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ABSTRACT
Mobility-centric design revolves around the concept of a

lease, which is used by hardware to manage the cache mem-

ory and by software to program the hardware. This posi-

tion paper presents a design of collaborative software and

hardware programming of a multicore cache hierarchy. This

design is the first to allow any mix of software and hardware

policies on the same machine. It promises more powerful

cache optimization than what is possible with existing cache

designs but also introduces the problem of multi-level cache

programming.

1 INTRODUCTION
Today’s computers such as CPUs, GPUs and accelerators

have complex memory systems that are almost always hi-

erarchical, parallel, dynamically allocated and shared. This

complexity is rapidly increasing with new technology, e.g.

high-bandwidth memory (HBM), new material, e.g. SSDs,

and new architectures, e.g. heterogeneous systems.

Traditional caching is under strain. Memory has become

ever larger and more diverse, with different materials, con-

figurations, and interconnects having different trade-offs

among capacity, speed, cost and other factors. Compartmen-

talized solutions with carefully tuned heuristics are increas-

ingly brittle for several reasons. They may not scale well

under different types of applications and varying degrees of

parallelism. Performance under a dynamic workload can be

extremely unpredictable and unfair. There can be pathologi-

cally bad performance caused by poor interactions between

memory components and their management policies. Last

but not least, the memory utilization cannot be fully opti-

mized unless software and hardware can operate in concert.

The complexity of today’s memory is too great for con-

ventional automatic solutions to be fully effective and robust.

It warrants studies of new theories of memory that aim at

formal rigorous performance and correctness models and

optimization that are based on mathematics, ensure repro-

ducible results, and have provable guarantees.

The new design focuses onminimizing the data movement.

We do not consider prefetching. Although prefetching is

critical to performance, it does not reduce the datamovement.

We limit our consideration to just the data movement. The

cost and the performance of the computing infrastructure

depend on its memory hierarchy, and the data movement

frequently poses a limit to scalability and power efficiency.

2 BACKGROUND
2.1 Cache Programming by Leases
Conventional cache design is reactive — deciding what to re-

place when the cache is full. Cache allocation is prescriptive.

The eviction time of a data block is prescribed at its latest

access by a lease. The lease is measured by the number of

accesses rather than the physical time. A lease of 1000 means

that the lease cache keeps the data block until 1000 accesses

later. The lease is renewed if the data block is accessed before

the end of the lease; otherwise, the block is evicted from the

cache.
1

It helps to draw an analogy with human mobility, in that

allocating the space in cache is analogous to renting the

rooms in a hotel next to a busy factory. A worker stays in the

hotel in case they are needed for some work. If they are, a

new reservation is made to extend the hotel stay; otherwise,

the worker leaves when their reservation expires. A cache

lease is analogous to a hotel reservation.

LRU cache Lease cache

Primary policy LRU, automatic leases, pro-

grammed

Info used history only history, prog.,

or both

Secondary pol-

icy

N/A random evic-

tion

The preceding table shows a comparison with the least-

recently-used cache (LRU), a common baseline policy where

the least recently used cache block is selected for eviction

1
With leases, the control is not just imposed on data insertion but also

updated on each data use. This differs from the previous concepts of cache

leases used in distributed caching [9], Web caching [8] and TLB [1].
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at every cache miss. Unlike the LRU cache which is reactive

and uses only the history information, the lease cache is

programmed and can be so based on program information. If

a program requires more cache space than what is available,

the lease cache has a secondary policy, which randomly

evicts a data block at a cache miss. As an allocation, lease

programming is similar to heap management, but the goal

is not to minimize the size of a heap, but to obtain as many

cache hits as possible.

2.2 Leasing Policies and Properties
Three types of leasing policies have been developed, with in-

creasingly stronger performance guarantees. They are shown

in the following table and then described in more detail. MRC

refers to miss ratio curve.

Policy Performance Use

Uniform no worse than LRU,

lease mono. MRC any prog.

Dual lease convex MRC

minimal misses
2
, prog. amenable

CARL mono. / convex MRC, to compiler

sub-partition mono. analysis

Uniform Lease. We call a new cache design performance
safe if it is at least as good as the LRU cache. For the lease

cache, this amounts to comparing UL and LRU. We will com-

pare them both in theory and through experimentation. We

have shown in theory and simulation that UL and LRU per-

form the same [5]. The safety implies monotonicity in that

LRU is a stack algorithm. It cannot happen that a larger cache

incurs more misses than a smaller cache.

Dual Lease. The first extension is a dual lease, which as-

signs a long lease for a (randomly selected) portion of ac-

cesses and a short lease for the rest. By choosing the right por-

tion size, the dual lease accomplishes the effect of Talus [2]

and SLIDE (for LRU caches) [23].

CARL Leases. Given a program, a compiler assigns a lease

for each load and store instruction in the program. The lease

is called a reference lease, assigned to each load or store in-

struction at the program binary. When the program executes,

each access is given the lease of its load or store instruction.

For programs whose data access can be analyzed at compile-

time, e.g., scientific kernels, reference leases can be assigned

optimally by the CARL (compiler-assigned reference lease)

algorithm [7, 17]. CARL takes a target cache size and set of

reference RI (reuse interval) distributions and assigns leases

to maximize the number of hits per unit of a lease.
2

2
CARL uses a dual lease for a reference, while the policy of Dual Lease uses

it for the whole program.

CARL has strong properties [7]. It is optimal in that it

selects the best possible lease for a program.
3
Across all cache

sizes, the miss ratio function is not just monotone but also

convex. It also has sub-partition monotonicity in that with

finer-grained information, CARL will not lose performance.

The optimality claim goes beyond lease caching. Lease

programming is based on statistical prediction of program

behavior. This differs from hardware replacement policies

such as LRU and OPT which are based on precise predic-

tion. For example, consider a simple trace like 𝑎𝑎𝑎𝑥𝑥𝑥 . . .

𝑎𝑥𝑎𝑥𝑎𝑥 where 𝑎, 𝑥 are accessed alternately consecutive and

interleaved. The hardware cache tries to predict the exact

next reuse. A lease is assigned based on the knowledge that

about half of the reuse intervals are 1 and the other half

2. The hardware makes the prediction at run time at each

access. The lease is assigned statically at compile time and

is associated with a program instruction. Using the same

statistical information, no algorithm, based on lease or not,

can do better than CARL.

3 CACHE CO-PROGRAMMING
Mobility is encoded by leases. As a programming interface,

they can be used by both software and hardware. The key

idea of the paper is software and hardware collabrative

caching. This section explains the concepts, the design for

new hardware, and programming techniques.

3.1 Concepts
We call it cache programming if the cache control is encoded

through program code. To distinguish, we call it cache man-
agement if the control is purely based on program data. By

this definition, the LRU cache policy is cache management,

while CARL (i.e., reference leases) is cache programming.

The uniform lease and dual lease treat a program as one with

a single reference, so they are also cache programming.

We define collaborative cache programming as the com-

bined use of cache programming in both software and hard-

ware, or cache co-programming in short. The following table

shows how mobility centric caching accomplishes cache co-

programming by combining leasing policies in software and

hardware.

Cache programming Technique Collaboration

Hardware dual lease run-time,

universally applicable

Software CARL compile-time,

prog./user knowledge

3
The optimality is proved for variable-size cache. For fixed-size caches,

CARL is applied per program phase [16, 17] or per loop nest [19].
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Lease-based cache co-programming leverages the convex

MRC provided in the dual lease policy in hardware and opti-

mal MRC provided by CARL in software. The combination

allows optimization of the shared cache. Their programming,

however, must support a multi-level cache hierarchy. The

rest of the section discuss these issues.

3.2 Co-programmable Hardware
We are building a hardware prototype shown in Figure 1. It

has two RISC-V cores, each connected to private instruction

caches (IC) and data caches (DC). The last level cache is the

lease cache and shared by both cores. On modern processors,

the first-level caches are optimized for latency. Following the

conventional design, the private caches are set associative

and use pseudo-least recently used (PLRU) replacement [20,

§III], rather than leases.

1

RISCV 
Core-0

L1 – DC - PLRU 
Private

L1 – IC - PLRU 
Private

L2 
Unified 
Shared 
Lease

Main 
memory

RISCV 
Core-1

L1 – DC - PLRU 
Private

L1 – IC - PLRU 
Private

Figure 1: Dual-core and two-level cache hierarchy with
a shared lease cache

This is based on a previous FPGA prototype, which has

a single RISC-V core and a single-level lease cache [17, 19].

The availability of the programmable logic array offers a

unique opportunity to implement a soft lease cache and its

associated controller. Specifically, at run-time dynamic re-
configuration of a part of the programmable logic, a feature

present in all high performance SoCs and FPGAs, makes the

implementation of a lease cache even more attractive. In ef-

fect, the availability of the programmable logic array allows

the lease cache to adapt to the needs of the application as

prescribed by the compiler through the lease values.

3.3 Optimal Cache Sharing
Shared cache emerged at the paradigm shift of the industry

to multicore. On the one hand, cache sharing enables the

pooling of cache resources and allows a core to use most of

the communal cachewhen other cores are not using it. On the

other hand, it introduces the problem of negative interference

and uncertainty. Many techniques have been developed to

effectively address these problems. One remaining, however,

is a robust method to maximize the utilization of the shared

cache for any givenworkload, i.e., allocating the shared cache

to minimize the total number of cache misses.

Lease cache has convex miss ratios. The convexity permits

optimal partitioning of cache. It is a well-known result that

optimal cache partition is one where the derivative of the

miss ratio function of all co-run programs is equal [21, 22].

The following theorem shows the maximization of the cu-

mulative misses

∑
𝑖 𝑓𝑖 (𝑥𝑖 ) by dividing the total amount of

memory 𝑋 .

Theorem 3.1. Let {𝑓𝑖 }𝑛𝑖=1 be a set of differentiable decreas-
ing convex functions, and let 𝑋 be a positive real number.
Then the sum

∑
𝑖 𝑓𝑖 (𝑥𝑖 ) is minimized subject to the constraint∑

𝑖 𝑥𝑖 ≤ 𝑋 at a point where ∀𝑖, 𝑗 ∈ {1..𝑛}(𝑓 ′𝑖 (𝑥𝑖 ) = 𝑓 ′𝑗 (𝑥 𝑗 )).

The optimal allocation can be done in time linear to the

memory size, by greedily allocating each cache block to the

program with the most reduction in the miss ratio.

In practice, it is often desirable to ensure fairness or a

baseline quality of service (QoS). Elasticity is an idea for

individual programs to “volunteer” a portion of its cache

partition if others can make a better use “for the greater

good.” For monotone miss ratio functions, Ye et al. [25] used

dynamic programming for optimization. Convex miss ratios

enable the same optimization in linear time.

Cache programming enables operating system (OS) con-

trol. The following table compares OS management of phys-

ical memory, which is used by almost all today’s machines,

and the possibility of OS management of the shared cache.

Virtual mem-

ory

Shared cache

Mechanism page tables lease tables

Allocation fre-

quency

every page

fault

every memory

access

Compared to physical memory, the shared cache is smaller,

allocated at smaller granularity, and more importantly, man-

aged at the frequency of every cache access, instead of OS

page allocation. The cache allocations and evictions are too

frequent for any software to manage it directly. Cache pro-

gramming is necessary to allow fine-grained OS control.

In current systems, OS controls privileged instructions to

partition the cache memory among programs and let each

program make the best use of it. On Intel systems with CAT,

the granularity of partitioning is a cache way. With cache

programming, the OS may partition the cache at finer gran-

ularity. More importantly, it may efficiently find the optimal

cache partitioning.

Unlike physical memory, the cache system is hierarchical.

We next consider the programming of multiple cache layers.

3
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3.4 Two-level Cache Programming
In our hardware design (Section 3.2), level-one (L1) caches

use PLRU, and they share a single level-two (L2) cache which

is programmed by leases. For current multicore processors,

the private cache and the shared cache are exclusive on AMD

machines and non-inclusive on Intel machines. Here we

consider exclusive caches, where the shared cache serves as

the victim cache for private caches. Since L1 is a conventional

cache, the goal is to program L2 but remain mindful of L1

and minimize L2 misses.

Cache hierarchy poses a significant challenge for collabo-

rative cache – software can make inferences about the source
level access stream, i.e. the memory accesses issued by a pro-

cess. Meanwhile, L2 does not see the stream of source level

accesses but rather a target level access stream comprised of

L1 misses and evictions.

A hardware-only approach sees only the target level ac-

cess stream and may react to it dynamically. However, in

order to obtain the benefits of software control, the collabo-

rative approach must account for this discrepancy somehow.

There are two primary options. The first is for software to

assign leases according to program order, and trust hard-

ware to provide information about the source level access

stream to the target cache dynamically. In our design, this

would mean updating every L2 lease on every L1 access. The

second approach requires software to account for this fil-

tering effect during lease assignment. Thus, leases could be

assigned based on predicted L2 reuse statistics. We propose

a simple compromise between these two options – software

can compute and assign leases based on source level access

stream, and trust hardware to dynamically scale them down

by the L1 hit ratio when L2 stores a block.

In terms of cache allocation, there are two choices. The

first is L1 oblivious, where L2 leases are assigned based on

L2 cache size, completely ignoring L1. The second is L1 con-
scious, where L2 leases are selected differently based on how

large L1 caches are. The first choice is portable but does not

fully use the combined space of the two caches.

In both cases, we need two support from hardware. The

first requires the hardware to record additional information

in each cache block in L1. In particular, each time an L1

block is accessed, we record the reference. When the block

is evicted from L1, this information is used to look up the L2

lease in the lease table.

Since the lease starts from the last time the data is accessed,

not when it is evicted from L1, the L2 lease needs to be

adjusted. Specifically, the time between the last access to the

block and the block’s eviction from L1 should be deducted

from the lease before using it. We call the lease before the

deduction the programmed lease and the adjusted lease after

it. For LRU caches, the average eviction time (AET) has been

studied and used in modeling both software and hardware

caches [6, 11, 12]. We use the hardware to measure AET at

run time and use it to adjust L2 leases.

Based on AET, L1 conscious leasing computes the effect

of the private cache. There are two effects. First, it identifies

data reuses in L1 and does not assign them L2 leases. Second,

it calculates the demand to L2 after removing L1 hits and

assigns leases for the adjusted demand. Effectively, L1 is

now an extension of L2, and L2 leases are assigned for the

combined space.

4 PRELIMINARY RESULTS
Figure 2 presents preliminary results on the performance

of four CARL-based lease assignment algorithms for bench-

marks from the Polybench suite. We use PolyBench/C 4.2.1,

which contains 30 numerical kernels [15] and show the re-

sults for the small dataset size. We use PolyBench because

the benchmark suite is relatively easy to port through the

FPGA tool chain to allow testing on a real system.

We show the L2 miss ratios for four different lease as-

signment algorithms on our machine. Previous work has

presented only L1 lease cache performance. CLAM[17] is a di-

rect implementation of the CARL algorithm on our hardware,

and PRL, SHEL and C-SHEL each attempt to improve per-

formance via load balancing[17, 19]. For the sake of brevity,

the details of the particular differences between each lease

assignment algorithm are elided. We see that regardless of

which lease assignment technique is used, performance over

PLRU improves on average.

5 RELATEDWORK
We categorize existing methods in four groups in the follow-

ing table based on whether and how they combine software

and hardware caching.

Hardware

managed programmed

no LRU, RRIP, Hawkeye,

Software Talus, SLIDE LEU

programming yes collaborative this paper

caching

Collaborative caching inserts hints, such as evict-me [24]

or those on Intel Itanium architecture [3], into a program.

It is collaborative and uses cache programming in software

but not in hardware. The hardware policy combines most

recently used (MRU) replacement policy and LRU, and the

combined policy is a stack algorithm [10]. Its MRC is mono-

tone but not convex, so collaborative caching cannot achieve

optimal cache sharing described in Section 3.3.

4
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Figure 2: L2 miss ratios for four different lease assign-
ment algorithms - CLAM, PRL, SHEL and C-SHEL, on
Polybench programs with small dataset size compared
to PLRU. Each algorithm is a modification of the CARL
algorithm discussed in section 2.2.

LRU and its numerous improvements such as RRIP [14]

and set dueling [18] are purely cache management tech-

niques in hardware, so are Talus and SLIDE mentioned in

Section 2. More recent improvements in caching include

Hawkeye [13] and Least Expected Use (LEU) replacement [4],

which are cache programming in hardware but not in soft-

ware. Widely used hardware techniques such as branch pre-

diction and prefetching use code-based analysis and control,

e.g. the branch prediction table. They would fit in the upper

right quadrant with Hawkeye and LEU if they were caching

techniques. These techniques are not collaborative between

hardware and software. Co-programming allows caching

be optimized based on program or programmer knowledge.

However, it needs multi-level cache programming discussed

in Section 3.4.

6 SUMMARY
In this position paper, we have presented collaborative soft-

ware and hardware programming of a two-level cache hier-

archy for a dual-core RISC-V processor. Dual Lease improves

the basic caching for any program, and CARL achieves op-

timal caching for programs amenable to compiler analysis.

The system is the first to allow any mix of these two policies

on the samemachine, efficiently optimize their cache sharing,

and enable cache programming in a multi-level hierarchy.

By focusing on mobility, the new design may minimize the

number of cache misses and hence the energy consumption

due to data movement. Mobility centric caching is a promis-

ing approach to further reduce the energy cost of computing

systems.
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