017. Algebraic Multigrid Bench-
mark, Version 00. https://www.osti.gov//servlets/purl/1389816

https://asc.llnl.gov/CORAL/
https://procurement.ornl.gov/rfp/CORAL2/
https://procurement.ornl.gov/rfp/CORAL2/
https://doi.org/10.1145/3357526.3357574
https://doi.org/10.1145/3357526.3357574
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/2063384.2063401
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/3318170.3318192
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1109/TPDS.2010.107
https://doi.org/10.1109/TPDS.2010.107
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1145/3225058.3225095
http://sites.utexas.edu/jdm4372/tag/cache/
http://sites.utexas.edu/jdm4372/tag/cache/
https://asc.llnl.gov/coral-2-benchmarks/downloads/STRIDE_Summary_v1.0.pdf
https://asc.llnl.gov/coral-2-benchmarks/downloads/STRIDE_Summary_v1.0.pdf
https://doi.org/10.1109/ICRC.2017.8123669
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/SC.2005.13
https://doi.org/10.1109/SC.2005.13
https://www.osti.gov//servlets/purl/1389816

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose, and Daniel Ernst

A APPLICATION GATHER / SCATTER PATTERNS
Table 5 lists all the patterns used in evaluation of the Spatter suite.

Table 5: Listing of Patterns

Gather Pattern Index Delta Type

PENNANT-G0 [2,484,482,0,4,486,484,2,6,488,486,4,8,490,488,6] 2
PENNANT-G1 [0,2,484,482,2,4,486,484,4,6,488,486,6,8,490,488] 2
PENNANT-G2 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 2 Stride-4
PENNANT-G3 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 2
PENNANT-G4 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 4 Broadcast
PENNANT-G5 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 4
PENNANT-G6 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 480
PENNANT-G7 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 482
PENNANT-G8 [2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0] 129608
PENNANT-G9 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388852 Broadcast
PENNANT-G10 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G11 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G12 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G13 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G14 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 1036816
PENNANT-G15 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 1882384 Broadcast

LULESH-G0 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 1 Stride-1
LULESH-G1 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 8 Stride-1
LULESH-G2 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-G3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G4 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 4 Stride-24
LULESH-G5 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-G6 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G7 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 41 Stride-1

NEKBONE-G0 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 3 Stride-6
NEKBONE-G1 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
NEKBONE-G2 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6

AMG-G0 [1333,0,1,36,37,72,73,1296,1297,1332,1368,1369,2592,2593,2628,2629] 1 Mostly Stride-1
AMG-G1 [1333,0,1,2,36,37,38,72,73,74,1296,1297,1298,1332,1334,1368] 1 Mostly Stride-1

Scatter Pattern Index Delta Type

PENNANT-S0 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 1 Stride-4

LULESH-S0 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-S1 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-S2 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-S3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 0 Stride-24

	Abstract
	1 Introduction
	2 Gather / Scatter in Real-World Applications
	2.1 Open Source Techniques for Pattern Analysis

	3 Design of the Spatter Benchmark
	3.1 Kernel Algorithm
	3.2 Backend Implementations
	3.3 Benchmark Input
	3.4 Example
	3.5 Benchmark Output

	4 Experimental Setup
	5 Case Studies
	5.1 CPU Uniform Stride
	5.2 GPU Uniform Stride
	5.3 SIMD vs. Scalar Backend Characterization
	5.4 Application-derived G/S Patterns

	6 Related Work
	6.1 Heterogeneous Architectural Benchmarking
	6.2 Extensions to Other Architectures

	7 Conclusions and Future Work
	Acknowledgments
	References
	A Application Gather / Scatter Patterns

